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ABSTRACT The cloud storage auditing with deduplication is able to verify the integrity of data stored in
the cloud while the cloud needs to keep only a single copy of duplicated file. To the best of our knowledge,
all of the existing cloud storage auditing schemes with deduplication are vulnerable to brute-force dictionary
attacks, which incurs the leakage of user privacy. In this paper, we focus on a new aspect of being against
brute-force dictionary attacks on cloud storage auditing. We propose a cloud storage auditing scheme with
deduplication supporting strong privacy protection, in which the privacy of user’s file would not be disclosed
to the cloud and other parties when this user’s file is predictable or from a small space. In the proposed
scheme, we design a novel method to generate the file index for duplicate check, and use a new strategy to
generate the key for file encryption. In addition, the user only needs to perform lightweight computation to
generate data authenticators, verify cloud data integrity, and retrieve the file from the cloud. The security
proof and the performance evaluation demonstrate that the proposed scheme achieves desirable security and
efficiency.

INDEX TERMS Cloud storage auditing, deduplication, strong privacy protection, data security, cloud
storage.

I. INTRODUCTION
With the rapid development of cloud computing, cloud stor-
age has been widely accepted by individuals and enter-
prises for its advantages of universal access, low costs and
on-demand service. Users can outsource complex compu-
tations to the cloud to reduce their computational bur-
den [40], [41]. In addition, users also can outsource their
large-scale data to the cloud to release their local storage
burden [7], [30]. Under such a trend, it becomes urgent to
guarantee the quality of data storage services for the users
and the cloud. On one hand, the outsourced data might be
corrupted or lost due to the inevitable operation errors or soft-
ware/hardware failures in the cloud [27]. Thus, it is critical to
develop cloud storage auditing, by which users can verify the
integrity of cloud data without downloading the whole data
from the cloud. On the other hand, lots of data stored in the
cloud are duplicated. Based on the survey by EMC, 75% of
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cloud data are duplicated copies [8]. In order to improve the
storage efficiency of the cloud, it is necessary to perform data
deduplication [12], [33], where the cloud keeps only a single
copy of the duplicated file and makes a link to the file for the
users.

Users usually encrypt their data before outsourcing them to
the cloud since they would not like to disclose their sensitive
data to the cloud and other parties [9], [42]. In order to realize
deduplication over encrypted data, the convergent encryp-
tion (CE) [6] was proposed to encrypt data. A convergent
encryption algorithm encrypts data with a key deterministi-
cally derived from the data (e.g., the file’s hash value). Thus,
the same file will produce the same ciphertext. It means
that the deduplication over ciphertexts is feasible. However,
directly using CE is not secure in some situations. For exam-
ple, when the file is predictable or from a small space [16],
CE cannot resist brute-force dictionary attacks, in which the
malicious cloud can recover the entire file with a number
of guesses. In order to deal with this problem, Li et al. [18]
proposed a secure auditing and data deduplication scheme
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by introducing a key server to help user generate the conver-
gent key. In this scheme, the cloud cannot deduce or derive
the convergent key from the content of file since a secret
‘‘seed’’ is embedded in the convergent key. Unfortunately,
the key server is able to guess or derive the file’s content
from the file’s hash value sent from the user by launching the
brute-force dictionary attacks. Therefore, this scheme cannot
fully prevent the brute-force dictionary attacks. In addition,
all users who want to upload file to the cloud need to generate
a file index and send it to the cloud for duplicate check. With
the file index, the cloud can verify whether the file uploaded
by the user is duplicated or not. If the file index has been
kept by the cloud, then the subsequent users do not need to
upload data to the cloud any more. Most of deduplication
schemes [14], [28], [33] set the hash value of the file as the
file index. It will result in the data privacy leakage because
the malicious cloud or other parties might guess or derive
the content of file by performing the brute-force dictionary
attacks. Thus, how to realize deduplication supporting strong
privacy protection in cloud storage auditing is very important
and valuable. Unfortunately, previous schemes are weak in
privacy protection because they cannot fully defend against
the brute-force dictionary attacks.

Our main contributions can be summarized as below:
In this paper, we investigate how to fully resist the brute-

force dictionary attacks and realize deduplication with strong
privacy protection in cloud storage auditing, and propose a
concrete scheme satisfying this property. In order to realize
deduplication with strong privacy protection, we design a
novel method to generate the file index, and employ a new
strategy to generate the key for file encryption. In the detailed
design, the file index is generated with the help of an Agency
Server (AS) instead of directly being produced by the hash
value of file. The key for file encryption is generated with
the file and the file label. The file label is kept by the user
secretly. In this way, the privacy of the user’s file is protected
against the cloud and the AS. In order to improve the storage
efficiency, the users, who own the same file, are able to
generate the same ciphertext and the same authenticators.
The proposed scheme effectively achieves data deduplication
and authenticator deduplication. Furthermore, to reduce the
computation burden on the user side, the user only needs to
perform lightweight computation to generate data authentica-
tors, verify the integrity of the cloud data, and retrieve his file
from the cloud.

We give the security analysis of the proposed scheme,
showing that the proposed scheme satisfies correctness,
soundness and strong privacy protection. We also justify the
performance by concrete implementations. The result shows
that the proposed scheme is efficient.

A. RELATED WORKS
1) SECURE DEDUPLICATION
Deduplication is a popular technique in cloud storage, where
the cloud keeps only a single copy of redundant data, regard-
less of how many users want to upload this file. In order

to support deduplication over encrypted data, convergent
encryption (CE) was proposed by Douceur et al. [6], which
encrypts data under a message-dependent key (e.g., the hash
of the file). It means that the users keeping the iden-
tical file can produce the identical ciphertext. Subse-
quently, Bellare et al. [3] formalized CE under the notion of
Message-Locked Encryption (MLE). Keelveedhi et al. [16]
presented the DupLESS by introducing a key server. In Dup-
LESS, users encrypt their data with the MLE keys gener-
ated by the key server. Li et al. [17] designed distributed
deduplication systems with high reliability. In this scheme,
data privacy can be protected by using the secret splitting
technique. To restrict the side channel information leakage,
Halevi et al. [11] designed a Proof of Ownership (PoW)
scheme, in which the users who want to store data to the
cloud can make the cloud convince that they exactly own
this file. Zheng et al. [42] designed a secure system toward
encrypted cloud media by combining deduplication with
video coding techniques. In [26], Singh et al. focused on
the problems of fault tolerance and key management in
deduplication, and presented a concrete scheme to address
these problems. Yan et al. [33] designed a heterogeneous
data management scheme supporting both deduplication and
access control simultaneously. By constructing a role autho-
rized tree, Xiong et al. [31] designed a secure encrypted data
deduplication scheme, in which only the authorized user
is able to access the specific file. Cui et al. [4] proposed
an attribute-based encrypted data deduplication scheme in
the cloud. In this scheme, users can share their data with
other users by specifying access policies instead of sharing
decryption keys.

