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ABSTRACT Over the last few years, the analysis and modeling of networks as well as the analysis and mod-
eling of networked dynamical systems, has attracted considerable interdisciplinary interest, especially using
the complex systems theory. These efforts are driven by the fact that systems, as diverse as genetic networks or
the Internet can be effectively described as complex networks. Contrary, despite the unprecedented evolution
of technology, basic issues and fundamental principles related to the structural and evolutionary properties of
communication networks still remain largely unaddressed. The situation is even more complicated when we
attempt to model the mobile communication networks and especially the 5th generation (5G) and eventually
the forthcoming 6th generation (6G). In this work, we attempt to review basic models of complex networks
from a communication networks perspective, focusing on their structural and evolutionary properties. Based
on this review we aim to reveal the models of complex networks, that may apply when modeling the 5G
and 6G mobile communication networks. Furthermore, we expect to encourage the collaboration between
complex systems and networking theorists toward meeting the challenging demands of 5G networks and
beyond.

INDEX TERMS Complex systems, complex networks, networked complex system, 5G, 6G, wireless
communications, wireless networks, mobile communication networks, modeling.

I. INTRODUCTION
It is becoming apparent that many aspects of our environment
can be viewed as a networked world. From the commu-
nication networks themselves (Internet, wireless networks,
mobile networks, etc.) to the global ecosystem, from the
road traffic network to the stock markets, from biological
to social systems, massively interconnected and interacting
components make up relatively vital systems in this world.
These systems can be classified as complex systems.

Complex systems analysis can be considered as the sci-
ence that studies how the elements of a system develop its
collective behaviors, and how the system interacts with its
environment. Qualitatively, to understand the behavior of a
complex system we must initially understand not only the
behavior of its constituent elements but also how they act
together, to dictate the behavior of the entire system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Robert Hunjet.

Complex systems and their desired behavior, fre-
quently involve references to emergence, adaptability,
self-organization and evolution, resilience, robustness,
decentralization, flexibility, and speed. Recently, literature
focuses on the structural characteristics of complex systems
which in this context can be characterized as decentralized,
non-hierarchical, flat, amorphous, dispersed, and distributed
‘‘networks’’.

Complex systems, as networks of interacting entities are
studied empirically, with the assistance of the rapid increase
of available data of many different domains. Concurrently,
these different domains appear to share several new and
fundamental theoretical questions. This progress has encour-
aged the interdisciplinary development of the new science
of complex systems which now becomes a well established
scientific field.

The study of complex systems is about understanding indi-
rect effects. Problems that are difficult to solve are often hard
to understand because the causes and effects are not obviously
related to an observer. Towards this direction, complexity
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theory studies how patterns emerge through the interaction
of many interacting elements. In this space, emergent patterns
can be perceived but can hardly be, if at all, predicted. Patterns
may indeed repeat for a time, but we cannot be sure that they
will continue to repeat, because the underlying sources of the
patterns are not open to inspection (and observation of the
system may itself disrupt the patterns) [1].

Newman [2], state that there are three interrelated
approaches to the study of networked complex systems.
These are: (a) find statistical properties, such as path length
and degree distribution that characterize the structure and
dynamic behavior of networked systems, (b) build models
of networks that explain and help understand how they are
created and how they evolve, and (c) predict the behavior of
networked systems based on the measured statistical proper-
ties of the structure and the local properties of given vertices
(study pattern formation and evolution).

Nowadays, systems become increasingly larger acquiring
even more components, while the information flow in the
system increases at a fast pace. Mobile communication net-
works and especially the 5G and the forthcoming 6G, are
typical examples of systems that expand rapidly. Mastering
their complexity (the high level of interdependence between
their, often, very heterogeneous components), becomes a
major hurdle, threatening to disrupt the information revolu-
tion. Designing, controlling, modeling and monitoring the
behavior of such systems are the fundamental challenges
that should be addressed. We need new paradigms as we are
rapidly moving from systems based on closed hierarchical
or semi-hierarchical structures to open and distributed, net-
worked systems.

From a communication networks perspective, the key chal-
lenge is to learn how to design such networks that can
self-organize, self-adapt and optimize their interactions and
functions, in a continuous and robust manner to satisfy user
demand. Fundamentally, the complex systems field can pro-
vide models, theories, mechanisms and approaches that allow
for a principled designmethod to be developed, to address this
key challenge.

Mobile communications networks and especially the forth-
coming 5G networks, as well as the future 6G networks,
are getting more complicated and heterogeneous. The typical
operation of these networks with denser deployments, more
base stations, countless users, as well as the new technologies
that are expected to be introduced in 6G networks like the
Artificial Intelligence (AI), Machine Learning (ML), Tera-
hertz (THz) band communications, etc renders any known
information theory incapable to directly model the behavior
and their dynamics. This is further exacerbated, by the trend
toward the softwarisation of networking functionalities and
the dynamic orchestration of networked services [3]. Com-
plex systems theory could become a useful and effective
tool capable to model at some degree the behaviour of these
networks.

In this paper we present complex systems from a com-
munication networks perspective, revealing the issues and

challenges as well as the way forward, towards 6G mobile
communication networks. This work complements and
extends the Technical Report TR-07-01 [4], with a focus on
5G/6G communication networks. Whilst the main focus of
the study is 6G, most of the discussion is directly relevant to
the evolving 5G.

