
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Prufer Coding: A Vectorization Method for Un-
directed Labeled Graph

LIN YANG1,2 AND YONGJIE WANG1,2
1College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
2Anhui Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, Hefei 230037, China

Corresponding author: Lin Yang (yanglin0815@nudt.edu.cn).

ABSTRACT Prufer algorithm is a powerful method for topology vectorization, but the traditional prufer

algorithm method can only encode a rootless labeled tree, and no prior work has studied the method of ap-

plying it to the graph vectorization. This paper proposes a vectorization method for undirected labeled

graphs based on the prufer algorithm, including graph encoding and decoding algorithms. A particular case

was discovered by preliminary experiments, which will reduce the accuracy of the coding algorithm (when

the node size reaches more than 150, the accuracy can only reach about 60%), so a connectivity check

mechanism that based on the Warshall algorithm is proposed and added to the coding algorithm. A large

number of experimental verifications show that the accuracy of the coding algorithm can reach 100% after

introducing this mechanism. Then the length of the vector generated by the coding algorithm is analyzed,

and the results show that graph vectorization can improve the efficiency of partial topology calculation.

Finally, the defects of the algorithm are discussed. The most significant defect is that the length of the vec-

tor generated by the encoding algorithm is uncertain, which will prevent it from being applied to more topo-

logical calculations.

INDEX TERMS Graph vectorization, topology calculation, prufer algorithm, warshall algorithm, algorithm

design

I. INTRODUCTION

With the explosive growth of the nodes of the system, the

complexity of the connected network has increased. Graph

vectorization is introduced to simplify the graph

representation, thus further simplify graph topology

calculation.

Graph vectorization refers to representing the topology

information of a graph as a vector through a graph

transformation algorithm. This vector is generally one-

dimensional. A graph is a mathematical abstraction that is

useful for solving many kinds of problems. If we only need

to solve the connectivity problem, we can only discuss the

undirected graph model of the system. An undirected graph

refers to a graph in which each edge symbolizes an

unordered, transitive relationship between two nodes. Such

edges are rendered as direct lines or arcs[1]. A vectorized

description of the graph will simplify the process of solving

problems related to the connectivity of the graph.

Featherstone[2] proposed to use a parent array of undirected

graphs to describe the connectivity of the bodies. It uses

another two arrays to represent the set of children of related

bodies and the set of joints on the path between the related

bodies and root. Yazar[3] introduced a one-dimensional vector

Pgraph, which is used to describe the connection between

linear graph theory bodies and branches.

The traditional prufer algorithm is a method of coding and

decoding labeled trees, which can be used to vectorize

unrooted trees, and it was first proposed by Heinz Prufer in

1918 when he proved Cayley's theorem.

Prufer sequence is not incredibly widely used, but it can be

applied on some special occasions, such as be integrated into

the design of the Genetic Algorithm (GA)[4-6] and used to

solve the Minimum Spanning Tree (MST) problem[7].

Reference [8] proposes a new XML schema matching

framework based on the use of prufer encoding to improve

the performance of identifying and discovering complex

matches. Reference [9] uses the prufer code to define

martingale of the tree and establish a concentration result for

a specific family of functions over random trees with given

degrees. Reference [10] designed a BMEP polytope iterative

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

enumeration algorithm based on the Prufer coding method of

rootless label tree, combined with the multi-faceted

combination algorithm of the Balanced Minimum Evolution

Problem (BEMP). The chain structure of the objective supply

chain [11] and the branched polymer can be represented as a

tree structure. Reference [12] generates random trees with the

same degree distribution by repeatedly modifying the prufer

code to create the randomly branched polymers. Reference

[13] used the prufer algorithm to encode its proposed

skeleton graph model and check the isomorphism of the

skeleton graph based on the prufer sequence, but the skeleton

graph proposed in reference [13] is actually a tree structure.

Compared with the tree structure, the graph structure (or

the mesh structure) has a broader range of application

scenarios. Can the random tree generation method based on

the prufer algorithm proposed in reference [12] be extended

to the generation of random graphs? Whether the graph

isomorphism detection method based on the prufer algorithm

in reference [13] could be accurately applied to graph

structures? Although scholars have proposed many improved

methods for the traditional prufer algorithm, no one has

considered applying it to graph vectorization. In order to

realize it, our contributions could be summarized as follows:

a) Propose a method for undirected labeled graph

vectorization based on the prufer algorithm, including graph

encoding and decoding algorithm.

b) Propose a method to check the connectivity of the graph

based on the Warshall algorithm and introduce an improved

approach, then apply it to increase the accuracy of the prufer

algorithm in coding and decoding undirected labeled graph.

Finally, the application prospect of the graph vectorization

in topology calculation will be analyzed. The process block

diagram of the topology vectorization is shown in Figure 1.

