
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024974, IEEE Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Prufer Coding: A Vectorization Method for Un-
directed Labeled Graph 

LIN YANG1,2 AND YONGJIE WANG1,2 
1College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China 
2Anhui Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, Hefei 230037, China  

Corresponding author: Lin Yang (yanglin0815@nudt.edu.cn). 

 

ABSTRACT Prufer algorithm is a powerful method for topology vectorization, but the traditional prufer 

algorithm method can only encode a rootless labeled tree, and no prior work has studied the method of ap-

plying it to the graph vectorization. This paper proposes a vectorization method for undirected labeled 

graphs based on the prufer algorithm, including graph encoding and decoding algorithms. A particular case 

was discovered by preliminary experiments, which will reduce the accuracy of the coding algorithm (when 

the node size reaches more than 150, the accuracy can only reach about 60%), so a connectivity check 

mechanism that based on the Warshall algorithm is proposed and added to the coding algorithm. A large 

number of experimental verifications show that the accuracy of the coding algorithm can reach 100% after 

introducing this mechanism. Then the length of the vector generated by the coding algorithm is analyzed, 

and the results show that graph vectorization can improve the efficiency of partial topology calculation. 

Finally, the defects of the algorithm are discussed. The most significant defect is that the length of the vec-

tor generated by the encoding algorithm is uncertain, which will prevent it from being applied to more topo-

logical calculations. 

INDEX TERMS Graph vectorization, topology calculation, prufer algorithm, warshall algorithm, algorithm 

design 

I. INTRODUCTION 

With the explosive growth of the nodes of the system, the 

complexity of the connected network has increased.  Graph 

vectorization is introduced to simplify the graph 

representation, thus further simplify graph topology 

calculation. 

Graph vectorization refers to representing the topology 

information of a graph as a vector through a graph 

transformation algorithm. This vector is generally one-

dimensional. A graph is a mathematical abstraction that is 

useful for solving many kinds of problems. If we only need 

to solve the connectivity problem, we can only discuss the 

undirected graph model of the system. An undirected graph 

refers to a graph in which each edge symbolizes an 

unordered, transitive relationship between two nodes. Such 

edges are rendered as direct lines or arcs[1]. A vectorized 

description of the graph will simplify the process of solving 

problems related to the connectivity of the graph. 

Featherstone[2] proposed to use a parent array of undirected 

graphs to describe the connectivity of the bodies. It uses 

another two arrays to represent the set of children of related 

bodies and the set of joints on the path between the related 

bodies and root. Yazar[3] introduced a one-dimensional vector 

Pgraph, which is used to describe the connection between 

linear graph theory bodies and branches. 

The traditional prufer algorithm is a method of coding and 

decoding labeled trees, which can be used to vectorize 

unrooted trees, and it was first proposed by Heinz Prufer in 

1918 when he proved Cayley's theorem. 

Prufer sequence is not incredibly widely used, but it can be 

applied on some special occasions, such as be integrated into 

the design of the Genetic Algorithm (GA)[4-6] and used to 

solve the Minimum Spanning Tree (MST) problem[7].  

Reference [8] proposes a new XML schema matching 

framework based on the use of prufer encoding to improve 

the performance of identifying and discovering complex 

matches. Reference [9] uses the prufer code to define 

martingale of the tree and establish a concentration result for 

a specific family of functions over random trees with given 

degrees. Reference [10] designed a BMEP polytope iterative 
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enumeration algorithm based on the Prufer coding method of 

rootless label tree, combined with the multi-faceted 

combination algorithm of the Balanced Minimum Evolution 

Problem (BEMP). The chain structure of the objective supply 

chain [11] and the branched polymer can be represented as a 

tree structure. Reference [12] generates random trees with the 

same degree distribution by repeatedly modifying the prufer 

code to create the randomly branched polymers. Reference 

[13] used the prufer algorithm to encode its proposed 

skeleton graph model and check the isomorphism of the 

skeleton graph based on the prufer sequence, but the skeleton 

graph proposed in reference [13] is actually a tree structure. 