The rest of the paper is organized as follow: In Section II,
we briefly present some of the new challenges that are
expected to be introduced in 5G/6G Wireless Communi-
cation Networks. In Section III we present the basic con-
cepts of complex networks that are foreseen to appear
in 6G. In Section IV we present the Complex Adaptive Sys-
tems (CAS) Properties while in Section V we present specific
network modeling paradigms. In Section VI we introduce
the mobile communication networks as complex systems and
finally in Section VII a proposed way of modeling the 6G
networks. Finally, in Section VIII we present our conclusions.

II. NEW CHALLENGES INTRODUCED IN 6G MOBILE
COMMUNICATION NETWORKS
During the last two decades the cellular networks tech-
nology evolved from the 1st generation networks (1G) to
the fifth generation (5G). 5G mobile communications net-
works are expected to be launched during 2020, while the
research community has already started thinking how the
next generation of wireless communication networks will
be. A number of papers have been already published and
in principle the authors agree that the 6G networks will
introduce new technologies as well as revolutionary network
characteristics [3], [5], [6].

The 5G has already introduced a number of novel ideas
to meet the stringent requirements set out, as for exam-
ple, heterogeneity, ultra dense cells, mm-wave, etc [7], [8].
Beyond that, the softwarisation of networking functionali-
ties is widely socialized, as for example the Cloud- Native
architecture [5]. This architecture is based on a data center in
which all functions and service applications are running on
the cloud data center. The cloud- native end-to-end network
architecture, provides logically independent network slicing
on a single network infrastructure to meet diversified service
requirements and provides data center based cloud architec-
ture to support various application scenarios.

Furthermore, new ideas are flourishing for the forthcoming
6G; for example the revolutionary concept that is being pro-
moted for 6G networks and if adopted, is expected to change
the whole perspective of mobile communication networks is
the transformation from the ‘‘connected things’’ or Internet
of Things (IoT) or Internet from Everything to the ‘‘con-
nected intelligence’’ [9]. The ‘‘connected intelligence’’ with
Artificial Intelligence (AI) andMachine Learning (ML) tech-
nologies, imposes much more stringent performance require-
ments, which inevitably will change fundamental network
concepts and will increase the complexity of the network.
To achieve ‘‘connected intelligence’’ very high and reliable
data rates are required (approximately 1 Tb/s in many cases
[10], [11] or 100 Gb/s individual data rate according to [6],
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FIGURE 1. 5G service types [13].

as well as extremely low end-to-end latency, very high energy
efficiency, efficient cloud applications (offering network as
a service concept) and different and very broad frequency
bands (up to THz range). Further to this, the integration and
connection of terrestrial wireless systems with other systems,
such as satellite and networked cars, networked UAVs, etc.
will further increase the complexity of 6G systems.

According to the ITU [12] the 5G networks will support
three heterogeneous service type that will definitely become
the base for the 6G systems. These are the eMBB (enhanced
Mobile Broadband), URLLC (Ultra Reliable Low Latency
Communications) and mMTC (massive Machine Type Com-
munications) (Fig. 1).

The purpose of eMBB service is to support very high
peak data rates when the connections are stable, as well
as moderate rates for cell-edge users. The mMTC supports
very big number of devices which are active on demand or
periodically (e.g. IoTs orWireless Sensor Nodes that transmit
small amount of data). The purpose of URLLC is to enhance
the reliability of 5G networks by supporting transmissions of
small amount of data that require very low latency and very
high reliability from a specific number of devices. According
to [9] 6G will support, beyond these services, another three
advanced services. The Computation Oriented Communica-
tions (COC), the Contextually Agile eMBB Communica-
tions (CAeC) and the Event Defined uRLLC (EDuRLLC).

Computation Oriented Communications (COC) will ren-
der the devices capable to achieve a targeted computational
accuracy based on the availability of the communications
resources instead of the classical QoS methods that apply in
traditional networks, including 5G. The Contextually Agile
eMBB Communications (CAeC) will render the eMBB ser-
vice provided in 5G networks more adaptive to the con-
tent of network including the network performance indexes
like congestion, reliability, topology, location etc. The Event
Defined uRLLC (EDuRLLC) service, as opposed to the 5G

functionality, in 6G networks will have to support uRLLC in
extreme and emergency events with variable traffic patterns,
device densities etc. The complication is increased if we
count that 6G technologies are expected to transform the
world into a fully connected network that will turn several
concepts into reality. Autonomous driving, Internet of Vehi-
cles, space-air-ground integrated networks [14], virtual and
augmented reality, fully connected and controlled Unmanned
Air Vehicles (UAVs) [15], multi-way virtual meeting, vir-
tual augmented reality (VAR) based gaming and remote
surgery and holographic projection, will be some of these
applications.

A. NEW NETWORK CONCEPTS THAT
ADD TO COMPLEXITY
New network concepts that add to the complexity of the
system are expected to be developed in 6G networks. Below
the most important are presented.

1) DYNAMIC TOPOLOGY
The topology in 6G is expected to be completely dynamic.
The fact that each user through its device or the plethora
of smart devices that will form the IoT networks will be
connected dynamically to the network that provides the best
quality of service at the present moment, will drastically
change the network dynamics. Autonomous driving Vehicles,
Unmmaned Air Vehicles (UAVs), drones, satellite and radar
communication, as well as the fact the many of these devices
will be fast moving nodes will also add to the complexity.
The need to correctly model the interference dynamics so
that the nodes can quickly handover to the sub-network that
provides the best quality will inevitably lead to the need for
new mathematics and complex analysis models.