Search for

suitable node
Encode

PrimNew topology

Coding algorithm

 1 2, ,...a a

Search for

suitable number

Rebuild

topology

Delete

number
New sequence

Decoding algorithm

Initial topology

1

2 3

4

5 6

Tree
1

2 3

4

5 Graph

1

2 3

4

5 6

1)
1

2 3

4

5 6

2)

1

2 3

4

5 6

3)

1

2 3

4

5 6

4)

1

2 3

4

5 6

5)

1

2 3

4

5 6

1)
1

2 3

4

5 6

2)
1

2 3

4

5 6

3)
1

2 3

4

5 6

4)
1

2 3

4

5 6

5)

 1 2, ,... na a a

Vector

FIGURE 1. Process block diagram of topological vectorization

II. REVIEW OF THE PRUFER ALGORITHM
A. PRUFER CODING OF ROOTLESS LABELED TREE

Prufer sequence encoding refers to converting a tree into a

character string, and decoding refers to converting a

character string into a tree[14].

First, briefly introduce the prufer coding process of

rootless trees: Let T be a tree with n vertices; then tree T is

called a labeled tree if the n vertices are distinguished from

one another by names such as
1 2, ,..., nv v v [15]. Assuming that

the known n vertices are simply marked as 1,2,...,n , then

suppose that T is one of the trees, and the node with the

smallest label in the leaves is
1a , its adjacent node is

1b .

When the point
1a and the edge

1 1(,)a b are trimmed from

the graph, the point
1b becomes the leaf of the remaining tree

1T . Then search the leaf with the smallest label in the

remaining tree
1T , set to

2a , the adjacency point of
2a is

2b ,

and trim
2a and edge

2 2(,)a b from
1T . Continue this step n-

2 times until there is one edge left. Then tree T can be

expressed as the sequence
1 2 2, ,..., nb b b 

, which is called the

prufer sequence, and this process is called the prufer coding

algorithm. The coding steps are summarized as follows[16]:

step_1: Cut the leaf nodes and edges in order from small

to large according to vertex labels.

step_2: Record the node number that connected to the leaf

node on the trimmed edge.

step_3: Repeat step_1 and step_2 until only two nodes and

edges between them are left in the tree, the

algorithm is end.

The following is a concrete example to illustrate the

rootless tree coding and decoding method of the Prufer

sequence. The constructed rootless tree is shown in Figure 2.

12 3 45

67

FIGURE 2. A rootless tree composed of 7 nodes

Firstly, according to the coding step_1, node 2 and the

edge (2, 3) with the smallest sequence number among the

leaf nodes are cut out to generate a new tree.

According to the coding step_2, record the node number 3

adjacent to node 2, so the current prufer sequence is 3.

Then according to the coding step_3, the above process is

repeated until one edge remains. The entire process is shown

in Figure 3.

1 45

67

Record 1

1 5

67

Record 5Record 5

1 5

7

Record 1

1

7

13 45

67

13 45

67

2

Record 3

FIGURE 3. Prufer coding process of tree T

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

The prufer sequence changes as follows.

[3] [3,1] [3,1,5] [3,1,5,5] [3,1,5,5,1]   

Finally, the prufer sequence is [3, 1, 5, 5, 1].

B. PRUFER DECODING OF ROOTLESS LABELED
TREE

Provide two sequences 1,2,...,n and
1 2 2, ,..., nb b b 

, which are

sequential sequence (SeqtSeq) and prufer sequence

(PruferSeq), respectively. The tree T can be conversely

decoded from
1 2 2, ,..., nb b b 

.

In above coding process, since
1a has been cut from the

tree T when recording
1b ,

1a will not appear in
2 2,..., nb b 

,

so find the first number that does not appear in PruferSeq

from SeqtSeq. This number is obviously
1a , and at the same

time, rebuild the edge
1 1(,)a b , then eliminate

1a from

SeqtSeq and eliminate
1b from PruferSeq. Continue the

above steps 2n  times until the PruferSeq becomes an

empty set. At this time, the SeqtSeq will have two numbers

,k ja a left, and the edge (,)k ja a will be the last edge of the

tree T. Decoding steps are as follows:

step_1: Construct the SeqtSeq according to the node

number of the tree. Find the number that is not in

PruferSeq and is located on the leftmost side of

the SeqtSeq. Connect it to the leftmost number of

the SeqtSeq to rebuild this edge.

step_2: After completing the step_1, the two node

numbers of SeqtSeq and PruferSeq are eliminated

to form two new sequence.

step_3: Repeat step_1 and step_2 several times until only

two numbers left in the SeqtSeq. Then rebuild the

edge corresponding to the remaining two numbers,

and the algorithm terminates.

Continue take the above tree T as an example. The

PruferSeq that we get is [3,1,5,5,1], according to step_1,

construct the SeqtSeq: [1,2,3,4,5,6,7], the leftmost sequence

number that in SeqtSeq but not in PruferSeq is 2, and the

leftmost number of the SeqtSeq is 3, so rebuild edge (2,3), as

shown in Figure 4. According to the decoding step_2, delete

the number 2 in SeqtSeq and the leftmost number 3 in

PruferSeq, here we expressed it as [1,② ,3,4,5,6,7] and

[③ ,1,5,5,1]. Get the new SeqtSeq: [1,3,4,5,6,7] and

PruferSeq: [1,5,5,1].