2) CLOUD STORAGE AUDITING
In order to guarantee the integrity of data stored in the cloud,
a number of cloud storage auditing schemes [2], [13], [15],
[19], [22], [23], [32], [38] were proposed. Ateniese et al. [2]
firstly proposed a notion of ‘‘Provable Data Posses-
sion’’ (PDP) and designed a publicly verifiable PDP scheme
by utilizing homomorphic authenticators and random sample
technique. In this scheme, an auditor is allowed to verify
the integrity of cloud data without downloading the entire
data from the cloud. Juels and Kaliski [15] constructed a
model of ‘‘Proof of Retrievability’’ (PoR) and proposed
a concrete scheme, which combines error-correcting codes
and spot-checking technique to guarantee the retrievability
and integrity of cloud data. Later, two PoR schemes with
private verifiability and public verifiability were designed
by Shacham and Waters [23] based on pseudorandom func-
tion and BLS signature. In order to support data dynamic,
Yang et al. [34] designed a data integrity auditing scheme
supporting dynamic data updates based on skip list structure.
In this scheme, user is able to modify, insert, or delete his
data blocks after uploading his data to the cloud. With the
random masking technique, Wang et al. [29] proposed a pri-
vacy preserving cloud storage auditing scheme. To reduce
user’s computation overhead, Ding et al. [5] constructed a
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TABLE 1. Notations.

lightweight cloud storage auditing scheme with data pri-
vacy protection, which employs edge server to compute
data authenticators and verify data integrity. Guo et al. [10]
designed a cloud storage auditing scheme, which is able
to execute and verify multiple update operations at once.
Shen et al. [25] proposed a data integrity auditing scheme
without private key storage. In this scheme, the biomet-
ric data, such as fingerprint and iris scan, is considered as
the user’s fuzzy private key to generate data authenticators,
which avoids the use of the hardware token. By utilizing key
update technique, Yu et al. [35], [36], Yu and Wang [37]
proposed cloud storage auditing schemes with key-exposure
resilience. Shen et al. [24] took the problem of data sharing
with sensitive information hiding into account and designed
a concrete identity-based cloud storage auditing scheme.
In order to improve the cloud storage efficiency and save
network bandwidth, Yuan and Yu [39] designed a public
and constant cost cloud storage integrity auditing scheme
with deduplication based on polynomial-based authentication
tags and homomorphic linear authenticators. Li et al. [18]
proposed a cloud storage auditing scheme with both data
and authenticator deduplication by introducing a key server
and an auditor. Liu et al. [20] presented another cloud storage
auditing scheme with deduplication. In this scheme, in order
to achieve authenticator deduplication, the initial user utilizes
the file’s hash value as the private key for computing data
authenticators. Hou et al. [14] considered the problem of
files’ security levels according to data popularity in cloud
storage auditing with deduplication, and proposed a cloud
storage auditing scheme with deduplication supporting dif-
ferent security levels based on data popularity.

However, all of the above schemes cannot achieve
the deduplication supporting strong private protection for
encrypted data in cloud storage auditing. It means that the
useful information of user’s file might be disclosed to the
malicious cloud or other parties when this user’s file is pre-
dictable or from a small space.

B. ORGANIZATION
The rest of the paper is organized as follows. In Section II,
we introduce the notions and system model. Section III
presents design goals and definition. Section IV gives the
proposed scheme. The security analysis and the perfor-
mance evaluation are presented respectively in Section V and
Section VI. In Section VII, we conclude the whole paper.

II. NOTIONS AND SYSTEM MODEL
A. NOTIONS
In Table 1, we show some notations used in the description of
our scheme.

B. SYSTEM MODEL
The system model consists of three types of entities: the
cloud, the user, and the Agency Server (AS), as illustrated
in Fig.1.

(1) Cloud: The cloud has enormous storage space, and
supplies storage services and downloading services for users.
In order to improve storage efficiency, the cloud performs
deduplication for duplicated files. In other words, the cloud
keeps only a single copy of any duplicated file and its corre-
sponding authenticators, and provides user with a link to the
corresponding file.
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FIGURE 1. The system model.

(2) User: The user is divided into two categories. One is
the initial user who uploads files that did not exist in the
cloud previously. The other one is the subsequent users who
upload files that the cloud has kept. The initial user generates
the authenticators for each encrypted file, then uploads the
encrypted file, its corresponding authenticators and the file
tag to the cloud. The subsequent user does not need to gener-
ate the data authenticators and upload the above messages to
the cloud. Later, both the initial user and the subsequent user
can recover their data after downloading the data from the
cloud. In addition, users are able to verify the integrity of the
cloud data by executing the cloud storage auditing protocol
with the cloud.

(3) AS: The AS is responsible for helping users generate
the file index and the file label with his private key. With
the file index, the cloud can verify whether the file uploaded
by the user is duplicated or not. With the file label, the user
can generate some keys for encryption and authenticator
generation.

When an initial user wants to upload a file F to the cloud,
he initially needs to interact with the AS to generate a file
index for the uploaded file. Specifically, in order to protect
the privacy of the file, the initial user firstly computes a
blinded hash value F ′ for the file F . Then the initial user
sends F ′ to the AS. Upon receiving F ′, the AS computes T
with his private key, then returns it to the initial user. The
initial user can generate the file index with T . The initial user
sends the file index to the cloud as the file upload request.
If the cloud did not maintain this file index, then the initial
user encrypts his file and generates authenticators for the
encrypted file. Finally, the initial user uploads the ciphertext
and its corresponding authenticators to the cloud.

