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Developing a delivery science for artificial intelligence in
healthcare
Ron C. Li 1,2✉, Steven M. Asch 3,4 and Nigam H. Shah2

Artificial Intelligence (AI) has generated a large amount of excitement in healthcare, mostly driven by the emergence of increasingly
accurate machine learning models. However, the promise of AI delivering scalable and sustained value for patient care in the real
world setting has yet to be realized. In order to safely and effectively bring AI into use in healthcare, there needs to be a concerted
effort around not just the creation, but also the delivery of AI. This AI “delivery science” will require a broader set of tools, such as
design thinking, process improvement, and implementation science, as well as a broader definition of what AI will look like in
practice, which includes not just machine learning models and their predictions, but also the new systems for care delivery that
they enable. The careful design, implementation, and evaluation of these AI enabled systems will be important in the effort to
understand how AI can improve healthcare.
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Artificial intelligence (AI) has generated much excitement, but
relatively little impact in how healthcare is delivered. While
progress has accelerated in using machine learning (ML) to
develop prediction and classification models that make up the
bulk of current AI methods1, efforts to use these models in the real
world setting have not taken off at nearly the same pace2 and
typically remain within the realm of “innovation” outside of the
core processes that drive care delivery3. To address how AI can be
leveraged at scale, we need to both broaden and deepen our
thinking around how AI fits into the complexities of healthcare
delivery. As the data and computer sciences for developing AI
based solutions have matured, we now need a delivery science to
bring those solutions into use in healthcare.
Current efforts to use AI in healthcare often begin with “I have a

ML model that can accurately predict or classify X”, but then get
stuck at “how do I use it and for whom?”4 As a result, libraries of
ML models remain on the shelf without finding appropriate use
cases, or models are implemented but deemed to not be as
valuable as initially imagined5. A recently published ML model that
predicts acute kidney injury with high accuracy6 was assumed by
the authors to provide valuable information to clinicians, but
when implemented in a real clinical environment, did not
significantly improve patient care and in fact resulted in additional
work for the physicians that was of unclear value7. This example
highlights the importance of understanding the complexities of
care delivery associated with the clinical use case before building
the ML model; just focusing on the capability to accurately
perform a prediction task is not sufficient for improving care. This
conundrum is not unique to AI; it frequently affects innovation
pipelines for other biomedical technologies. For example, the
lengthy and rigorous process required in drug development from
preclinical experiments to observed health benefits in the real
world illustrate the amount of work needed to translate scientific
advances into useful therapies that actually improve care8. Much
of the in silico work around training and validating ML models can
be compared to the preclinical testing of active ingredients in

pharmaceutical research. Just as the active ingredient alone is not
sufficient for creating a drug that works in humans, much less a
clinical intervention that improves outcomes for a patient
population, a ML model alone is unlikely to make significant
improvements in healthcare outcomes.
It is time to move from model development in silico to design,

implementation, and evaluation of AI enabled solutions in vivo
where healthcare delivery happens. We propose a delivery science
for AI in healthcare that rests on the following principles: (1) much
of healthcare is delivered in complex adaptive systems9, so AI
must accommodate this complexity, (2) AI should be viewed as
not the end product, but rather an enabling component of
broader solutions, and (3) solutions enabled by AI are often
complex systems of people, processes, and technologies. We need
to take a more holistic view of what AI enabled solutions would
look like beyond just a set of ML models. Rather, the human and
technical components of the end product, such as the workflows,
teams, and digital tools made possible by tasks that a ML model
can perform, should be designed and implemented together as a
system. The effects—beneficial or harmful—of AI enabled
solutions on healthcare should also be evaluated at the system
level as emergent properties that may be greater than the sum of
its individual components. Identifying these emergent properties
and characterizing their impact will require the system to be
designed and implemented in its entirety in the healthcare
environment where it is meant to operate. The task of
implementing AI in healthcare, therefore, should not be about
deploying a ML model; rather, it should be about how to design
the best possible care delivery system for a given problem, using
the ML model as a component in that delivery system.
Our initial experiences with the design, implementation, and

evaluation of an AI enabled solution at an academic medical
center has revealed the importance of marrying data science with
disciplines, such as process improvement, design thinking, and
implementation science (Fig. 1). We had previously developed an
all-cause mortality prediction model to act as a proxy for who may
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benefit from palliative care services such as advance care
planning10. Rather than jumping to a solution of simply showing
the model output to physicians, we first leveraged methods from
process improvement to derive the sources of process inefficien-
cies and breakdowns11, and design thinking to observe how these
processes affected the thoughts, feelings, and experiences of
frontline stakeholders12. These steps allowed us to first under-
stand the complex system in which advance care planning is
currently delivered before designing a solution enabled by our ML
model that could improve on that delivery system.
We made a key decision upfront to engage a multidisciplinary