12 3 45

67

12 3 45

67

FIGURE 4. Decoding side (2, 3)

According to the decoding step_3, the above processes

will be repeated until SeqtSeq has only two numbers left:

[1,7], finally rebuild the edge (1,7). The changes of SeqtSeq

and PruferSeq are shown below.

4,5,6,7] ,5,6,7][1, [1, [1, [1, [1,

[] [] [] [

5, ,7] ,7] 7]

5,5,1 , 1],5 1 , 

       
       

       

③, ④ ⑥ ⑤

①, ⑤ ⑤ ①

Edges (3,1), (4,5), (6,5), (5,1), (1,7) will be decoded in
order, as shown in Figure 5.

13 45

67

2 13 45

67

2

13 45

67

2
13 45

67

2

13 45

67

2 13 45

67

2

Rebuild edge(3,1)

Rebuild edge(4,5)

Rebuild edge(6,5)

Rebuild edge(5,1)

Rebuild edge(1,7)

FIGURE 5. The decoding process of the rootless tree

Finally, we get a tree that is the same as the rootless tree in

Figure 2. The prufer coding and decoding algorithm

processes are shown in Figure 6.

(a) Coding algorithm (b) Decoding algorithm

Start

Remaining nodes <=2 ?
N

Get prufer sequence

Y

End

Cut the leaf nodes and

edges in order from

small to large

Record the node number that

connected to the leaf node

Start

Initialization

sequence

Sequential sequence

Remaining numbers =2 ?

N

Get prufer sequence

Y

End

Find the leftmost side of

sequential sequence that

not in prufer sequence A

Rebuild edge

(A, leftmost side of prufer sequence)

Eliminated that two

number from each

sequence

FIGURE 6. Algorithm flowchart of rootless labeled tree

Scholars have optimized the prufer encoding and decoding

algorithms, and have proposed many improved algorithms.

Reference [16] and [17] propose linear time algorithms.

Using the integer sorting algorithm obtained by the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

particularity of the integer values to be sorted, the prufer

encoding and decoding problems are simplified to integer

sorting problems, which can better improve the efficiency of

rootless tree prufer coding and decoding. Reference [18] uses

simple arrays to improve prufer algorithm, which can

improve the time complexity of prufer coding to O(n).

Reference [14] studied a decoding algorithm that scanned the

prufer sequence in reverse order and proved that the

algorithm could run in linear time without the need for

additional data structures or sorting processes.

III. PRUFER ALGORITHM FOR UNDIRECTED LABELED
GRAPH

Traditional prufer algorithms can be used to encode and

decode a rootless labeled tree. However, compared to a

rootless tree, graphs are more widely used to solve network

problems, so it is necessary to design a method for coding

and decoding labeled graphs.

The tree and graph are both non-linear data structures, but

the graph is more abstract and complex than a tree.

Compared with a tree, the graph has a unique structure,

which is named cycle. Graph coding needs to focus on

solving the coding problem of the cycle. In order to

emphasize the structural nature of the graph, we only discuss

the coding and decoding of the undirected simple graph,

which does not include parallel edges and self-loops. Figure

7 shows a simple undirected labeled graph with a cycle

structure and leaf node.

1

3

4

2

FIGURE 7. A simple undirected labeled graph G

By coding graph G, we will find some problems: if use the

prufer coding method of the rootless tree to coding graph G,

the node 4 and edge (1,4) in graph G will be trimmed first.

Then the remaining nodes 1, 2, and 3 form a cycle, where

there are no more leaf nodes. In this situation, which node

and which edge should be trimmed next? In order to

successfully coding the undirected labeled graph, we need to

find a suitable way to solve this problem.

A. PRUFER CODING OF UNDIRECTED LABELED
GRAPH

First of all, the single node cropping rules are specified: Each

cropping step trim the node and all edges connected to it. In

the prufer coding algorithm of the rootless tree, the clipped

node is always leaf-node; there are only one adjacent node

that needs to be recorded each time. Therefore, the single

node recording rule is specified: Recording all adjacent nodes

of the clipped node in order, then record that clipped node at

the end.

Suppose that the n vertex of the undirected labeled graph

G is denoted as
1 2, ,..., na a a . The coding steps are designed

as follows:

step_1: If the current undirected labeled graph has leaf

nodes ,...,i ja a , cut out the smallest node
mina

among the leaf nodes, as well as the edge (,)i ia b

formed with the adjacent node
ib . If there is no

leaf node left, the one with the smallest sequence

number among the remaining nodes will be

trimmed.

step_2: If the clipped node is a leaf node, only its adjacent

node
ib should be recorded; if the clipped node is

not a leaf node and its degree is j(j≥2), All nodes

1 2, ,..., jb b b that connected to
ia through edges

1 2(,), (,),..., (,)i i i ja b a b a b should be recorded,

assuming that 1 2 ... jb b b   follow the order

from small to large, record all of them and add the

clipped node
ia at the end to generate a sequence

1 2[, ,..., ,]j ib b b a .

step_3: When each trim is complete, a new undirected

labeled graph will be generated. Continue to

repeat step_1 and step_2 until the undirected

labeled graph has only two nodes left, and the

algorithm terminates.

Taking graph G (Figure 7) as an example graph, its coding

process is shown in Figure 8.