Compared with the tree structure, the graph structure (or 

the mesh structure) has a broader range of application 

scenarios. Can the random tree generation method based on 

the prufer algorithm proposed in reference [12] be extended 

to the generation of random graphs? Whether the graph 

isomorphism detection method based on the prufer algorithm 

in reference [13] could be accurately applied to graph 

structures? Although scholars have proposed many improved 

methods for the traditional prufer algorithm, no one has 

considered applying it to graph vectorization. In order to 

realize it, our contributions could be summarized as follows: 

a) Propose a method for undirected labeled graph 

vectorization based on the prufer algorithm, including graph 

encoding and decoding algorithm. 

b) Propose a method to check the connectivity of the graph 

based on the Warshall algorithm and introduce an improved 

approach, then apply it to increase the accuracy of the prufer 

algorithm in coding and decoding undirected labeled graph. 

Finally, the application prospect of the graph vectorization 

in topology calculation will be analyzed. The process block 

diagram of the topology vectorization is shown in Figure 1. 
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FIGURE 1.  Process block diagram of topological vectorization 

II. REVIEW OF THE PRUFER ALGORITHM 
A. PRUFER CODING OF ROOTLESS LABELED TREE 

Prufer sequence encoding refers to converting a tree into a 

character string, and decoding refers to converting a 

character string into a tree[14]. 

First, briefly introduce the prufer coding process of 

rootless trees: Let T be a tree with n vertices; then tree T is 

called a labeled tree if the n vertices are distinguished from 

one another by names such as 
1 2, ,..., nv v v [15]. Assuming that 

the known n vertices are simply marked as 1,2,...,n , then 

suppose that T is one of the trees, and the node with the 

smallest label in the leaves is 
1a , its adjacent node is 

1b . 

When the point 
1a  and the edge 

1 1( , )a b  are trimmed from 

the graph, the point 
1b  becomes the leaf of the remaining tree 

1T . Then search the leaf with the smallest label in the 

remaining tree 
1T , set to 

2a , the adjacency point of 
2a  is 

2b , 

and trim 
2a  and edge 

2 2( , )a b  from 
1T . Continue this step n-

2 times until there is one edge left. Then tree T can be 

expressed as the sequence 
1 2 2, ,..., nb b b 

, which is called the 

prufer sequence, and this process is called the prufer coding 

algorithm. The coding steps are summarized as follows[16]: 

step_1: Cut the leaf nodes and edges in order from small 

to large according to vertex labels. 

step_2: Record the node number that connected to the leaf 

node on the trimmed edge.  

step_3: Repeat step_1 and step_2 until only two nodes and 

edges between them are left in the tree, the 

algorithm is end. 

The following is a concrete example to illustrate the 

rootless tree coding and decoding method of the Prufer 

sequence. The constructed rootless tree is shown in Figure 2. 

12 3 45

67

 

FIGURE 2.  A rootless tree composed of 7 nodes 

 

Firstly, according to the coding step_1, node 2 and the 

edge (2, 3) with the smallest sequence number among the 

leaf nodes are cut out to generate a new tree. 

According to the coding step_2, record the node number 3 

adjacent to node 2, so the current prufer sequence is 3.  

Then according to the coding step_3, the above process is 

repeated until one edge remains. The entire process is shown 

in Figure 3. 
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FIGURE 3.  Prufer coding process of tree T 
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The prufer sequence changes as follows. 

[3] [3,1] [3,1,5] [3,1,5,5] [3,1,5,5,1]     

Finally, the prufer sequence is [3, 1, 5, 5, 1]. 

B.  PRUFER DECODING OF ROOTLESS LABELED 
TREE 

Provide two sequences 1,2,...,n and 
1 2 2, ,..., nb b b 

, which are 

sequential sequence (SeqtSeq) and prufer sequence 

(PruferSeq), respectively. The tree T can be conversely 

decoded from  
1 2 2, ,..., nb b b 

. 

In above coding process, since 
1a  has been cut from the 

tree T when recording 
1b , 

1a  will not appear in 
2 2,..., nb b 

, 

so find the first number that does not appear in PruferSeq 

from SeqtSeq. This number is obviously 
1a , and at the same 

time, rebuild the edge 
1 1( , )a b , then eliminate 

1a  from 

SeqtSeq and eliminate 
1b  from PruferSeq. Continue the 

above steps 2n   times until the PruferSeq becomes an 

empty set. At this time, the SeqtSeq will have two numbers 

,k ja a  left, and the edge ( , )k ja a  will be the last edge of the 

tree T. Decoding steps are as follows: 

step_1: Construct the SeqtSeq according to the node 

number of the tree. Find the number that is not in 

PruferSeq and is located on the leftmost side of 

the SeqtSeq. Connect it to the leftmost number of 

the SeqtSeq to rebuild this edge. 

step_2: After completing the step_1, the two node 

numbers of SeqtSeq and PruferSeq are eliminated 

to form two new sequence. 

step_3: Repeat step_1 and step_2 several times until only 

two numbers left in the SeqtSeq. Then rebuild the 

edge corresponding to the remaining two numbers, 

and the algorithm terminates. 