2) THz FREQUENCIES
The requirements for higher data rates and high spectral
and energy efficiency (SEE) imposes the exploitation of
frequencies beyond mmWave, at the terahertz (THz) band.
This will lead to the development of ‘‘tiny cells’’ whose
radius is only a few meters. These ‘‘tiny cells’’ will drive
towards much denser deployments. Denser deployments will
inevitably force the researchers to think of new traffic man-
agement techniques, new mobility management, congestion
control algorithms etc. The very high THz path loss, the high
sensitivity, high power and low noise will lead to a better
understanding of physical layer properties and this under-
standing to the development of new MAC, link-layer and
network protocols capitalizing on programmable e-m wave
control [16], [17], to cope with the varying and unstable
behaviour of the mmWave and THz environments.

3) ACCESS NETWORK FOR BACKHAUL TRAFFIC
According to the ITU focus group, the technologies for net-
works, 2030 (FG NET-2030) will require a huge increase
in data growth which may render the access networks for
Backhaul incapable to cope with it, as well as with the other
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quality requirement of the 6G technology. According to [6]
measures to enhance research at higher bands like D-Band
where the 60GHz spectrum is available will be embodied.
More exotic, as for example, free space optical communica-
tions and quantum communications could also be consirered
for 6G backhaul to meet the requirements. On the other hand
in [18] the authors suggest to employ drones to complement
terrestrial networks by providing connectivity to hotspots
and to areas with scarce infrastructure. Drones and terrestrial
base stations may require satellite connectivity with low orbit
satellites (LEO) and CubeSats, to provide backhaul support
and to increase wide area coverage. As we have already
stated above, and as it is presented in [19] and [20] the
integration of terrestrial, airborne, and satellite networks into
a single wireless system will be essential for 6G. The Drones
technologymay lead to cell-free or UAVwireless networks or
dronecells as described in [6]. All in all, the access networks
for Backhaul is expected to be highly dynamic.

4) ARTIFICIAL INTELLIGENCE (AI) AND
MACHINE LEARNING (ML)
Due to the complexity of 6G networks, it is expected that AI
will be a key factor, critical for the successful and efficient
operation of these networks. AI has already been used in
wireless communications in every layer of the OSI stack. For
example, in the physical layer for channel precoding, in net-
work layer for traffic control, for fault prediction, authen-
tication etc [9]. Regarding 6G networks, AI is expected to
facilitate their operation since it is expected to leverage their
complexity. The vast heterogeneity between the applications,
the users and the supporting infrastructure render impossible
to achieve any guaranteed performance without AI (Fig.2).
The potential Terahertz or mmWave channels add to the com-
plexity and non-linearity and add to the difficulty of modeling
the wireless channels. A pervasive introduction of artificial
intelligence at the edge of the network is expected to play
a key role in aspects like semantic communication, machine
learning and deep neural networks as well as to the holistic
management of communication, computation, caching and
control (C4) resources [3].

5) NETWORK FUNCTIONS VIRTUALIZATION (NFV) AND
SOFTWARE DEFINED NETWORKING (SDN)
NFV and SDN are two functions that depend on virtualiza-
tion. The purpose of these functions is to enable network
design and infrastructure in software and then implemen-
tation by the underlying software across generic hardware
platforms and devices. In principle, the SDN focus in sep-
arating network control functions from network forwarding
functions, while NFV to remove network forwarding and
other networking functions from the hardware on which it
runs [21], leading to the softwarisation of networking func-
tions. Network services orchestration, which is the execu-
tion of the operational and functional processes involved in
designing, creating, and delivering an end-to-end service,
add another layer of complexity. Artificial Intelligence, and

FIGURE 2. Artificial intelligence in 6G [6].

Machine Learning, SDN, NFV will enhance adaptivity in 6G
networks and as a result complex dynamical systems theory
will be relevant.

6) BLOCKCHAIN
Blockchain is also a technology that is expected to flourish
in 6G networks, since it is considered a technology that can
significantly contribute to the management of the massive
data that are expected to be created and handled in 6G com-
munication networks. The blockchain is managed by peer-
to-peer networks and it can exist without being managed by
a centralized authority or a server. Blockchain technology is
expected to provide several facilities, such as interoperabil-
ity across devices, traceability of massive data, autonomic
interactions of different IoT systems, and reliability for the
massive connectivity of 6G communication systems [22].
Blockchain traffic obeys to small world models and power
laws as analyzed below.

7) MOVING NETWORKS
As technology evolves, the number of users that will demand
high quality Internet services whilst being on a moving
vehicle/train/plane etc is massively increasing. These users
demand the same level of service as the static infrastructure
users and 6G networks should be able to provide it. To address
these concerns the concept of Moving Networks has been
introduced [23]. Moving networks are a special category
of ad- hoc networks where nodes move. Mobile nodes and
Mobile Relay Nodes that typically use mobile small cells
have already been proposed (e.g. see [23], [24]), to facilitate
the provision of high speed internet to the ‘‘moving’’ users.

Moving networks, due to their highly volatile nature, expe-
rience significant quality issues since Vehicular Penetration
Loss (VPL) can be observed due to the velocity of the vehicles
and the attenuation of the radio signals that travel from the
base station (BS) to the users devices, inside the vehicles or
even to the vehicles themselves. This fact, inevitably, leads
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to increased interference and poor performance [25]. Moving
devices may suffer from low signal quality caused by the poor
macro antenna coverage of base stations inside vehicles with
metallic walls. According to [25], in such cases, the Vehicular
Penetration Loss (VPL) can be as high as 25 dB in a minivan
at the frequency of 2.4 GHz, with higher VPLs expected in
higher frequency bands as well as in well insulated, metal
high speed transportation means (trains, small airplanes etc).
The problem is expected to intensify, when future mobile
communication networks commence their operation in higher
communication frequencies.