1

3

4

2

1

32

2 3

Record 1 Record 2,3,1

Prufer sequence

(1)

Prufer sequence

(1,2,3,1)

FIGURE 8. The coding process of an undirected labeled graph

A. PRUFER DECODING OF UNDIRECTED LABELED
GRAPH

The decoding of an undirected labeled graph is the reverse

process of encoding, so we should correctly restore all detail

in the coding process. Due to the complexity of the coding

process, several problems should be considered. Firstly, how

to rebuild the cycle structure? We know that cycle structure

is the particularity of the graph. In the coding algorithm, we

recorded all the adjacent nodes of the clipped node and

recorded that node at the end. Therefore, in the decoding

process, we only need to locate that node in the PruferSeq,

then rebuild all the adjacent edges with the number in front

of it. Secondly, according to the coding algorithm of the

rootless labeled tree, the way to rebuild leaf node could adopt

the same method, that is, find the leftmost number that

included in SeqtSeq not appear in PruferSeq, and link it to the

leftmost number of PruferSeq to rebuild that edge.

Decoding steps could be designed as follows.

step_1. Find the number a that located in the leftmost side

of SeqtSeq but does not exist in the PruferSeq.

step_2. Connect the node a with the node b that located in

the leftmost side of PruferSeq, rebuild edge (,)a b .

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

step_3. Delete a in SeqtSeq and b in PruferSeq.

step_4. If the above number a does not exist, find the

position of the leftmost side number of SeqtSeq in

PruferSeq, mark that number as jb .

step_5. Connect the node jb with each node 1 1(,...,)jb b 

that in front of jb , in order to rebuild edges

1 1(,),..., (,)j j jb b b b  .

step_6. Delete number jb in SeqtSeq and all numbers

1 1,..., ,j jb b b in PruferSeq;

step_7. Repeat the above process until there are only two

numbers left in SeqtSeq. Connect the remaining

two numbers, rebuild the final edge, the algorithm

is over.

Taking the undirected labeled graph G as an example, we

have got the PruferSeq in above. According to the PruferSeq,

the decoding process is shown in Figure 9.

1

3

4

2

Prufer sequence

1

3

4

2

1

3

4

2

Sequential Sequence (1,2,3,④)

(①,2,3,1)

Rebuild

edge(4,1) (①,2,3)

(②,③ ,①)

(2,3)

ϕ

Rebuild

edges(1,2),(1,3)

ϕ

Rebuild

edge(2,3) ϕ

1

3

4

2

FIGURE 9. Prufer decoding process of undirected labeled graph G

Start

Remaining nodes <=2 ?
N

Get prufer sequence

Y

End

Cut the smallest leaf

node and edge

Record the node number

that connected to the

cropped leaf node

Start

Initialization

sequence

Sequential sequence

Remaining numbers =2 ?

N

Get prufer sequence

Y

End

Find the leftmost side of

sequential sequence that

not in prufer sequence A

Eliminated A and B

Is there a leaf node ?

Y

Cut the smallest number

node and edges

N

Record all adjacent nodes

connected to the cropped

node and add the cut

point number at the end

Does A exist ?

Y

N

Rebuild edge

(A, leftmost side of prufer sequence B)

Find the position corresponding to

the leftmost side number in the

sequential sequence in the prufer

sequence A

Rebuild edges

(A, All nodes corresponding to the

numbers on the left side of A)

Delate A and all numbers on the

left side of A in prufer sequence

(a) Coding algorithm (b) Decoding algorithm

FIGURE 10. Prufer coding and decoding flowcharts for undirected labeled graph

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

The prufer coding and decoding flow for the undirected

labeled graph is shown in Figure 10. To facilitate

experimental verification, the pseudocode of algorithm is

designed as follows:

Algorithm 1 Coding Algorithm

Input:

undirected labeled graph G

Output:

prufer coding sequence PruferSeq.

1: algorithm PruferCoding (G)

2: while G.nodenum > 2

3: CurrentNode ← FindLeafNode (G)

4: if CurrentNode != NULL

5: AdjNode ← FindAdjNode (CurrentNode)

6: PruferSeq ← Record (PruferSeq, AdjNode)

7: else CurrentNode ← FindSmallestNode (G)

8: Adj ← FindAdjNode (CurrentNode)

9: PruferSeq ← Record (PruferSeq, Adj, CurrentNode)

10: end if

11: end while

12: Prun (CurrentNode)

13: PruferSeq ← Record (PruferSeq, NodeNumof(G))

14: return PruferSeq

15: end algorithm

Algorithm 2 Decoding Algorithm

Input:

prufer coding sequence PruferSeq

Output:

undirected labeled graph G.