Continue take the above tree T as an example. The 

PruferSeq that we get is [3,1,5,5,1], according to step_1, 

construct the SeqtSeq: [1,2,3,4,5,6,7], the leftmost sequence 

number that in SeqtSeq but not in PruferSeq is 2, and the 

leftmost number of the SeqtSeq is 3, so rebuild edge (2,3), as 

shown in Figure 4. According to the decoding step_2, delete 

the number 2 in SeqtSeq and the leftmost number 3 in 

PruferSeq, here we expressed it as [1,② ,3,4,5,6,7] and 

[ ③ ,1,5,5,1]. Get the new SeqtSeq: [1,3,4,5,6,7] and 

PruferSeq: [1,5,5,1]. 
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FIGURE 4.  Decoding side (2, 3) 

 

According to the decoding step_3, the above processes 

will be repeated until SeqtSeq has only two numbers left: 

[1,7], finally rebuild the edge (1,7). The changes of SeqtSeq 

and PruferSeq are shown below. 
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Edges (3,1), (4,5), (6,5), (5,1), (1,7) will be decoded in 
order, as shown in Figure 5. 
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FIGURE 5.  The decoding process of the rootless tree 

 

Finally, we get a tree that is the same as the rootless tree in 

Figure 2. The prufer coding and decoding algorithm 

processes are shown in Figure 6. 
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FIGURE 6.  Algorithm flowchart of rootless labeled tree 

 

Scholars have optimized the prufer encoding and decoding 

algorithms, and have proposed many improved algorithms. 

Reference [16] and [17] propose linear time algorithms. 

Using the integer sorting algorithm obtained by the 
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particularity of the integer values to be sorted, the prufer 

encoding and decoding problems are simplified to integer 

sorting problems, which can better improve the efficiency of 

rootless tree prufer coding and decoding. Reference [18] uses 

simple arrays to improve prufer algorithm, which can 

improve the time complexity of prufer coding to O(n). 

Reference [14] studied a decoding algorithm that scanned the 

prufer sequence in reverse order and proved that the 

algorithm could run in linear time without the need for 

additional data structures or sorting processes. 

III. PRUFER ALGORITHM FOR UNDIRECTED LABELED 
GRAPH 

Traditional prufer algorithms can be used to encode and 

decode a rootless labeled tree. However, compared to a 

rootless tree, graphs are more widely used to solve network 

problems, so it is necessary to design a method for coding 

and decoding labeled graphs. 

The tree and graph are both non-linear data structures, but 

the graph is more abstract and complex than a tree. 

Compared with a tree, the graph has a unique structure, 

which is named cycle. Graph coding needs to focus on 

solving the coding problem of the cycle. In order to 

emphasize the structural nature of the graph, we only discuss 

the coding and decoding of the undirected simple graph, 

which does not include parallel edges and self-loops. Figure 

7 shows a simple undirected labeled graph with a cycle 

structure and leaf node. 

1
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FIGURE 7.  A simple undirected labeled graph G 

 

By coding graph G, we will find some problems: if use the 

prufer coding method of the rootless tree to coding graph G, 

the node 4 and edge (1,4) in graph G will be trimmed first. 

Then the remaining nodes 1, 2, and 3 form a cycle, where 

there are no more leaf nodes. In this situation, which node 

and which edge should be trimmed next? In order to 

successfully coding the undirected labeled graph, we need to 

find a suitable way to solve this problem. 

A. PRUFER CODING OF UNDIRECTED LABELED 
GRAPH 

First of all, the single node cropping rules are specified: Each 

cropping step trim the node and all edges connected to it. In 

the prufer coding algorithm of the rootless tree, the clipped 

node is always leaf-node; there are only one adjacent node 

that needs to be recorded each time. Therefore, the single 

node recording rule is specified: Recording all adjacent nodes 

of the clipped node in order, then record that clipped node at 

the end. 