group of stakeholders, including frontline nurses, physicians, social
workers, and occupational therapists—all who participate in the
care of patients with serious illnesses who may benefit from
advance care planning—from the beginning of the design process
without any preconceived notions of how the ML model would be
used. Interviews and process analyses of the current state quickly
revealed key barriers to advance care planning that would unlikely
be solved by simply showing a model’s output to any one group
of clinicians. For example, clinical and logistical considerations
around the appropriate timing of advance care planning, what
should be discussed, and how should these discussions fit into the
broader context of the hospitalization require coordinated,
multidisciplinary efforts. Similarly, design thinking tools such as
empathy mapping13 helped us more deeply understand how
underlying feelings around role clarity and power structures
between physician and non-physician members of the care team
affected advance care planning workflow. These insights led us to
identify key design goals that otherwise would not have surfaced,
such as the need to empower non-physician care team members
to identify candidate patients and lead the coordination of
advance care planning—a task that was enabled by making
transparent to the entire care team the list of candidate patients
generated by the mortality prediction model each day and
creating a workflow for the physician and non-physician team
members to discuss these patients with each other about advance
care planning needs. This objective identification of candidate
patients by the prediction model allowed for the democratization
of responsibility for deciding who needs advance care planning to
the non-physician providers such as nurses, social workers, and
occupational therapists—all who spend a lot of time with patients
and are trained to engage in this topic. The design process also

includes analyses to verify that our model’s execution and runtime
characteristics (such when in the day are predictions available) fit
the logistical needs of these new workflows14. This deeper
understanding of current state gaps and improvement opportu-
nities allowed us to build a system of workflows, teams, and digital
tools enabled by the mortality prediction model to drive change in
the complex environment of healthcare delivery. Other AI efforts
that address the broader sociotechnical components of healthcare
beyond just the ML model have offered similar lessons. For
example, recent work around using AI to improve the treatment of
sepsis committed months to assessing clinical processes and user
experiences prior to even training a ML model, which yielded
important insights for implementation, such as the need to focus
on not just sepsis detection, but a method for standardizing follow
up care15.
To be most useful, evaluations of AI enabled solutions should not

simply ask whether it achieved the desired improvement in clinical
process or outcome (e.g., did the frequency or quality of advance care
planning improve), but also how well or poorly was the solution
implemented. Implementation science and systems engineering tell
us that we can use rigorous scientific methods for both effectiveness
and implementation questions. Such hybrid evaluations can assess
the mechanism(s) by which AI enables the changes that lead to the
desired clinical outcome (how did the mortality prediction tasks
performed by the ML model mediate the improvement in advance
care planning) and the properties of the overall AI enabled systems
(what are the structures, patterns, and processes of the workflows,
teams, and technologies that make up the new AI enabled system for
delivering advance care planning). Frameworks such as RE-AIM13

(reach, effectiveness, adoption, implementation, and maintenance)
can help identify the dimensions by which to assess implementation
and subsequent dissemination efforts, and models for sociotechnical
systems such as SEIPS14 (Systems Engineering Initiative for Patient
Safety) can help assess the complex interactions between people and
technologies in a work system.
Naturally, questions about who is responsible for implementing

such delivery systems, and quality control of the ML workflows will
arise. Aside from existing processes in healthcare systems to design
standard operating procedures, additional attention will be needed to
implement quality controls on the models itself. Specifically, to
monitor a model’s calibration over time, it will be important to watch
population drifts and ensure timely retraining so that the model’s

Fig. 1 Multidisciplinary process for creating, implementing, and evaluating an AI enabled system for healthcare. Methods from process
improvement, design thinking, data science, information technology, and implementation science are combined into an iterative participatory
process to build an AI enabled system for improving advance care planning. The expertize used across the different disciplines are as follows:
(1) user experience design, (2) data science, (3) healthcare operations, (4) clinical informatics, (5) evaluation, and (6) ethical integrity
assessment.
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performance remains with in the execution and runtime character-
istics required by the AI enabled system16,17. Just as with clinical
laboratory instruments, ML models in healthcare will need to be
regularly re-calibrated and tuned. The characteristics of the ML
models will also need to be appropriately communicated to clinical
users18. Fortunately, there is deep experience in the technology sector
to draw upon19,20. In-house informatics teams within health systems
with expertize in data science, information technology, and clinical
operations may be required to own this work. While the nature of
these teams may vary across organizations, what is certain is that such
a team will need to exist to ensure that AI will be used responsibly
and deliver sustained value.
It is time to move AI research out from in silico model

development into real world design, implementation, and
evaluation for improving healthcare delivery. We will likely see
that ML models will be necessary, but not sufficient components
of broader AI enabled solutions. The delivery science of AI will
need to address how such systems are designed, implemented,
and evaluated, and how their emergent properties can be
captured and utilized to transform healthcare.
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