An effective solution to VPL could be network densifica-
tion. Although, denser deployments lead to higher inter- cell
interference, an advantage of Mobile Nodes (MNs) is that,
compared to regular user equipment (UE) devices, the MNs
are less constrained by power and transceiver complexity
[26]. Therefore, advanced algorithms, sophisticated multi-
antenna solutions and more advanced signal processing tech-
niques can be integrated into Mobile Relay Nodes (MRNs) to
cancel interference [27]. According to [25] significant perfor-
mance improvements were shown in both urban and rural sce-
narios, considering a ground moving vehicle. Furthermore,
to meet the increasing bandwidth demands [25] proposes to
adopt mm-wave technology in the Moving Networks, which
will however exacerbate above stated losses.

Another concept that can potentially alleviate the above-
mentioned problem is aerial assisted 6G communication net-
works, with the employment of e.g. unmanned aerial vehicles
(UAVs). Providing connectivity to aerial users such as cellular
connected UAVs is also a key challenge for tomorrow’s cellu-
lar systems [28]. Concepts like adjoin beam-forming capable
to provide content delivery to aerial users that exist together
with several ground users, is under research. In this case
a network that consists of massive multiple-input multiple-
output (MIMO)-enabled ground BSs, which are uniformly
distributed and are capable to serve both aerial and ground
users through spatial multiplexing is investigated. Hyper-
surfaces, described next, can also be adopted to provide a
software programmable, hence predictable, wireless environ-
ment.

8) HYPERSURFACES, INTELLIGENT SURFACES,
ULTRA MASSIVE MIMO
Hypersurfaces (HSF) [29], Reconfigurable Intelligent Sur-
faces (RIS) [30]–[32], and Ultra-Massive MIMO [33], [34]
are promising emerging hardware technology to improve
the spectrum and energy efficiency of wireless networks.
Ultra-Massive MIMOs use a large number of antenna arrays
to change their radiation patterns over time and frequency,
for both transmission and reception [33]. HSFs reconfig-
ure the propagation environment of electromagnetic waves
[29] through programmatically controlled metasurfaces to
suit given objectives [16]. RIS, a related concept, comprises
an array of RIS units, each of which can independently incur
some change to the incident e-m signal [30]. HSF/RIS, in con-
trast to MIMOs, do not need any dedicated energy sources,

and as they have no analog or digital circuitry they are also
immune to noise, they have a large frequency response (Mhz
to Thz), and due to their almost 2-D surface they can be
deployed in walls and objects, indoor or outdoor in ground
or aerial moving networks. Below we focus our discussion
on HSFs.

Metasurfaces are thin film planar, artificial structures
that have recently enabled the realization of novel electro-
magnetic (EM) and optical components with engineerable
functionalities. These include total EM radiation absorption,
filtering and steering, as well as nano-antennas for sensors
and implantable devices. They constitute the state-of-the-art
way for manipulating electromagnetic energy in completely
custom manners, even in ways not achievable with solutions
based on natural materials. Electromagnetic cloaking, for
instance, constitutes a very well-known application example:
an object is coated with a metasurface, making it completely
invisible to electromagnetic waves.

Nonetheless, the impressive capabilities of metasurfaces
remained ‘‘disconnected’’ from real-world applicability in a
sense. There was no straightforward way of having a ‘‘plug-
and-play’’ metasurface, that gets installed within an envi-
ronment and actively alters it in an easy-to-integrate way.
The recently proposed concept of HyperSurfaces provided
an answer to this challenge by proposing a new hardware
platform that can host metasurface functionalities described
in software. The key ideas are: i) to make the hardware com-
ponents compatible with existing connectivity standards, and
ii) allow any software developer to integrate the capabilities
of metasurfaces in novel applications.

HyperSurfaces model the physical capabilities of metasur-
faces (e.g., their ability to manipulate electromagnetic waves
by steering to custom reflection directions) in the form of
software components, expressing them as ‘‘Virtual Meta-
surface Functions’’ [16]. Subsequently, they allow for the
interplay of these functionalities, i.e., their configuration and
combination over a metasurface via common communication
protocols. Allowing for direct integration to control loops
without requiring knowledge on Physics, the HyperSurfaces
seek to bring the metasurface capabilities for manipulating
electromagnetic waves to the 6G world. With these novel
inteconnection capabilities added, HyperSurfaces introduced
the first approach for internetworking metasurfaces. A novel
problem that has been posed is the end-to-end configuration
of HyperSurfaces, i.e., which types of wave manipulation
functionalities to deploy at each HyperSurface unit, in order
to maximize a wireless system’s performance objectives.
Examples include massive connectivity even in NLOS areas,
near perfect interference cancellation and wireless power
transfer. The proposed modeling approach is a complex
multigraph [16], where HyperSurface units act as vertexes,
and connectable HyperSurfaces are mapped to edges. More-
over, the graph is time-variant (due to changes in the environ-
ment such as user device mobility) and non-linear, meaning
that the egress edge weights of a node are dependent on the
ingress edge (wireless e-m wave arrival direction). Due to the
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peculiarities of the metasurface Physics, even simple path-
finding processes in this type of graphs is a very complex
process, requiring new approaches for its resolution.