Suppose that the n vertex of the undirected labeled graph 

G is denoted as 
1 2, ,..., na a a . The coding steps are designed 

as follows: 

step_1: If the current undirected labeled graph has leaf 

nodes ,...,i ja a , cut out the smallest node 
mina  

among the leaf nodes, as well as the edge ( , )i ia b  

formed with the adjacent node 
ib . If there is no 

leaf node left, the one with the smallest sequence 

number among the remaining nodes will be 

trimmed. 

step_2: If the clipped node is a leaf node, only its adjacent 

node 
ib  should be recorded; if the clipped node is 

not a leaf node and its degree is j(j≥2), All nodes 

1 2, ,..., jb b b  that connected to 
ia  through edges 

1 2( , ), ( , ),..., ( , )i i i ja b a b a b  should be recorded, 

assuming that 1 2 ... jb b b    follow the order 

from small to large, record all of them and add the 

clipped node 
ia  at the end to generate a sequence 

1 2[ , ,..., , ]j ib b b a . 

step_3: When each trim is complete, a new undirected 

labeled graph will be generated. Continue to 

repeat step_1 and step_2 until the undirected 

labeled graph has only two nodes left, and the 

algorithm terminates. 

Taking graph G (Figure 7) as an example graph, its coding 

process is shown in Figure 8.  
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FIGURE 8.  The coding process of an undirected labeled graph 

A. PRUFER DECODING OF UNDIRECTED LABELED 
GRAPH 

The decoding of an undirected labeled graph is the reverse 

process of encoding, so we should correctly restore all detail 

in the coding process. Due to the complexity of the coding 

process, several problems should be considered. Firstly, how 

to rebuild the cycle structure? We know that cycle structure 

is the particularity of the graph. In the coding algorithm, we 

recorded all the adjacent nodes of the clipped node and 

recorded that node at the end. Therefore, in the decoding 

process, we only need to locate that node in the PruferSeq, 

then rebuild all the adjacent edges with the number in front 

of it. Secondly, according to the coding algorithm of the 

rootless labeled tree, the way to rebuild leaf node could adopt 

the same method, that is, find the leftmost number that 

included in SeqtSeq not appear in PruferSeq, and link it to the 

leftmost number of PruferSeq to rebuild that edge. 

Decoding steps could be designed as follows. 

step_1. Find the number a that located in the leftmost side 

of SeqtSeq but does not exist in the PruferSeq. 

step_2. Connect the node a with the node b that located in 

the leftmost side of PruferSeq, rebuild edge ( , )a b . 
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step_3. Delete a in SeqtSeq and b in PruferSeq. 

step_4. If the above number a does not exist, find the 

position of the leftmost side number of SeqtSeq in 

PruferSeq, mark that number as jb . 

step_5. Connect the node jb  with each node 1 1( ,..., )jb b   

that in front of jb , in order to rebuild edges 

1 1( , ),..., ( , )j j jb b b b  . 

step_6. Delete number jb  in SeqtSeq and all numbers 

1 1,..., ,j jb b b  in PruferSeq; 

step_7. Repeat the above process until there are only two 

numbers left in SeqtSeq. Connect the remaining 

two numbers, rebuild the final edge, the algorithm 

is over. 

Taking the undirected labeled graph G as an example, we 

have got the PruferSeq in above. According to the PruferSeq, 

the decoding process is shown in Figure 9. 
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FIGURE 9.  Prufer decoding process of undirected labeled graph G 
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FIGURE 10.  Prufer coding and decoding flowcharts for undirected labeled graph 
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The prufer coding and decoding flow for the undirected 

labeled graph is shown in Figure 10. To facilitate 

experimental verification, the pseudocode of algorithm is 

designed as follows: 

 

Algorithm 1 Coding Algorithm 

Input: 

undirected labeled graph G  

Output: 

prufer coding sequence PruferSeq. 

 

1: algorithm PruferCoding (G) 

2: while G.nodenum > 2 

3:  CurrentNode ← FindLeafNode (G) 

4:  if CurrentNode != NULL 

5:   AdjNode ← FindAdjNode (CurrentNode) 

6:   PruferSeq ← Record (PruferSeq, AdjNode) 

7:  else CurrentNode ← FindSmallestNode (G) 

8:   Adj ← FindAdjNode (CurrentNode) 

9:   PruferSeq ← Record (PruferSeq, Adj, CurrentNode) 

10:  end if 

11: end while 

12: Prun (CurrentNode) 

13: PruferSeq ← Record (PruferSeq, NodeNumof(G)) 

14: return PruferSeq 

15: end algorithm 

Algorithm 2 Decoding Algorithm 

Input: 

prufer coding sequence PruferSeq 

Output: 

undirected labeled graph G. 