Similarly, when a subsequent user wants to upload a file
F to the cloud, he firstly needs to interact with the AS to
generate a file index for the uploaded file. Then the subse-
quent user sends the file index to the cloud as the file upload
request. If the cloud has stored this file index, it will perform
PoW (Proof of Ownership) protocol with the subsequent user
to verify whether the subsequent user keeps the file indeed.

When the user (initial user or the subsequent user) wants to
verify whether the cloud stores his intact ciphertext, he will

send an auditing challenge to the cloud. Upon receiving the
auditing challenge, the cloud generates and sends an auditing
proof to the user. Finally, the user checks the integrity of the
ciphertext by verifying whether this auditing proof is correct
or not.

C. THREAT MODEL
The security goal in the proposed scheme is to fully resist
the brute-force dictionary attacks and provide strong privacy
protection for the users’ files.We consider two types of adver-
saries: internal adversary and external adversary. The mali-
cious cloud or the AS plays the role of the internal adversary,
which is honest-but-curious. That is to say, the cloud performs
the deduplication protocol honestly but tries to cheat the user
about the data corrupt event or derive the file’s content from
the encrypted file. The AS faithfully performs the assigned
operations, but intents to guess the contents of users’ files.
We do not consider the collusion of the cloud and the AS.
The user, who somehow knows the file’s content or the file’s
hash value, acts as the external adversary. He intends to obtain
a link of a file but does not keep the corresponding file.

III. DESIGN GOALS AND DEFINITION
A. DESIGN GOALS
To achieve lightweight cloud storage auditingwith deduplica-
tion supporting strong privacy protection, our scheme should
satisfy the following goals:

1) Correctness: to ensure that the cloud can pass the
user’s validation only if the auditing proof it generates
is valid, and the ciphertext retrieved from the cloud can
pass the user’s validation only if the ciphertext is intact.

2) Auditing soundness: to assure that if the cloud cor-
rupts the user’s data, it cannot pass the user’s validation.

3) Strong privacy protection: to guarantee that both the
cloud and the AS cannot extract the useful informa-
tion of the file by launching the brute-force dictionary
attacks.

4) Lightweight computation on the user side: to ensure
that the user only needs to execute lightweight com-
putation operations for authenticator generation, data
integrity auditing and file retrieval.
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5) Efficient storage: to guarantee that the cloud keeps
only a single copy of the duplicated file and its
corresponding authenticators.

B. DEFINITION
Definition 1: A lightweight cloud storage auditing with

deduplication supporting strong privacy protection is com-
posed by the following seven algorithms:

1) Setup algorithm. It takes as input a security parame-
ter λ, and outputs the AS’s private-public key pair (x, y)
and the system public parameters pp.

2) Initial Processing algorithm. It takes as input the AS’s
private-public key pair (x, y) and the file F , and outputs
the file index β1 and the file label β2. The initial user
computes the symmetric encryption key skenc with the
file label β2 and the file F , then generates the ciphertext
CF with the key skenc.

3) Authenticator Generation algorithm. It takes as
input the file index β1, the file label β2, the file identi-
fier name, the file F and the PRF key kprf . It generates
the initial user’s private key sk and a file tag ε. The
initial user generates an authenticator set 8 for the
ciphertext CF with the PRF key kprf .

4) Subsequent Processing algorithm. It takes as input
the AS’s private-public key pair (x, y) and the file F ,
and generates the file index β1 and the file label β2. The
subsequent user generates the symmetric encryption
key skenc with the file label β2 and the file F , and
outputs the ciphertext CF with the key skenc. The sub-
sequent user computes his private key sk according to
the file label β2, the file F and the file identifier name.
Furthermore, the subsequent user executes the PoW
protocol with the cloud to prove that he indeed owns
the file.

5) Proof Generation algorithm. It takes as input the
ciphertext CF , the corresponding authenticator set 8
and the auditing challenge Auditing.Chall, and gener-
ates an auditing proof Auditing.proof that is used to
prove the cloud stores the entire ciphertext CF .

6) Proof Verification algorithm. It takes as input the
auditing challenge Auditing.Chall and the auditing
proof Auditing.proof , and returns ‘‘true’’ if the proof
is valid; or ‘‘false’’, otherwise.

7) Data Retrieval algorithm. It takes as input the cipher-
text CF , its corresponding authenticators8 and the file
tag ε. The user verifies the validity of file tag ε, then
checks the integrity of the ciphertext CF . If the cipher-
text CF is intact, the user decrypts the ciphertext CF ,
then recovers the file F .

Definition 2: We say a lightweight cloud storage auditing
scheme with deduplication supporting strong privacy pro-
tection is secure if the following condition holds: whenever
an adversary is able to pass the validation of challenger
by generating a valid auditing proof Auditing.proof with
non-negligible probability, there is a knowledge extractor that

can extract the challenged data blocks except possibly with
negligible probability.

IV. THE PROPOSED SCHEME
The details of the proposed scheme are as follows.

1) Setup algorithm: Let G1 be a multiplicative cyclic
group of the order p. Let g and u be two random
generators of the group G1. Pick four cryptographic
hash functions H1 : {0, 1}∗→ G1, H2 : G1→ {0, 1}λ,
h1 : {0, 1}∗→ {0, 1}λ and h2 : {0, 1}∗→ Z∗p , where λ
is a security parameter. Select a pseudo-random func-
tion f : {0, 1}∗ × Kprf → Z∗p . AS selects a random
value x ∈ Z∗p as his private key, and calculates y = gx

as his public key. The system public parameters are
pp = (G1, p, g, u,H1,H2, h1, h2, y, f ).