1: algorithm PruferDecoding (PruferSeq)

2: CreateSeqtSeq (PruferSeq)

3. while SeqtSeq.length > 2

4: for i ← 1 to sizeof (SeqtSeq)

5: if NotBelongtoPruferSeqt (SeqtSeq (i))

6: CurrentNum ← SeqtSeq (i)

7: break

8: end if

9: end for

10: if CurrentNum != NULL

11: G ← RebuildEdge (G, CurrentNum, PruferSeq (1))

12: Eliminate (CurrentNum, PruferSeq (1))

13: else CurrentNum ← FindinPruferSeqt (SeqtSeq (1))

14: Adj ← AllLeftNum (CurrentNum)

15: G ← RebuildEdge (G, Adj CurrentNum);

16: Eliminate (Adj, CurrentNum)

17: end if

18: end while

19: G← Rebuild (G, SeqtSeq)

20: return G

21: end algorithm

Prufer sequence

3

1

4

2

6

5

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

Adjacency matrixUndirected graph



3

1

4

2

6

5

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

[5]

3

1

4

2 5

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

[5,2,3,1]

3 4

2 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

[5, 2,3,1,3]

3 4

5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

[5,2,3,1,3,4,5,3]

L
ea

f n
od

e
6

Sm
al

le
st

la
bel

 n
od

e
1

L
ea

f n
od

e
2

Sm
al

le
st

la
bel

 n
od

e
3

Record 5

Record 2,3,1

Record 3

Record 4,5,3

Prufer coding Prufer decoding

[1,2,3,4,5,6]

[5,2,3,1,3,4,5,3]

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

[1,2,3,4,5]

[2,3,1,3,4,5,3]

[2,3,4,5]

[3,4,5,3]

[3,4,5]

[4,5,3]

[4,5]



0 1 1 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 0 1 0 0 0

0 0 1 0 0 1

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

Rebuild 5-6

Rebuild 1-2

Rebuild 1-3

Rebuild 2-3

Rebuild 3-4

Rebuild 3-5

Rebuild 4-5

Prufer sequence &

Sequential sequence
Adjacency matrix

FIGURE 11. Schematic diagram of the experimental codec process

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

In order to clearly describe the algorithm execution

process, we intuitively take an undirected labeled graph

composed of 6 nodes as an example to show the entire

process of its coding and decoding, as shown in Figure 11.

The basic operation of the coding algorithm is to

determine whether a node is a leaf node; its time complexity

is ()O n . Outer while loop needs to determine the remaining

nodes number, its time complexity is also ()O n , so the time

complexity of the coding algorithm is 2()O n . The basic

operation of the decoding algorithm is to find the node

number that in the leftmost of SeqtSeq but not in PruferSeq,

its time complexity is 2()O n , consider the outer while loop,

the time complexity of decoding algorithm is 3()O n .

The optimal time complexity of basic operation can reach

(log)O n n . Meanwhile, the time complexity of the outer

while loop can be reduced to (log)O n by selecting the

appropriate data storage structure[19], so the optimal coding

and decoding algorithm time complexity are (log)O n n and
2(log)O n n respectively.

For undirected labeled graphs with different node size

scales, a large of experiments have been carried outs. The

accuracy rate of the codec still has not reached 100%, as

shown in Table 1.

TABLE 1. Accuracy data of the first experiment

Size Result Count Percent

[3,21]
Correct 17 5.67%

Error 283 94.33%

[22,51]
Correct 159 14.52%

Error 27 85.48%

According to the algorithm execution process, to analyze

the causes of algorithm errors, we found that the original

graph will be divided into two or more graphs in some

particular cases. In this situation, the algorithm execution

result will be wrong, as shown in Figure 12.

1

3

4 5 6 7

Trim 12 3

4 5 6 7

2

FIGURE 12. The particular case of trimming into two pictures

In such a situation, the node with the small label happens

to be the bridge node connecting the two subgraphs, and

currently, there is no leaf node. If we trim such a node, the

original graph will be divided into two graphs. In order to

solve this problem, the shearing condition needs to be added.

Such a problem certainly does not occur when cutting leaf

nodes, so it is necessary to detect whether the current

undirected graph will be decomposed into multiple graphs in

the second case (cutting non-leaf nodes).

The Warshall algorithm uses the idea of dynamic

programming to find transitive closures, which can be used

to judge the connectivity of the graph[20]. If only need to

judge the connectivity of the undirected graph simply, a

vector can be introduced to record the reachability of a single

node. We know that the n power of the adjacency matrix

represents the number of paths that each node can reach

through n hops to another node (including itself), so the

connectivity detection algorithm can be designed as follows:

Algorithm 3 Connectivity Check

Input:

undirected labeled Graph G

Output:

connectivity judgment result

1: algorithm ConnectionCheck (G)

2: CheckLine ← G (1)

/*Use the first row of the adjacency matrix for inspection*/

3: for PowerCount ← 2 to G.nodenum

4: CheckLine ← CheckLine and G (1)

/*CheckLine performs AND operation with the first row of

the current matrix*/

5: if AllOnes (CheckLine)

/*If CheckLine is all 1 then return true*/

6: return TRUE

7: end if

8: G ← G * G_Init; // Continue multiplication

9: end for

10: return FALSE

11: end algorithm

If CheckLine becomes an all-one array, it means the node

that we marked can reach any other nodes, that is, this

undirected graph is connected. When considering this

particular case, it means that there is no leaf node at present,

so a cycle will appear, it will accelerate the check. Only in

the worst case, the outer loop needs to be performed n-2

times. The inner layer is to check CheckLine. If we mark the

value that has been changed to 1, so that each time only need

to check the value that is still 0 in the previous round, the

time complexity can be reduced to (log)O n , so the time

complexity of this check algorithm is (log)O n n .