 

1: algorithm PruferDecoding (PruferSeq) 

2: CreateSeqtSeq (PruferSeq)  

3. while SeqtSeq.length > 2 

4:  for i ← 1 to sizeof (SeqtSeq) 

5:   if NotBelongtoPruferSeqt (SeqtSeq (i))  

6:    CurrentNum ← SeqtSeq (i) 

7:    break 

8:   end if 

9:  end for 

10:  if CurrentNum != NULL 

11:   G ← RebuildEdge (G, CurrentNum, PruferSeq (1)) 

12:   Eliminate (CurrentNum, PruferSeq (1)) 

13:  else CurrentNum ← FindinPruferSeqt (SeqtSeq (1)) 

14:   Adj ← AllLeftNum (CurrentNum) 

15:   G ← RebuildEdge (G, Adj CurrentNum); 

16:   Eliminate (Adj, CurrentNum) 

17:  end if 

18: end while 

19: G← Rebuild (G, SeqtSeq) 

20: return G 

21: end algorithm 
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FIGURE 11.  Schematic diagram of the experimental codec process 
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In order to clearly describe the algorithm execution 

process, we intuitively take an undirected labeled graph 

composed of 6 nodes as an example to show the entire 

process of its coding and decoding, as shown in Figure 11. 

The basic operation of the coding algorithm is to 

determine whether a node is a leaf node; its time complexity 

is ( )O n . Outer while loop needs to determine the remaining 

nodes number, its time complexity is also ( )O n , so the time 

complexity of the coding algorithm is 2( )O n . The basic 

operation of the decoding algorithm is to find the node 

number that in the leftmost of SeqtSeq but not in PruferSeq, 

its time complexity is 2( )O n , consider the outer while loop, 

the time complexity of decoding algorithm is 3( )O n . 

The optimal time complexity of basic operation can reach 

( log )O n n . Meanwhile, the time complexity of the outer 

while loop can be reduced to (log )O n  by selecting the 

appropriate data storage structure[19], so the optimal coding 

and decoding algorithm time complexity are ( log )O n n  and 
2( log )O n n  respectively. 

For undirected labeled graphs with different node size 

scales, a large of experiments have been carried outs. The 

accuracy rate of the codec still has not reached 100%, as 

shown in Table 1. 

TABLE 1.  Accuracy data of the first experiment 

Size Result Count Percent 

[3,21] 
Correct 17 5.67% 

Error 283 94.33% 

[22,51] 
Correct 159 14.52% 

Error 27 85.48% 

 

According to the algorithm execution process, to analyze 

the causes of algorithm errors, we found that the original 

graph will be divided into two or more graphs in some 

particular cases. In this situation, the algorithm execution 

result will be wrong, as shown in Figure 12. 
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Trim 12 3
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FIGURE 12.  The particular case of trimming into two pictures 

 

In such a situation, the node with the small label happens 

to be the bridge node connecting the two subgraphs, and 

currently, there is no leaf node. If we trim such a node, the 

original graph will be divided into two graphs. In order to 

solve this problem, the shearing condition needs to be added. 

Such a problem certainly does not occur when cutting leaf 

nodes, so it is necessary to detect whether the current 

undirected graph will be decomposed into multiple graphs in 

the second case (cutting non-leaf nodes). 

The Warshall algorithm uses the idea of dynamic 

programming to find transitive closures, which can be used 

to judge the connectivity of the graph[20]. If only need to 

judge the connectivity of the undirected graph simply, a 

vector can be introduced to record the reachability of a single 

node. We know that the n power of the adjacency matrix 

represents the number of paths that each node can reach 

through n hops to another node (including itself), so the 

connectivity detection algorithm can be designed as follows: 

 

Algorithm 3 Connectivity Check 

Input: 

undirected labeled Graph G 

Output: 

connectivity judgment result 

1: algorithm ConnectionCheck (G) 

2: CheckLine ← G (1) 

/*Use the first row of the adjacency matrix for inspection*/ 

3: for PowerCount ← 2 to G.nodenum 

4:  CheckLine ← CheckLine and G (1) 