2) Initial Processing algorithm: The initial user interacts
with AS to generate the file index β1 and the file
label β2. The file index β1 is used to verify duplicate
file by the cloud. The file label β2 is used to output
some keys for encryption and authenticator generation.
Then the initial user sends the file index β1 to the cloud
as the file upload request. If the cloud did not store this
file index β1, then the initial user encrypts his file F
with the symmetric encryption key skenc. This process
is illustrated in Fig.2.

a) The initial user chooses t ∈ Z∗p at random, then
computes the blinded hash value F ′ = H1(F)gt

and sends it to AS.
b) Upon receiving F ′ from the initial user, AS com-

putes T = F ′x with his private key x, and sends it
to the initial user.

c) The initial user calculates α = Ty−t with AS’s
public key y, then computes β1 = H2(α‖1) and
β2 = H2(α‖2). Set β1 as the file index, which
is used to check duplicate file by the cloud. Set
β2 as the file label, which is used to generate the
symmetric encryption keys skenc and kenc, and the
MAC key kmac.

d) The initial user sends the file index β1 to the
cloud as the file upload request. If the cloud
did not keep β1, the initial user computes the
symmetric encryption key skenc = h1(β2‖F),
then encrypts the file F as follows: CF =

Enc(F, skenc). The ciphertext CF is divided into
n blocks (c1, c2, ..., cn), where ci ∈ Zp∗ denotes
the i-th block of the ciphertext CF .

3) AuthenticatorGeneration algorithm:The initial user
generates his private key sk = (kenc, kmac), the file
tag ε, and the authenticator set 8. The initial user
uploads the ciphertext CF , the set of authenticators 8
and the file tag ε to the cloud. The cloud makes a
link to the file F for the initial user. The initial user
holds the symmetric encryption key skenc and his pri-
vate key sk = (kenc, kmac). The symmetric encryption
key skenc is used to decrypt the ciphertext in Data
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FIGURE 2. The processes of initial processing and authenticator generation.

Retrieval algorithm. The private key sk is used to gen-
erate the file tag ε and encrypt the PRF key kprf and
the random value ω in the Authenticator Generation
algorithm, and verify the validity of file tag ε, decrypt
the encrypted portion and recover the PRF key kprf and
the random value ω in the Proof Verification algorithm.
This process is illustrated in Fig.2.

a) The initial user calculates the symmetric encryp-
tion key kenc = h1(name||β2||F ||1) and the MAC
key kmac = h1(name||β2||F ||2), where name
is the identifier of the file F . The initial user’s
private key is sk = (kenc, kmac). The initial user
randomly picks ω ∈ Zp∗ and a PRF key kprf ∈
Zp∗ for the pseudo-random function f .

b) The initial user computes the file tag ε = ε0||

MACkmac(ε0), where ε0 = n||Enc(kprf ||ω, kenc).
For each block ci ∈ Zp∗(i ∈ [1, n]) of the cipher-
text CF , the initial user computes the authentica-
tor σi for block ci as follows: σi = fkprf (i) + ωci.
Denote the set of authenticators as8 = {σi}1≤i≤n.
The initial user uploads {CF ,8} along with the
file tag ε to the cloud, then deletes these mes-
sages from local storage and holds the symmetric
encryption key skenc and his private key sk =
(kenc, kmac). The cloud makes a link to the file F
for the initial user.

4) Subsequent Processing algorithm: The subsequent
user interacts with AS to generate the file index β1 and

the file label β2. Then the subsequent user sends the
file index β1 to the cloud as the file upload request.
If the cloud has stored this file index β1, then performs
the PoW protocol with the subsequent user. With PoW,
the subsequent user is able to prove to the cloud that
he indeed keeps the file F without sending the entire
file. The subsequent user generates his private key, and
holds the symmetric encryption key and his private key.
This process is illustrated in Fig.3.
a) The subsequent user chooses t ′ ∈ Zp∗ at ran-

dom, then computes the blinded hash value F ′′ =
H1(F)gt

′

and sends it to AS.
b) After receiving F ′′ from the subsequent user,

AS computes T ′ = F ′′x with his private key x,
and sends it to the subsequent user.

c) The subsequent user calculates α = T ′y−t
′

with
AS’s public key y, then computes the file index
β1 = H2(α||1) and the file label β2 = H2(α||2).
The subsequent user sends the file index β1 to the
cloud as the file upload request. If the cloud has
stored β1, then hewill perform the following PoW
protocol with the subsequent user.
i) The cloud randomly picks a set of I with c

elements, where I ⊆ [1, n]. For each i ∈ I ,
the cloud outputs a random value vi ∈ Z∗p ,
and sends a PoW challenge PoW .Chall =
{vi}i∈I to the subsequent user.

ii) The subsequent user computes the sym-
metric encryption key skenc = h1(β2||F),

44364 VOLUME 8, 2020



W. Shen et al.: Lightweight Cloud Storage Auditing With Deduplication Supporting Strong Privacy Protection

FIGURE 3. The process of subsequent processing.

and encrypts the file F as follows: CF =
Enc(F, skenc). Then the subsequent user cal-
culates the PoW proof PoW .Pr oof =∑

i∈I vici, and sends it to the cloud.
iii) Upon receiving the PoW proof, the cloud

computes p =
∑

i∈I vici, then verifies
whether the following equation holds or not:
PoW .Pr oof = p. If the equation holds,
the cloud believes that the subsequent user
indeed owns the file F , and provides the sub-
sequent user with a link to the file F . It means
that the subsequent user does not need to
upload the ciphertext CF and its correspond-
ing authenticators to the cloud any more.

d) The subsequent user generates his private key
sk = (kenc, kmac) with the file label β2, the file
F and the file identifier name, where kenc =
h1(name||β2||F ||1) and kmac = h1(name||β2||
F ||2). The subsequent user holds the symmet-
ric encryption key skenc and his private key
sk = (kenc, kmac).