Therefore, the algorithm needs to make the following

improvements: If it is found that trimming the current non-

leaf node will divide the original graph into multiple graphs,

then mark and skip this node until a node that does not

decompose the original graph is found, exchange it with the

smallest marked node, and record this exchange in order to

recover when decoding. We introduce a table structure for

recording this exchange and return it at the end of the prufer

coding algorithm, and meanwhile, it as the input of the prufer

decoding algorithm to help restore this exchange.

The improved part can be described as follows:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

Algorithm 4 Improved Coding Algorithm

◄/*rest of the algorithm*/

if there is no leaf nodes

 a ← G.smallestNum

 Trim (a)

 if ConnectionCheck (G) = FALSE

 Restore (G)

 MarkNodeSet ← a

 else ConnectionCheck (G) = TRUE

 if isempty(MarkNodeSet) = FALSE

 ExgTable ← Record (MarkNodeSet.smallest, a)

 Clear(MarkNodeSet)

 end if

 end if

end if /*rest of the algorithm*/►

return ExgTable

Algorithm 5 Improved Decoding Algorithm

◄/*rest of the algorithm*/

if there is no qualified number

 if isexchanged (SeqtSeq(1)) = TRUE

 b ← Recover(ExgTable, SeqtSeq(1))

 else

 b ← SeqtSeq(1)

 end if

end if /*rest of the algorithm*/►

V. ALGORITHM APPLICATION

The algorithm proposed in this paper can better implement

the vectorization of the undirected labeled graph and record

the connectivity of it. Recording the two-dimensional

adjacency matrix as a one-dimensional vector, can

sometimes greatly simplify some graph operations and

improve the efficiency of solving graph problems, such as

the graph isomorphism judgment problem, as shown in

Figure 13.

3 4

1

2 5

5 2

1

3 4

Graph_1 Graph_2

FIGURE 13. Graph isomorphism

Graph isomorphism is the most rigorous form of exact

graph matching, holding all the mapping, which must be a

bijection in both directions[21]. Graph_1 and Graph_2 in

figure 13 are isomorphic because their adjacency matrixes

are exactly the same. The prufer sequences obtained

according to the algorithm proposed in this paper are also the

same: [3,4,1,5,2], and they have the uniqueness of decoding.

If the graph isomorphism analysis is performed based on the

adjacency matrix, it will take 10 comparison operations, and

based on the prufer sequence, it will only require 5

comparison operations so that the efficiency will be sharply

improved.

When use the adjacency matrix to store a simple

undirected graph, the useful information is distributed in the

upper triangle of that matrix, as shown in Figure 14.

1,1 1,1 1,

1,1

,1 ,

n

n

n n n

a a a

a

a a



 
 
 
 
 
  

1

1

=1+2+ +(1)

(1)
=

2

n

i

n

n n
i










FIGURE 14. Useful information distribution

The length of prufer sequence is related to the connectivity

of the undirected graph, as cropping rules make sure that it

will always record by the cropped edges, a conclusion could

be made as follow:

PruferLen = Edge CroppedRing

Therefore, when the undirected graph is sparse, the space

occupied by the prufer sequence to store useful information

is always sharply less than (1) 2n n , it will be verified in

the later experiment.

IV. EXPERIMENT
A. Algorithm accuracy verification

In order to verify the effect of the improvement method,

more experiments were carried out.

TABLE 2. Comparison of two algorithm experiments

Size Original Percent Improved Percent

5 500/500 100% 500/500 100%

10 480/500 96% 500/500 100%

15 465/500 93% 500/500 100%

20 434/500 86.8% 500/500 100%

25 438/500 87.6% 500/500 100%

30 431/500 86.2% 500/500 100%

35 418/500 83.6% 500/500 100%

40 407/500 81.4% 500/500 100%

45 399/500 79.8% 500/500 100%

50 391/500 78.2% 500/500 100%

55 385/500 77% 500/500 100%

60 374/500 74.8% 500/500 100%

65 369/500 73.8% 500/500 100%

70 375/500 75% 500/500 100%

75 369/500 73.8% 500/500 100%

80 375/500 75% 500/500 100%

85 363/500 72.6% 500/500 100%

90 348/500 69.6% 500/500 100%

95 351/500 70.2% 500/500 100%

100 378/500 75.6% 500/500 100%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

To compare the accuracy difference between the original

algorithm and the improved algorithm, we conducted 500

experiments each for undirected labeled graphs with different

numbers of nodes. Table 2 shows the accuracy comparison of

the two algorithm experiments on different Graph_Size. The

experimental results show that the improved algorithm can

always achieve 100% coding and decoding accuracy.

Meanwhile, from the experiments, we can find that the

accuracy of the original algorithm will decrease when the

node number increases, as the expansion of the graph will

increase the probability of the above special case. Although

the improvement of the algorithm increases the time cost, it

dramatically improves the algorithm accuracy. The accuracy

of the original algorithm in large-scale (between 100 to 300)

graph is shown in Table 3.