III. BASIC CONCEPTS OF COMPLEX SYSTEMS
It is beyond any doubt that classical Physics, a traditional
science discipline, has developed many successful tools for
predicting the behavior of a system as a whole from the
properties of its constituents. The success of this modeling
is based on the simplicity of the interactions between the
elements according to which there is no ambiguity as to what
interacts with what, and the interaction strength is uniquely
determined by the ‘‘physical distance’’ [35].

On the other hand, for many complex systems, including
biological and man-made, with non-trivial network topology
such ambiguity is naturally present. In the past few years
many researchers studied the structure and function of com-
plex networks [2] and they have increasingly recognized that
the tools of complex theory offered a promising framework
for describing these systems [36].

Nowadays, there is an increasing need to move beyond
classical physics-based approaches and try to understand the
behavior of the system as a whole. Towards this direction,
understanding the topology of the interactions between the
components is unavoidable. In accordance with [36], there
are three basic concepts that occupy a prominent place in
contemporary thinking about complex systems, which are
defined below:

• Small world: According to [37] a small-world network
is a type of mathematical graph where although most
nodes are not neighbors of each others, their neighbors
could be neighbors with the neighbors of the other
nodes, and most nodes can be reached from every other
node by a small number of hops or steps. The small-
world concept, in simple terms, describes the fact that
despite their often large size, in most networks there
is a relatively short path between any two nodes. The
distance between the two nodes is defined as the number
of edges along the shortest path connecting them. The
short path lengths also appear in random graphs, but
in random graphs the clustering coefficient is consid-
erably small due to the fact that edges are distributed
randomly [38].

• Clustering: A common property of social networks is
the cliques formed, which represents circles of friends
or acquaintances in which every member knows every
other member. The inherent tendency to cluster is quan-
tified by the clustering coefficient [37], a concept that
has its roots in sociology. The clustering coefficient
of node i is the ratio of the actual number of edges
connecting the nodes with their immediate k neighbors
to the number of edges in a fully connected network of
those k nodes, denoted by Ci:

Ci =
2Ei

ki(ki − 1)
, (1)

where Ei is the number of edges leaving from node i
towards its ki neighbours. The clustering coefficient of
the entire network is the average of all individual Ci’s.

• Degree distribution: Not all nodes in a network have
the same number of edges (same node degree). The
spread in the node degrees is characterized by a distri-
bution function p(k), which gives the probability that a
randomly selected node has exactly k edges.

Based on the aforementioned attributes, the three robust
measures that are used to analyze a network topology are:
average path length, clustering coefficient and degree distri-
bution. All of the three concepts above are expected to apply
in the context of 6G networks. The ‘‘Small World’’ concept
is a concept that fully applies in the 6G networks since the
expected development of ‘‘tiny cells’’ whose radius is only
few meters as well as the network slicing can be considered
as an application of the ‘‘Small World’’ concept. In this
type of networks, the small-world network has a small mean
distance between the nodes since the communication takes
place though cellular hubs. This property is often analyzed
by considering the fraction of nodes in the network that
have a particular number of connections going into them (the
degree distribution of the network). Networks with a greater
than expected number of cellular hubs will have a greater
fraction of nodes with high degree, and consequently the
degree distribution will be enriched at high degree values.
Regarding clustering, even though, there are a number of
techniques used to attain better load, delay and throughput,
as for example in WLANs (Wireless Local Area Networks)
networks and 5G networks, the clustering of the nodes is
considered as the best method, since it aims to reduce the
delay and enhance the throughput as well as load and also
increases the life span of the network [39]. Clustering is
expected to dominate in 6G networks.

Below, we focus on complex adaptive systems, a special
class of complex systems which are expected to play a central
role in 6G.

IV. COMPLEX ADAPTIVE SYSTEMS (CAS) PROPERTIES
Complex adaptive systems can be seen as subsets of com-
plex systems. They are complex in the sense that they are
diverse and made up of multiple interconnected elements and
adaptive in that they have the capacity to learn and change
over time based on experience. Organized behavior emerges
from the simultaneous interactions of elements without any
global plan. Figure 3 depicts a complex adaptive system
model which takes into account the internal and external
processes and interactions. Artificial Intelligence (AI) and
Machine Learning (ML) are fundamental adaptive properties
of 6G networks.

Complex adaptive systems encompassmany properties and
the most important of them are listed below:
• Many interacting parts: The sole components of a
system are known as elements as, for example, the air
and water molecules in a weather system, the flora and
fauna in an ecosystem and the many heterogeneous,
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FIGURE 3. Complex adaptive system model [40].

dynamically interconnected nodes in 6G, which are arbi-
trarily interconnected. These elements interact with each
other as well as with their environment in unpredictable
and unplanned ways. But from this mass of interactions
regularities emerge and start to form a pattern which
feeds back on the system and informs the interactions
of the elements. For example, in an ecosystem if a virus
starts to deplete one species, this results in a greater
or smaller food supply for others in the system which
affects their behavior and their numbers. A period of flux
occurs in all the populations in the system until a new
balance is established.