5) Proof Generation algorithm: The user outputs and
sends an auditing challenge to the cloud. Then the cloud
generates an auditing proof to respond to the user.

a) The user (the initial user or the subsequent user)
randomly selects a c-elements subset I (I ⊆
[1, n]). For each i ∈ I , outputs a random value
vi ∈ Z∗p . Then, the user generates and submits an

auditing challenge Auding.Chall = {i, vi}i∈I to
the cloud.

b) Upon receiving the auditing challenge from the
user, the cloud computes a linear combination
of encrypted data blocks µ =

∑
i∈I civi and an

aggregated authenticator σ =
∑

i∈I σivi. The
cloud sends the auditing proof Auditing.Pr oof =
{µ, σ } along with the file tag ε to the user.

6) Proof Verification algorithm: The user firstly utilizes
his private key kmac to verify the validity of MAC on
file tag ε. If the MAC is valid, the user parses ε, then
decrypts the encrypted portion Enc(kprf ||ω, kenc) under
his private key kenc and recovers the PRF key kprf and
the random value ω. Finally, the user checks whether
the following verification equation holds or not.

σ =
∑
i∈I

vifkprf (i)+ ωµ. (1)

If the verification equation holds, it means that the
cloud indeed keeps the user’s intact data.

7) Data Retrieval algorithm: The user, who wants to
access his file, will send a request to the cloud. The
cloud returns the ciphertext CF , its corresponding
authenticators 8 and the file tag ε to the user. After
receiving these messages, the user firstly verifies the
integrity of the ciphertext CF , then recovers his file F
with the symmetric encryption key skenc.
a) The user, who wants to use his file, submits a

request for the ciphertext CF to the cloud.
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b) Upon receiving the request from the user, the
cloud firstly verifies whether the user is the data
owner of the ciphertext CF . If he is, the cloud
sends the ciphertext CF , its corresponding
authenticators 8 and the file tag ε to the user.
Otherwise, the cloud rejects the user’s request.

c) After receiving the messages from the cloud,
the user firstly verifies the validity of MAC on
file tag ε with his private key kmac. If the MAC
is valid, the user parses ε, then decrypts the
encrypted portion Enc(kprf ||ω, kenc) by using his
private key kenc and recovers the PRF key kprf and
the random value ω. The user checks whether the
following verification equation holds or not.∑
i∈[1,n]

σi =
∑

i∈[1,n]
fkprf (i)+ ω

∑
i∈[1,n]

ci. (2)

If the equation holds, the user believes the cipher-
text CF stored in the cloud is intact, then utilizes the
symmetric encryption key skenc to decrypt the cipher-
text CF , and recovers the file F : F= Dec(CF , skenc).

V. SECURITY ANALYSIS
Theorem 1 (Correctness): Our proposed scheme satisfies

the following properties:
1.(Auditing correctness) If the auditing proof generated by

the cloud is valid, the cloud is able to pass the verification of
the user.
2.(Ciphertext correctness) If the ciphertext retrieved from

the cloud is intact, this ciphertext is able to pass the verifica-
tion of the user.

Proof: 1. Given a valid auditing proofAuditing.Proof =
{µ, σ } from the cloud, the verification equation (1) can be
proved correct as follows:

σ =
∑
i∈I

(fkprf (i)+ ωci)vi

=

∑
i∈I

vifkprf (i)+
∑
i∈I

viωci

=

∑
i∈I

vifkprf (i)+ ω
∑
i∈I

vici

=

∑
i∈I

vifkprf (i)+ ωµ

2. Given a correct ciphertext CF retrieved from the cloud
and the corresponding authenticators 8, the verification
equation (2) can be proved correct as follows:∑

i∈[1,n]
σi =

∑
i∈[1,n]

(fkprf (i)+ ωci)

=

∑
i∈[1,n]

fkprf (i)+ ω
∑

i∈[1,n]
ci

Theorem 2 (Strong Privacy Protection): The data privacy
of the proposed scheme satisfies the following properties:
1. The AS cannot derive the content of the real file F from

the blinded hash value F ′ generated by the initial user or the

blinded hash value F ′′ generated by the subsequent user by
launching the brute-force dictionary attacks.
2. The cloud cannot extract the content of the real file F

from the file index β1 and the ciphertext CF sent by the user
by launching the brute-force dictionary attacks.

Proof: 1. As described in Section IV, the initial user
computes a blinded hash value F ′ = H1(F)gt with a random
value t , and sends it to the AS. In this way, the hash of file
F can be hidden. Thus, the AS is not able to extract the file
F or the hash of the file F without the random value t of
the initial user, even if the AS knows that the file F is from
a dictionary {F1,F2, ...,Fs}. For the same reason, the AS
cannot also derive the file F or the hash of file F without
the random value chosen by the subsequent user, even if the
AS knows that the file F is from a dictionary {F1,F2, ...,Fs}.
2. In our scheme, the file index β1 for duplicate check is

generated with the help of the AS instead of being produced
by the file’s hash value. Specifically, the user computes a
blinded hash value F ′ = H1(F)gt , and sends it to the AS.
The AS calculates T = F ′x with his private key x, then
returns it to the user. The user generates the file index β1
by computing α = Ty−t = H (F)x and β1 = H2(α||1).
Thus, the cloud is not able to generate the file index β1 for
each file {F1,F2, ...,Fs} in the dictionary by itself without
the AS’s private key x. It means that the cloud is not able
to guess or extract the file F without the AS’s private key x,
even if the cloud knows that the file F is from a dictionary
{F1,F2, ...,Fs}. In addition, the ciphertext CF is generated
by the user with the symmetric encryption key skenc =
h1(β2||F), where β2 is the file label. The generation method
of file label β2 is the same as that of file index β1. Therefore,
we can know that the cloud is not able to generate the file
label β2 for each file {F1,F2, ...,Fs} in the dictionary by itself
without the AS’s private key x. And then, the cloud is not able
to guess or extract the file F without the AS’s private key x,
even if the cloud knows that the file F is from a dictionary
{F1,F2, ...,Fs}.
Theorem 3 (Auditing Soundness): Suppose the symmetric

encryption scheme is semantically secure, the MAC scheme is
unforgeable and the pseudo-random function (PRF) is secure.
In the proposed scheme, for adversary or untrusted cloud, it is
computationally infeasible to forge an auditing proof that is
able to pass the validation of the user if the cloud does not
store the intact data.