Excluding the influence of random errors, the accuracy

rate of the algorithm that does not introduce the connectivity

check mechanism will be reduced to less than 60% when the

size comes to about 250 nodes.

The main disadvantage of the algorithm is that for

different topological graph models, the length of vectors

generated by the coding algorithm are not the same. If the

vectors can be determined to have the same length, then

multiple vectors can be formed into a full matrix (full matrix

here refers to needn’t to fill in irrelevant information to make

the matrix aligned). When using the matrix method to solve

topological calculation problems such as subgraph

isomorphism, matrix operations can significantly improve the

operation efficiency.

TABLE 3. The accuracy of original algorithm in large-scale

Size Percent Size Percent

100 74% 105 78%

110 71% 115 79%

120 64% 125 66%

130 74% 135 66%

140 77% 145 70%

150 68% 155 65%

160 68% 165 53%

170 64% 175 60%

180 64% 185 59%

190 68% 195 67%

200 65% 205 65%

210 65% 215 54%

220 70% 225 64%

230 63% 235 66%

240 59% 245 64%

250 65% 255 62%

260 55% 265 64%

270 55% 275 59%

280 57% 285 64%

290 65% 295 61%

300 53%

Taking two random undirected labeled graphs with 100

nodes as an example, the vectors generated by the algorithm

proposed in this paper are shown in Figure 15.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 32
33

34

35

36
37

38

39

40

41

42

43

44

45
46

47
48

49
50

51

52

53

54

55

56

5758

59

60

61

62

63

64 65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99 100

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1 2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

7778

7980

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

[11,88,68,78,92,1,34,83,99,2,60,81,89,3,48,57,64,66,71,75,89,96,4,67,8,17,28,42,5,8,58,69,74,6,32,40,70,7,41,45,8,14,27,40,46,79,9,14,27,

43,53,58,64,83,10,17,59,62,66,97,11,23,24,32,37,44,50,12,18,24,49,92,94,13,15,55,73,14,26,55,73,81,15,29,48,83,86,98,16,18,49,61,66,80,

17,23,40,66,73,100,18,55,24,27,29,44,49,69,75,19,26,37,38,43,70,74,85,20,65,31,71,21,26,44,59,92,23,36,46,48,53,24,41,68,82,92,25,30,4

1,62,76,81,85,26,82,43,60,62,66,77,82,87,27,48,80,55,68,28,68,92,29,32,44,55,30,45,71,31,76,68,43,53,70,93,32,54,79,33,49,68,90,91,34,9

6,61,74,79,93,96,35,39,52,78,84,94,36,63,99,37,44,57,59,61,39,47,68,75,40,65,69,55,53,67,99,42,47,51,65,78,92,43,49,83,92,44,99,80,47,7

8,53,65,45,100,54,61,65,67,81,88,46,91,51,62,64,48,86,63,50,58,63,96,49,78,52,70,51,67,66,95,52,66,67,78,82,54,63,59,55,85,93,65,95,97,

55,81,87,58,84,85,94,82,65,72,91,61,95,96,64,74,98,65,93,96,91,97,98,72,96,91,82,96,80,91,95,100]

Node number: 100 Vector length: 305

[17,97,91,96,83,7,12,33,44,69,70,92,1,45,17,43,48,51,54,78,2,45,23,29,72,3,20,59,70,4,54,69,75,93,6,73,82,88,100,7,85,15,26,93,97,8,10,3

7,73,77,9,15,39,73,81,93,97,10,14,16,30,92,12,35,39,69,95,13,49,30,37,51,60,89,14,41,62,88,100,16,40,45,17,54,56,72,19,32,45,48,50,52,6

9,79,20,69,94,21,93,99,24,40,55,56,63,100,22,23,25,27,61,83,91,92,23,27,30,32,61,71,73,75,77,80,87,25,38,97,99,26,28,33,74,75,77,27,83,

35,37,96,30,73,77,86,29,52,59,51,67,68,31,35,48,32,34,67,89,99,33,57,84,34,57,97,35,37,49,39,84,36,41,62,96,38,92,88,50,58,93,40,54,10

0,41,76,88,42,50,61,64,66,93,97,43,51,52,66,45,73,80,46,86,58,53,59,47,53,50,60,85,48,56,63,49,54,54,71,91,99,50,73,54,61,73,51,88,90,7

9,81,55,67,91,52,100,58,81,53,91,97,56,60,68,89,58,97,99,66,67,84,60,81,99,85,85,100,67,81,81,100,68,93,73,100,91,100,90,100]

Node number:100 Vector length: 266

Graph_1

Graph_2

Vector_1

Vector_2

Prufer coding

Prufer coding

FIGURE 15. Vectors generated by prufer coding algorithm of two undirected labeled graphs with 100 nodes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

0 20 40 60 80 100
0

50

100

150

200

250

300

350

topology size

a
v
e
ra

g
e
 l
e
n
g
th

Experiment1

Experiment2

FIGURE 16. The effect of topological size on vector length

Figure 16 shows two experiments that the topological size

from 5 to 100, taking the size step as 5, and performing 50

times coding on each size to generate the average length of

the vector.