• Evolution and Cooperation: A complex system con-
sists of many interacting elements that may compete or
cooperate in different times. This behavior is primar-
ily based on the heterogeneity of the constituent com-
ponents that have different attributes and capabilities
and therefore depending on the particular cooperative
links can potentially perform multiple and diverse tasks.
Under these circumstances, evolution results from the
process of creating linkages between elements so that
the result will be successful in the environment. There-
fore, the essential ability of an evolutionary network
appears to be its capability to create cooperative links
that lead to an overall successful result in the environ-
ment. Individuals are therefore searching for a situation
in which they fit into the ‘‘inner’’ environment made up
of the particular counterpart to which they are linked
in the network, and also in which the overall effect of
the partners working together fulfill some requirements
in the external environment. Stability arises when each
individual fits successfully in the counterpart, and the
counterpart fits successfully in the wider environment.
In case of external perturbations causing a change in
the stable state of the environment, then the alliance as
well as each individual that may participate within the
alliance will need to evolve.
This discussion sheds light on the aspects concerning
the interactions of individuals within a system which
are bound to change the environment these individuals

live in. By closing the feedback loop in the evolutionary
explanation, a new mathematical theory of the evolution
of complex adaptive systems arises. It is this general the-
oretical option that lies at the core of the emerging field
of complex adaptive systems. Consequently, a major
promise in the study of complex adaptive systems is to
elucidate the long-term effects of the interactions among
the evolutionary complex processes and provide causal
explanations for phenomena that are highly improbable
in common sense.

• Emergent Behaviour: Emergence is the process of
deriving some new and coherent structures, patterns and
properties in a complex system which were not pre-
viously observed. Emergent phenomena occur due to
the pattern of interactions (non-linear and decentralized)
between the elements of the system over time. More
generally, it refers on how the behavior at a larger scale
of the system arises from the detailed structure, behavior
and relationships on a finer scale. One of the main points
about emergent phenomena is that they are observable
at a macro-level, even though they are generated by
micro-level elements. In the extreme, it is about how
macroscopic behavior arises frommicroscopic behavior.

• Degeneracy: According to [41], degeneracy is the abil-
ity of elements that are structurally different to perform
the same function or yield the same output. It is a ubiq-
uitous characteristic of biological systems, existing at all
levels of biological organization, i.e. at genetic, cellular,
system, and population levels, and that it is both neces-
sary for, and an inevitable outcome of, natural selection.
As a result, two primary degenerate system attributes
are identified in [42]: system robustness without com-
promising efficiency; and increased adaptability based
on providing multiple options to deal with changes.
Hence, they argue that degeneracy enables robustness
and evolution through diversity, essential properties of
complex systems.

• Adaptability: In the most general sense, adaptation is a
feedback process in which external changes in an envi-
ronment are mirrored by compensatory internal changes
in an adaptive system. In the simplest case, an adaptive
systemmay act in a regulatorymanner, like a thermostat,
so as to maintain some property of the system at a
constant level. An interesting type of adaptation is found
in complex systems in which the interactions among the
constituent elements are allowed to change. This process
is very similar to a self-modifying program, since the
actions of the adaptive unit can affect the environment,
which, in turn, feeds information back to the adaptive
system. Thus, adaptation, in this sense, can be seen as
a computation of the most complex form that emerges
through the multiplicity and recursion of simple ele-
ments or subsystems.

• Self-Organization: Self-organization is the evolution
of a system into an organized form in the absence
of external direction, manipulation or control. In other
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words, the constraints on the organization of the system
are internal phenomena, resulting from the interactions
among the components and usually independent of their
physical nature. The dynamics of a self-organizing sys-
tem are typically non-linear, because of circular or feed-
back relations between the components. Two types of
feedback loops exist, positive feedback loop and neg-
ative feedback loop. In a positive feedback loop the
system responds in the same direction as the pertur-
bation. The end result of a positive feedback is often
amplifying and ‘‘explosive’’. That is, a small pertur-
bation will result in big changes. This feedback, will
drive the system even further away from its own orig-
inal set-point, thus amplifying the original perturbation
signal, and eventually to become explosive because the
amplification often grows exponentially (with the first
order positive feedback), or even hyperbolically (with
the second order positive feedback). On the other hand,
in negative feedback loop the system responds in an
opposite direction to the perturbation. It is a process of
feeding back to the input a part of a system’s output,
so as to reverse the direction of change of the output.
This tends to keep the output from changing, so it is
stabilizing and attempts to maintain constant conditions.
This often results in equilibrium (in physical science)
or homeostasis (in biology) such that the system will
return to its original setpoint. While self-organization
will often be in response to the system’s environ-
ment, it will not be directly controlled by the envi-
ronment nor has it been designed by someone outside
the system. A complex adaptive system is continually
self-organizing through the process of emergence and
feedback. The research on self-organization tries to find
general rules about the growth and evolution of systemic
structures, the forms it might take, and seeks for methods
that may predict the future results of self-organizing
processes.

• Decentralization: Decentralized operation can provide
a degree of scalability and robustness that cannot be
achieved with centralized architectures. Decentraliza-
tion achieves modularity and increases reliability by
reducing explicit dependence on a few central nodes.
In particular, it can permit a network of nodes to
exchange information and coordinate activities in a flex-
ible and scalable architecture that would be impracti-
cal or impossible to achieve with a single, monolithic
systems platform. Moreover, decentralized systems pro-
vide adaptability and intelligence as the system can
be ‘smarter’ than its constituent smartest element. It is
worth to mention that decentralized and distributed sys-
tems are two different approaches. In distributed sys-
tems, the decision is made by a negotiation process
between the executive components and executed by
them. In decentralized systems each executive compo-
nent makes its own decisions and executes only these
decisions.