Proof: We complete this proof by constructing a knowl-
edge extractor and employing the method of knowledge
proof [23]. If the cloud can pass the validation of the user
without storing the intact data, the extractor is able to interact
with the proposed scheme to extract the intact challenged data
blocks. We will prove this theorem by a sequence of games.

Game 0. The challenger generates the key for generat-
ing authenticators and the system public parameters, and
sends these public parameters to the adversary. The adver-
sary chooses a series of encrypted data blocks c1, c2, ..., cn,
and queries the corresponding authenticators of these
data blocks. The challenger calculates the corresponding
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MAC-authenticated tags and data authenticators, and sends
these messages to the adversary. The challenger submits an
auditing challenge Auding.Chall = {i, vi}i∈I to the adversary.
The adversary responds an auditing proof Auditing.Proof =
{µ, σ } based on challenge. If this proof is correct, the adver-
sary succeeds in this game.

Game 1. Game 1 is the same as Game 0, except
that the challenger maintains a list which records all the
MAC-authenticated tags issued as part of a store queries.
If the adversary issues one tag which is valid but not on the
challenger’s record list, the challenger declares failure and
aborts.
Analysis. If the adversary is able to make the chal-

lenger abort in Game 1 with non-negligible probability,
it means the adversary is a valid forger against the MAC
scheme. It contradicts that the MAC scheme is unforgeable.
Thus, the MAC-authenticated tags are all generated by the
challenger.

Game 2. In Game 2, the challenger employs a random
bit-string of the same length to replace the encryption of
kprf ||ω in the tags. When the adversary gives a tag, in which
the MAC on this tag is verified valid, the challenger utilizes
the values which would have been encrypted in the tag,
instead of intending to decrypt the ciphertext.
Analysis. In Game 2, the challenger does not decrypt the

ciphertext which is not generated by himself since he can
only see the tags with valid MACs generated by himself.
Therefore, the challenger stores a table of plaintexts values
kprf ||ω and the corresponding bit string emitted by himself
as their tags.

We can break the semantic security of the symmetric
encryption scheme by using the adversary if the adversary
succeeds between Game 1 and Game 2 with non-negligible
probability. In order to bridge the gap between Game 1 and
Game 2, we must employ a hybrid argument between
‘‘no valid encryptions’’ and ‘‘all valid encryptions’’. It will
cause the reduction suffer a 1/qs security loss, where qs is
the number of queries made by the adversary.

Specifically, the challenger interacts with the adversary
based onGame 0 and records the files stored by the adversary.
Then, if the adversary wins in any cloud storage auditing
but the auditing proof {µ, σ } he generates is different from
what would be generated by the honest prover, then the
challenger will abort and output ‘‘true’’; otherwise, output
‘‘false’’. Assume that the challenger outputs ‘‘true’’ with
some non-negligible probability ε0 if its behavior is as spec-
ified in Game 0, outputs ‘‘true’’ with some non-negligible
probability ε1 if its behavior is as specified in Game 1, and
outputs ‘‘true’’ with some non-negligible probability ε2 if its
behavior is as specified in Game 2, we will show that the
difference between ε0 and ε1 is negligible as long as theMAC
scheme is unforgeable and the difference between ε1 and ε2
is negligible as long as the symmetric encryption scheme is
secure.

In Game 1, the challenger employs the ciphertext of kprf ||ω
to generate each tag. In Game 2, the challenger encrypts a

random string with the same length instead of what in each
tag it generates. Assume that |ε2 − ε1| is non-negligible.
Consider the hybrid in which the challenger generates the
first i tags by encrypting a random string and the remaining
qs − i tags by encrypting random values. Therefore, there
must be a value of i such that the difference between the
outputs of the challenger in hybrid i and hybrid i+1 is at least
|ε2 − ε1|/qs, which is non-negligible. Based on this, we will
design an algorithm B which is used to break the security of
the symmetric encryption scheme.

The encryption oracle for the encryption key kenc is acces-
sible to algorithm B, as well as a left-or-right oracle, which
given strings m0 and m1 with the same length, generates the
encryption of ma, where a is a bit selected at random. Algo-
rithm B interacts with the adversary, playing the role of the
challenger. When algorithm B answers first i store queries of
the adversary, it gets the encryption of kprf ||ω by employing
its encryption oracle. The encryption of kprf ||ω is included in
the tag. When algorithm B answers (i + 1) st store query of
the adversary, it calculates the correct plaintext m0 = kprf ||ω
and a random plaintext m1 with the same length, and sends
them to its left-or-right oracle. When algorithm B answers
the remaining store queries of the adversary, it calculates the
correct plaintext and a random plaintext with the same length,
and employs its encryption oracle to encrypt this random
plaintext, and contains the result in the tags. Algorithm B
records the files kept by the adversary. If adversary wins in
any cloud storage auditing but the auditing proof {µ, σ } he
outputs is different from what would be generated by the
Proof Generation algorithm, then algorithm B will abort and
output ‘‘true’’; otherwise, will output ‘‘false’’.

Algorithm B interacts with adversary based on hybrid
i if the left-or-right oracle encrypts its left input. Algo-
rithm B interacts with adversary based on hybrid i + 1 if
the left-or-right oracle encrypts its right input. The differ-
ence in the behavior of adversary and that of algorithm B is
non-negligible, which breaks the security of the symmetric
encryption scheme. Note that, the values kprf ||ω are selected
randomly for each file and independent of each file, thus
the values which are given by algorithm B to its left-or-right
oracle are consistent with a query it makes to its encryption
oracle with negligible probability.

Game 3. In Game 3, the challenger utilizes the random
values in Zp rather than the outputs of PRF. The challenger
holds these values which are used to check the correctness of
the adversary’s responses in cloud storage auditing schemes.
Concretely, the challenger evaluates fkprf (i) by outputting a
random value r in Zp and inserting an entry (kprf , i, r) in a
table instead of applying the PRF algorithm. The challenger
queries this table when evaluating the PRF to guarantee
consistency.
Analysis. We can break the semantic security of PRF

by using the adversary if the adversary succeeds between
Game 2 and Game 3 with non-negligible probability. Note
that, the tags given to the adversary in Game 2 do not
include kprf , thus the simulator does not need to know
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this value. The adversary only can know the outputs of PRF.
It means that if the adversary can distinguish the outputs of
PRF from random values, we can break the security of the
PRF by using this adversary.