Through data fitting, the power function is used as the

fitting model, and the fitting function obtained is

approximately as 1.237l n , which is better than (1) 2n n .

VI. CONCLUSION

This paper has discussed the method of graph vectorization,

the prufer coding and decoding algorithms for undirected

labeled graph were proposed, and the algorithm was analyzed

and improved according to the experimental results. The final

experimental results showed that the algorithm could well

encode and decode the undirected labeled graph. By

analyzing the time complexity of the algorithm, it has

acceptable time complexity. The algorithm has a good

application scenario, such as being used to generate graphs

that meet certain conditions randomly. Besides, the algorithm

provides an idea for the vectorization of graphs, which can

simplify some graph operations. However, the length of the

vector generated by the algorithm cannot be determined, so it

cannot be well applied for some specific graph analysis. In

the subsequent research, it will continue to explore the

applicable range of the method.

REFERENCES
[1] A. B. Sadavare, R. V. Kulkarni, A Review of Application of Graph

Theory for Network, International Journal of Computer Science and

Information Technologies, Vol.3(2012), 5296-5300.

[2] R. Featherstone, A Beginner's Guide to 6-D Vectors, IEEE Robotics

Automation Magazine, 17(2010), 83-94.

[3] M. N. Yazar, S. M. Yesiloglu, Path defined directed graph vector

(Pgraph) method for multibody dynamics, Multibody System Dynam-

ics, (2017).

[4] S. Molla-Alizadeh-Zavardehi, M. Hajiaghaei-Keshteli, R. Tavakkoli-

Moghaddam, Solving a capacitated fixed-charge transportation prob-

lem by artificial immune and genetic algorithms with a Prüfer num-

ber representation, Expert Systems with Applications, 38(2011),

10462-10474.

[5] R. He, C. Ma, W. Zhang, et al, Optimisation algorithm for logistics

distribution route based on Prufer codes, International Journal of

Wireless & Mobile Computing, 9(2015), 205-210.

[6] Z. Hashemi, F. G. Tari, A Prufer-based genetic algorithm for alloca-

tion of the vehicles in a discounted transportation cost system, Inter-

national Journal of Systems Science: Operations & Logistics,

5(2018), 1-15.

[7] S. M. A. Nayeem, M. Pal, Diameter Constrained Fuzzy Minimum

Spanning Tree Problem, International journal of computational intel-

ligence systems, 6(2013), 1040-1051.

[8] A. Algergawy, E. Schallehn, G. Saake, Improving XML schema

matching performance using Prüfer sequences, Data & Knowledge

Engineering, 68(2009), 728-747.

[9] C. Greenhill, M. Isaev, M. Kwan, et al, The average number of span-

ning trees in sparse graphs with given degrees, European Journal of

Combinatorics, 63(2017), 6-25.

[10] D. Catanzaro, R. Pesenti, Enumerating vertices of the balanced min-

imum evolution polytope, Computers & Operations Research,

109(2019), 209-217.

[11] J. Xu, Q. Liu, R. Wang, A class of multi-objective supply chain

networks optimal model under random fuzzy environment and its

application to the industry of Chinese liquor, Information Sciences,

178(2008), 2022-2043.

[12] S. W. Singaram, A. Gopal, A. Ben-Shaul, A Prüfer-Sequence Based

Algorithm for Calculating the Size of Ideal Randomly Branched Pol-

ymers, The Journal of Physical Chemistry B, 120(2016),6231-6237.

[13] H. Su, C. Chen, Y. Li, et al, A Novel Fast Layout Encoding Method

for Exact Multilayer Pattern Matching With Prüfer Encoding, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 34(2015), 95-108

[14] T. Paulden, D. K. Smith, Developing New Locality Results for the

Prüfer Code using a Remarkable Linear-Time Decoding Algorithm,

The Electronic Journal of Combinatorics, 14(2007).

[15] H. C. Chen, Y. L. Wang, An Efficient Algorithm for Generating

Prüfer Codes from Labelled Trees, Theory of Computing Systems,

33(2000), 97-105.

[16] X. Wang, L. Wang, Y. Wu, An Optimal Algorithm for Prufer Codes,

Journal of Software Engineering and Applications, 02(2009), 111-

115.

[17] S. Caminiti, I. Finocchi, R. Petreschi, On coding labeled trees, Theo-

retical Computer Science, 382(2007), 97-108.

 [18] J. Wang, K. M. Yan. Linear Algorithm of Prufer Codec Based on

Array. Journal of Xi'an Shiyou University (Natural Science Edition).

28(2013), 102-105.

 [19] X. D. Wang, Y. J. Wu. Optimal Algorithm for Coding and Decoding

Prufer Codes. Journal of Chinese Computer Systems. (2008), 687-

690.

[20] R. R. Liu, J. E. Chen, S. Q. Chen. Improvement of Warshall Algo-

rithm Based on Transitive Closure. Computer Engineering. (2005),

38-39.

[21] J. He, J. Chen, G. Huang, et al, A polynomial‐time algorithm for

simple undirected graph isomorphism, Concurrency and Computa-

tion: Practice and Experience, (2019).