• Robustness: Robustness refers most commonly to the
structural and other properties of a system that allow
it to withstand or tolerate stress, perturbations or vari-
ations in its internal structure or external environment
without malfunctioning but at the same time without
in any way durably changing either its structure or its
dynamics. In other words, it is the ability of a net-
worked system to sustain a giant component. Recent
work on network theory has started to address the ques-
tion of the robustness of complex networks to failure
and directed attacks. It suggests that the network con-
nectivity, and hence its functionality, is robust against
random failure of nodes [43]–[45] and to some extent is
even robust against intentional attacks [46]. Moreover,
researches [47] showed that for many physical networks,
the removal of nodes can have a much more devastating
consequence when the intrinsic dynamics of flows of
physical quantities in the network is taken into account.

• Resilience: As defined by [48], resilience refers to ‘‘the
capacity of a system to absorb and utilize or even benefit
from perturbations and changes that attain it, and so
to persist without a qualitative change in the system
structure.’’ Such a system may, however, take new exter-
nal conditions into account by absorbing them into its
mode of functioning. The difference (if any) between
resilience and robustness thus seems to lie in the extent
to which (non-structural) changes in the dynamics may
be introduced into a system under the impact of changes
in external circumstances. When networked systems
break down or are subject to attack, problems can cas-
cade throughout the infrastructure, capable of disabling
the network almost entirely. Under these circumstances,
resilience can be seen as the ability of systems to respond
in ways that rectify themselves or rapidly contain the
consequences of the accident or deliberate disruption
and keep operative at an acceptable level. Recently,
there has been much interest in the resilience of real-
world networks to failure of nodes or to intentional
attacks [43]–[45].

• Non-linearities: Complex adaptive systems are gov-
erned by non-linear interactions. Therefore, the output of
such a system is not proportional to its input. This deduc-
tion is driven by the observation that we cannot predict
how a system will work by understanding the behavior
of the constituent elements separately, and combining
them additively. Furthermore, a salient property of most
dynamical processes in complex systems is their almost
unavoidable nonlinearity. Part of the recent interest in
the study of dynamics on complex networks comes from
the understanding that techniques and expertise devel-
oped in the study of nonlinear dynamics and chaos can
be useful in the study of such nonlinear systems.

5G and 6G mobile communication networks are complex
adaptive systems where all the concepts presented above
apply to some degree. The 5G and 6G networks can be
engineered, analyzed and modeled at a degree within the

89014 VOLUME 8, 2020



C. Sergiou et al.: Complex Systems: Communication Networks Perspective Towards 6G

complex systems framework and hence provide for a more
predictable and controllable network.

Next, we will focus on the characterization of various
network models, which created considerable attention within
the networking world.

V. SPECIFIC NETWORK MODELING PARADIGMS
Recent advances in the characterization of complex systems
have given rise to the revival of network modeling, resulting
in the introduction and study of five main classes of modeling
paradigms, expected to be relevant to 6G.

A. RANDOM NETWORKS
For more than 40 years, science treated complex networks
as being completely random. This paradigm has its roots
in the work of Alfred Renyi and Paul Erdos ([49], [50])
who addressed for the first time in history one of the
most fundamental questions pertaining to our understand-
ing of our interconnected universe: How do networks form?
Their solution laid the foundation of the theory of random
networks which came to dominate our idea on network
modeling.

Those pioneering studies of network structure were
focused on random networks, of which nodes have equal
probability of connecting with each other. Random networks,
which are variants of the Erdos-Renyi model [49], [50], are
still widely used in many fields and serve as a benchmark
for many modeling and empirical studies. This paradigm of
network modeling can be characterized by (a) a low average
path length, (b) a small clustering coefficient, and (c) a degree
distribution following a Poisson distribution with a bell shape
as depicted in Fig. 4. The latter characteristic reveals that
although not all nodes in this kind of network would be
connected to the same degree, most would have a number of
connections hovering around a small, average value.

FIGURE 4. Poisson degree distribution.

Random networks are robust to coordinated attacks (that
is, to the selection and removal of a few nodes that play a
crucial role in maintaining the network’s connectivity) [51]
but on the other hand are intolerant to accidental failure due to
the fact that they are not highly interconnected. Specifically,
the connectedness of a randomly distributed network decays
steadily as nodes fail, slowly breaking into smaller, separate
domains that are unable to communicate.

B. SMALL-WORLD NETWORKS
Motivated by the inefficiency of both random networks and
regular lattices to provide an adequate framework within
which to study real-world complex networks, a new class
of models collectively called small-world models was intro-
duced byWatts and Strongatz in 1998 [37]. Small world mod-
els interpolate between the highly clustered regular lattices
and random graphs (as shown in Fig. 5). In particular, these
models have a high degree of local clustering or cliqueness
(like a regular lattice network) and a relatively short average
minimum path (like a completely random network) often
socialised in the literature to the ‘six degrees of separation’
property.

In their pioneering article [37],Watts and Strongatz studied
a simple model starting from an ordered finite-dimensional
ring lattice with N nodes connected to their first K neighbors
(having N � K ) as shown in Fig. 5a and replacing the
original links by random ones with some probability 0 ≤
p ≤ 1. By varying p, Watts and Strongatz could closely
monitor the transition between order (p = 0 and Fig. 5a)
and randomness (p = 1 and Fig. 5c). They found that this
model paradigm is able to transform a ‘sparse’ network (i.e. a
regular lattice withN � K ) into a small-world with relatively
short paths between any two nodes by setting p between
zero and 1 (0 < p < 1 and Fig. 5b). Moreover, the new
model was found to be much more highly clustered than a
random graph.