As the analysis of Game 2, the difference in behavior
we employ to break the PRF’s security is the event that the
adversary wins in a cloud storage auditing interaction but
generates an auditing proof {µ, σ } which is different from
what would be generated by the honest prover.

As before, it is necessary to use a hybrid argument to prove
Game 3 with a security loss 1/(Mqs) in the reduction, where
M is a bound on the number of blocks in any file that the
adversary requests to have been stored.

Game 4. In Game 4, the challenger executes cloud storage
auditing scheme initiated by the adversary, which is different
from Game 3. In each such cloud storage auditing, the chal-
lenger issues an auditing challenge as before. Nevertheless,
the challenger checks the correctness of auditing proof gen-
erated by the adversary, which is different from the auditing
proof generated by the honest prover.

The challenger holds a table of the Authenticator Gener-
ation queries issued by the adversary and its corresponding
responses; The challenger knows that the honest proverwould
generate an auditing proof {µ, σ } to respond the query it
issued according to the table stored by himself. If the audit-
ing proof generated by the adversary is equal to the above
auditing proof generated by the honest prover, the challenger
accepts the response of the adversary and returns ‘‘true’’.
If the auditing proof generated by the adversary is not equal to
the above proof generated by the honest prover, the challenger
rejects the response of the adversary, and returns ‘‘false’’.
Analysis. The adversary in Game 4 is the same as in

Game 3, with one difference. That is the auditing proof
generated by the adversary (1) can pass the verification of
verifier but (2) is not what would have been calculated by
the challenger who plays the role of an honest prover in one
of the cloud storage auditing interactions. We show that the
probability that this happens is negligible.

Assume that Auding.Chall = {i, vi}i∈I is the challenge
generated by the challenger. An honest prover generates a
valid auditing proof {µ, σ }, where µ =

∑
i∈I civi and σ =∑

i∈I σivi. From the correctness of our scheme, we obtain

σ =
∑
i∈I

virkprf ,i + ωµ. (3)

Suppose the adversary generates an auditing proof {µ′, σ ′}
which is different from the honest prover generated. Because
the challenger aborted, we can know that the forgery of
adversary is successful. In other words, σ ′ 6= σ but the
auditing proof {µ′, σ ′} still can pass the verification of the
following equation:

σ ′ =
∑
i∈I

virkprf ,i + ωµ
′, (4)

where rkprf ,i is a random value which is used to replace to
fkprf (i) in Game 2.

Obviously, µ′ 6= µ, otherwise σ ′=σ , which contradicts
our assumption above. Thus, define 1µ = µ′ − µ, and
subtract the verification equation for σ from that for σ ′,
we obtain 1σ = ω1µ.

The bad event occurs exactly when1µ is not zero. It means
that the auditing proof generated by adversary is different
from what generated by the honest server.

However, the value ω for every file is selected at random,
thus it is independent of the adversary’s view. The value ω is
no longer encrypted in the tag, and its only other appearance
is in calculating σi = rkprf ,i + ωci. The output fkprf (i) of
PRF is replaced by a random value rkprf ,i. As a result, σi is
independent of ω. Thus, the probability that the bad event
happens if the challenger first chooses the random valueω for
each stored file and then executes the cloud storage auditing
interactions is the same as the probability that the bad event
happens if the challenger first executes the cloud storage
auditing interactions and then selects the valueω for each file.

Fix the sequence the values 1µ and 1σ in auditing proof
generated by the adversary and the choice of ω. The proba-
bility of challenger aborts is the same as the probability of
1σ = ω1µ(modp) holds for a specific entry in an interac-
tion, which is 1/p. Therefore, the probability that the equation
1σ = ω1µ(modp) holds for a nonzero number of entries is
at most qp/p, where qp is the number of the cloud storage
auditing interactions initiated by the adversary. Therefore,
the adversary never outputs an auditing proof which is dif-
ferent from an honest server generated except with negligible
probability qp/p. Thus, the view of the adversary in Game 4 is
the same as the view in Game 3 with negligible probability.

Finally, we construct a knowledge extractor to extract all
of challenged data blocks ci(i ∈ I , |i| = c). By using c
different coefficients vi(i ∈ I , |I | = c) and generating c times
different challenges on the same data blocks ci(i ∈ I , |i| = c),
the knowledge extractor is able to get c independently linear
equations in the variables ci(i ∈ I , |i| = c). The knowledge
extractor is able to obtain ci(i ∈ I , |i| = c) by solving these
equations.

VI. PERFORMANCE EVALUATIONS
In this section, we first compare the functionalities of our
scheme and several related schemes, and evaluate the com-
putation overhead and the communication overhead of our
scheme by theory analysis and simulated experiments.

A. FUNCTIONALITIES COMPARISON
We compare our scheme with several related schemes [5],
[11], [14], [18] on the functionality in Table 2. The
scheme [18] cannot support strong privacy protection,
in which data privacy will be leaked to the key server. The
scheme [5] cannot achieve data deduplication and authentica-
tor deduplication, which incurs heavy storage overhead on the
cloud side. In the scheme [14], every user needs to perform
time-consuming operations to generate data authenticators
based on the BLS signatures. In [11], the data stored in the
cloud might be corrupted or lost.
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TABLE 2. Functionality comparison between our scheme and related schemes.

In conclusion, our scheme is the only schemewith all of the
following properties: data integrity auditing, strong privacy
protection, light-weight computation on the user side, data
deduplication and authenticator deduplication.

B. THEORY ANALYSIS
We define the following notations to denote the operations
in our scheme. MulG1 , ExpG1 and HashG1 represent one
multiplication operation, one exponentiation operation and
one hashing operation in G1 respectively. PRFf represents
one PRF function operation. AddZp∗ andMulZp∗ respectively
represent one addition operation and one multiplication oper-
ation in Zp∗. Eskenc represents one symmetric encryption oper-
ation. n is the total number of data blocks. c is the number
of challenged data blocks. |n| is the size of an element of
set [1, n]. |p| is the size of an element in Z∗p .