/*CheckLine performs AND operation with the first row of 

the current matrix*/ 

5:  if AllOnes (CheckLine)  

/*If CheckLine is all 1 then return true*/ 

6:   return TRUE 

7:  end if 

8:  G ← G * G_Init; // Continue multiplication 

9: end for 

10: return FALSE 

11: end algorithm 

 

If CheckLine becomes an all-one array, it means the node 

that we marked can reach any other nodes, that is, this 

undirected graph is connected. When considering this 

particular case, it means that there is no leaf node at present, 

so a cycle will appear, it will accelerate the check. Only in 

the worst case, the outer loop needs to be performed n-2 

times. The inner layer is to check CheckLine. If we mark the 

value that has been changed to 1, so that each time only need 

to check the value that is still 0 in the previous round, the 

time complexity can be reduced to (log )O n , so the time 

complexity of this check algorithm is ( log )O n n .  

Therefore, the algorithm needs to make the following 

improvements: If it is found that trimming the current non-

leaf node will divide the original graph into multiple graphs, 

then mark and skip this node until a node that does not 

decompose the original graph is found, exchange it with the 

smallest marked node, and record this exchange in order to 

recover when decoding. We introduce a table structure for 

recording this exchange and return it at the end of the prufer 

coding algorithm, and meanwhile, it as the input of the prufer 

decoding algorithm to help restore this exchange. 

The improved part can be described as follows: 
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Algorithm 4 Improved Coding Algorithm 

◄/*rest of the algorithm*/ 

if there is no leaf nodes  

 a ← G.smallestNum 

 Trim (a) 

 if ConnectionCheck (G) = FALSE  

  Restore (G) 

  MarkNodeSet ← a 

 else ConnectionCheck (G) = TRUE 

  if isempty(MarkNodeSet) = FALSE 

   ExgTable ← Record (MarkNodeSet.smallest, a) 

   Clear(MarkNodeSet) 

  end if 

 end if 

end if  /*rest of the algorithm*/► 

return ExgTable 

 

Algorithm 5 Improved Decoding Algorithm 

◄/*rest of the algorithm*/ 

if there is no qualified number 

 if isexchanged (SeqtSeq(1)) = TRUE 

  b ← Recover(ExgTable, SeqtSeq(1)) 

 else 

  b ← SeqtSeq(1) 

 end if 

end if  /*rest of the algorithm*/► 

V. ALGORITHM APPLICATION 

The algorithm proposed in this paper can better implement 

the vectorization of the undirected labeled graph and record 

the connectivity of it. Recording the two-dimensional 

adjacency matrix as a one-dimensional vector, can 

sometimes greatly simplify some graph operations and 

improve the efficiency of solving graph problems, such as 

the graph isomorphism judgment problem, as shown in 

Figure 13. 
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FIGURE 13.  Graph isomorphism 

 

Graph isomorphism is the most rigorous form of exact 

graph matching, holding all the mapping, which must be a 

bijection in both directions[21]. Graph_1 and Graph_2 in 

figure 13 are isomorphic because their adjacency matrixes 

are exactly the same. The prufer sequences obtained 

according to the algorithm proposed in this paper are also the 

same: [3,4,1,5,2], and they have the uniqueness of decoding. 

If the graph isomorphism analysis is performed based on the 

adjacency matrix, it will take 10 comparison operations, and 

based on the prufer sequence, it will only require 5 

comparison operations so that the efficiency will be sharply 

improved. 

When use the adjacency matrix to store a simple 

undirected graph, the useful information is distributed in the 

upper triangle of that matrix, as shown in Figure 14. 
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FIGURE 14.  Useful information distribution 

 

The length of prufer sequence is related to the connectivity 

of the undirected graph, as cropping rules make sure that it 

will always record by the cropped edges, a conclusion could 

be made as follow: 

PruferLen = Edge CroppedRing  

Therefore, when the undirected graph is sparse, the space 

occupied by the prufer sequence to store useful information 

is always sharply less than ( 1) 2n n , it will be verified in 

the later experiment. 

IV. EXPERIMENT 
A. Algorithm accuracy verification 

In order to verify the effect of the improvement method, 

more experiments were carried out.  