1) COMPUTATION OVERHEAD
Wemainly evaluate the computation overhead of the user and
the cloud. Both the initial user and the subsequent user need to
cost 2(MulG1+2ExpG1+2HashG1 ) to generate the file index
and the file label, and cost c(PRFf +AddZ∗p )+(c+1)MulZ∗p to
verify the integrity of cloud data. The initial user needs to cost
n(PRFf+MulZ∗p+AddZ∗p ) to generate data authenticators. The
subsequent user needs to cost Eskenc+cMulZ∗p + (c−1)AddZ∗p
to make the cloud convince that he exactly owns the file.
For generating an auditing proof Auditing.Pr oof = {µ, σ }
(µ =

∑
i∈I civi, σ =

∑
i∈I σivi), the cloud consumes

2cMulZp∗ + (2c− 2)AddZp∗ .

2) COMMUNICATION OVERHEAD
The communication overhead of our scheme mainly comes
from the auditing phase, which includes two parts: audit-
ing challenge and auditing proof. For an auditing challenge
Auditing.Chall = {i, vi}i∈I , its size is c · (|n| + |p|) bits. The
size of an auditing proofAuditing.Proof = {µ, η} is 2|p| bits.
Thus, in the phase of auditing phase, the total communication
overhead is c · |n| + (c+ 2) · |p| bits.

C. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed
scheme, we conducted several experiments on the pro-
posed scheme by utilizing free Pairing-Based Cryptogra-
phy (PBC) Library [21] and the GNU Multiple Precision
Arithmetic (GMP) [1]. All algorithms were coded using C
programming language and conducted on a 64-bit Linux

FIGURE 4. Storage overhead comparison between our scheme and the
scheme [10] without deduplication.

system with an Intel Core i5-6200 with 2.3GHz processor
and 8Gb memory. In our experiments, we set the base field
size to be 512 bits, the size of an element in Z∗p to be |p| =
160 bits, the size of a data file to be 20MB composed by
1,000,000 blocks.

1) STORAGE OVERHEAD
In all cloud storage auditing schemes without deduplication,
the cloud needs to store all of files uploaded by users even
if these files are identical. However, in our scheme, the cloud
only stores a single copy of these identical files even from dif-
ferent users. Thus, to investigate the importance of dedupli-
cation in cloud storage and to evaluate the storage efficiency
of our scheme, we select the scheme [10] as a benchmark
because it is a new and classic cloud storage auditing scheme
that does not support deduplication. As shown in Fig.4, with
the increasing of the number of users who keep the identical
file, the storage overhead of cloud in the scheme [10] linearly
increases, however that in our scheme keeps unchanged.
As a result, our scheme is more efficient compared with the
scheme [10].

2) THE PHASES OF AUTHENTICATOR GENERATION
AND AUDITING
In order to evaluate the computation efficiency of our scheme,
we select the scheme [14] as a benchmark. As same asmost of
cloud storage schemes, the scheme [14] uses BLS signature
to generate data authenticators and utilities publicly verifiable
method to check data integrity. Through the following com-
parison, we can conclude that our scheme is more efficient
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FIGURE 5. Computation overhead for authenticator generation.

FIGURE 6. Computation overhead for challenge generation.

than the scheme [14] in the phases of authenticator generation
and auditing. In our experiments, the number of data blocks
and challenged data blocks both vary from 100 to 1,000 by
an interval of 100.

From Fig.5, we can know that the computation over-
heads of authenticator generation in our scheme and the
scheme [14] both linearly increase with the number of data
blocks. The running time in the scheme [14] ranges from
1.432371s to 12.108713s. However, the running time in our
scheme varies from 0.009225s to 0.109354s. Thus, in our
scheme, the user only needs to perform lightweight compu-
tation to generate authenticators for data blocks.

Fig.6 shows that the computation efficiency for gener-
ating auditing challenge in our scheme and that in the
scheme [14] are very comparable. As shown in Fig.7 and
Fig.8, the computation overhead of auditing proof gener-
ation and verification in our scheme and the scheme [14]
both grow linearly with the number of the challenged data
blocks. When generating auditing proof, the running time in
scheme [14] varies from 0.078359s to 0.856151s, whereas
in our scheme, the running time ranges from 0.054214ms
to 0.475325ms. In the scheme [14], proof verification takes
1.262326s when one hundred blocks are challenged, while
that in our scheme only takes 0.009021ms. When one
thousand blocks are challenged, the proof verification in
the scheme [14] takes 10.578678s, however that in our

FIGURE 7. Computation overhead for proof generation.

FIGURE 8. Computation overhead for proof verification.

FIGURE 9. Computation overhead for ciphertext verification.

scheme only takes 0.475361s. Therefore, compared with the
scheme [14], our scheme is more efficient in the phase of
auditing.

3) THE PHASES OF CIPHERTEXT VERIFICATION
As analyzed in Section IV, the user needs to verify the correct-
ness of ciphertext when downloading the ciphertext from the
cloud. Fig.9 depicts the computation overhead for ciphertext
verification when different numbers of data blocks are chal-
lenged. When 100 blocks are challenged, the running time of
ciphertext verification takes 0.091031ms. The running time
increases to 0.182273ms when 1000 blocks are challenged.
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VII. CONCLUSION
In this paper, we study on how to solve the problem of user’s
privacy leakage in cloud storage auditing with deduplication
when brute-force dictionary attacks are launched. We design
a lightweight cloud storage auditing scheme with dedupli-
cation supporting strong privacy protection. In the proposed
scheme, the privacy of user can be well preserved against the
cloud and other parties. The user relieves the heavy computa-
tion burden for generating data authenticators and verifying
data integrity. The security proof shows that the proposed
scheme is secure. We also provide detailed comparisons
among our proposed scheme and other existing schemes by
experiments. Experimental results show the proposed scheme
achieves higher storage efficiency and is more efficient in
authenticator generation phase and auditing phase.
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