TABLE 2.  Comparison of two algorithm experiments 

Size Original Percent Improved Percent 

5 500/500 100% 500/500 100% 

10 480/500 96% 500/500 100% 

15 465/500 93% 500/500 100% 

20 434/500 86.8% 500/500 100% 

25 438/500 87.6% 500/500 100% 

30 431/500 86.2% 500/500 100% 

35 418/500 83.6% 500/500 100% 

40 407/500 81.4% 500/500 100% 

45 399/500 79.8% 500/500 100% 

50 391/500 78.2% 500/500 100% 

55 385/500 77% 500/500 100% 

60 374/500 74.8% 500/500 100% 

65 369/500 73.8% 500/500 100% 

70 375/500 75% 500/500 100% 

75 369/500 73.8% 500/500 100% 

80 375/500 75% 500/500 100% 

85 363/500 72.6% 500/500 100% 

90 348/500 69.6% 500/500 100% 

95 351/500 70.2% 500/500 100% 

100 378/500 75.6% 500/500 100% 
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To compare the accuracy difference between the original 

algorithm and the improved algorithm, we conducted 500 

experiments each for undirected labeled graphs with different 

numbers of nodes. Table 2 shows the accuracy comparison of 

the two algorithm experiments on different Graph_Size. The 

experimental results show that the improved algorithm can 

always achieve 100% coding and decoding accuracy. 

Meanwhile, from the experiments, we can find that the 

accuracy of the original algorithm will decrease when the 

node number increases, as the expansion of the graph will 

increase the probability of the above special case. Although 

the improvement of the algorithm increases the time cost, it 

dramatically improves the algorithm accuracy. The accuracy 

of the original algorithm in large-scale (between 100 to 300) 

graph is shown in Table 3. 

Excluding the influence of random errors, the accuracy 

rate of the algorithm that does not introduce the connectivity 

check mechanism will be reduced to less than 60% when the 

size comes to about 250 nodes. 

The main disadvantage of the algorithm is that for 

different topological graph models, the length of vectors 

generated by the coding algorithm are not the same. If the 

vectors can be determined to have the same length, then 

multiple vectors can be formed into a full matrix (full matrix 

here refers to needn’t to fill in irrelevant information to make 

the matrix aligned). When using the matrix method to solve 

topological calculation problems such as subgraph 

isomorphism, matrix operations can significantly improve the 

operation efficiency. 

TABLE 3.  The accuracy of original algorithm in large-scale 

Size Percent Size Percent 

100 74% 105 78% 

110 71% 115 79% 

120 64% 125 66% 

130 74% 135 66% 

140 77% 145 70% 

150 68% 155 65% 

160 68% 165 53% 

170 64% 175 60% 

180 64% 185 59% 

190 68% 195 67% 

200 65% 205 65% 

210 65% 215 54% 

220 70% 225 64% 

230 63% 235 66% 

240 59% 245 64% 

250 65% 255 62% 

260 55% 265 64% 

270 55% 275 59% 

280 57% 285 64% 

290 65% 295 61% 

300 53%   

 

Taking two random undirected labeled graphs with 100 

nodes as an example, the vectors generated by the algorithm 

proposed in this paper are shown in Figure 15. 
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FIGURE 15.  Vectors generated by prufer coding algorithm of two undirected labeled graphs with 100 nodes 
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FIGURE 16.  The effect of topological size on vector length 

 

Figure 16 shows two experiments that the topological size 

from 5 to 100, taking the size step as 5, and performing 50 

times coding on each size to generate the average length of 

the vector. 

Through data fitting, the power function is used as the 

fitting model, and the fitting function obtained is 

approximately as 1.237l n , which is better than ( 1) 2n n . 

VI. CONCLUSION 

This paper has discussed the method of graph vectorization, 

the prufer coding and decoding algorithms for undirected 

labeled graph were proposed, and the algorithm was analyzed 

and improved according to the experimental results. The final 

experimental results showed that the algorithm could well 

encode and decode the undirected labeled graph. By 

analyzing the time complexity of the algorithm, it has 

acceptable time complexity. The algorithm has a good 

application scenario, such as being used to generate graphs 

that meet certain conditions randomly. Besides, the algorithm 

provides an idea for the vectorization of graphs, which can 

simplify some graph operations. However, the length of the 

vector generated by the algorithm cannot be determined, so it 

cannot be well applied for some specific graph analysis. In 

the subsequent research, it will continue to explore the 

applicable range of the method. 
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