According to Watts and Strogatz [37], ‘‘models of dynam-
ical systems with small-world coupling display enhanced
signal propagation speed, computational power, and syn-
chronizability.’’ These findings have profound implications
for many real systems. In a telecommunication network for
example, ‘small-world connectivity’ might improve the ease
with which data diffuses through the system. In a transporta-
tion network, ‘small-world topology’ could improve the flow
of people or goods through the network.

Taking all these into consideration, the obvious inference
is that the Watts and Strogatz model addresses the connec-
tivity issue of a network but on the other hand it does not
say anything on how nodes would use shortcuts to reach
remote nodes. Similarly, there are some important issues that
are not addressed by the small-world model as, for exam-
ple, the affect of mobility on the small-world networks as
well as the robustness, efficiency and scalability of those
networks.

In principle, small-worlds networks are characterized by
(a) a high clustering coefficient like regular lattices, and (b) a
short characteristic path length as well as a degree distribution
typical of random networks. It is believed that many real
world networks including social networks (e.g. film actors),
the electrical power grid, and the neural network of the nema-
tode worm C.elegans (studied in [37]), exhibit small-world
phenomenon, but the real challenge is how to impose it on an
engineered dynamic system as, for instance Mobile Ad-hoc
Networks (MANETs) or Wireless Sensor Networks (WSNs),
or even 5G and 6G networks.
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FIGURE 5. A small world network is between a regular lattice network and a random network.
After [37].

FIGURE 6. Network modeling paradigms.

C. SCALE-FREE NETWORKS
In the late 1990s, attempts were made to explore and explain
the structure of the World Wide Web. Researchers tried to
apply the concept of small worlds to explain the functionality
of the web, but this didn’t quite work, although the web
was considered a small-world rather than a random network.
The reason was that in the small-world model of Watts and
Strogatz, each node has only a few connections compared
to the total number of nodes in the system as can be seen
in Fig. 6.

Those research efforts led to one of the most interesting
developments in the understanding of complex networks; the
discovery that for most large networks the degree distribution
significantly deviates from a Poisson distribution. In par-
ticular, for a large number of real networks, including the
World Wide Web (WWW) [52], the Internet [53], the mail
network [54], [55], etc., the degree of distribution was found
to follow a power-law tail, p(k) ∼ k−γ as illustrated in Fig. 7,
which defines the probability of a node having k edges. These
network topologies that exhibit power-law distributions in the
connectivity of network nodes were originally introduced by
Barabasi and Albert [56] as generic, yet universal network
models called scale-free models, aiming to offer a universal
theory of network evolution by focusing on the network
dynamics. At this point it is important to mention that accord-
ing to the latest research work [57] the theories presented
above may not be as valid for the Internet since, as it is
shown in [57], recent measurements indicate that the Internet
ecosystem is rapidly evolving from amulti-tier hierarchy built

FIGURE 7. Power-law tail.

mostly with transit (customer-provider) links to a dense mesh
formed with mostly peering links. In this work, authors, study
this evolutionary transition with an agent-based network for-
mation model. The suggested model predicts several substan-
tial differences between the Hierarchical Internet and the Flat
Internet in terms of topological structure, path lengths, inter-
domain traffic flow, and the profitability of transit providers.
Another work that reinforces the statement above is presented
in [58]. In this work authors claim that scale-free networks are
rare. This statement is based on the work they have performed
to study the universality of scale-free structure by applying
state-of-the-art statistical tools to 1000 network data sets of
different categories. According to their results they found
that scale-free networks are rare, with only 4% exhibiting the
strongest-possible evidence of scale-free structure and 52%
exhibiting the weakest-possible evidence.

Contrary to the model of small-world networks which
introduces isolated clusters of highly interconnected nodes,
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FIGURE 8. Birth of a scale-free network based on Barabasi-Albert
model [59].

scale-free networks consist of highly connected hubs that
hold together the network. It seems that these two network
theory approaches run counter, but can also be compatible,
as stated in [59], which demonstrates that ‘‘a network can
be both highly clustered and scale-free when small, tightly
interlinked clusters of nodes are connected into larger, less
cohesive groups. This type of hierarchy appears to exist in
a number of systems, from the World Wide Web (in which
clusters are groupings of web pages devoted to the same
topic) to a cell (in which clusters are teams of molecules
responsible for a specific function)’’.

The random and small-world networks models are formed
by a fixed number of nodes N, that are randomly connected
or rewired. Additionally, it is assumed that new edges are
placed randomly, something which more specifically means
that the probability that two nodes are connected (or their link
is rewired) does not depend on the node’s degree. These two
assumptions do not apply in most real world networks as, for
example, the Internet and the World Wide Web. Towards this
direction, a variety of approaches for generating ensembles of
graphs having scale-free characteristics have been proposed
including the preferential attachment (Barabasi-Albert model
[56]), power-law random graph [60], the linearized chord
diagram (LCD) model [61], etc.

1) BARABASI-ALBERT (BA) MODEL
The first and perhaps the most studied of the models in
this vein, is the Barabasi-Albert model [56]. This model is
based on two key features, namely growth and preferential
attachment which are shown in Fig. 8. The term growth refers
to the continuous addition of new vertices and edges to the
network, as for example, the WWW grows exponentially by
adding newweb pages. In addition, according to the preferen-
tial attachment mechanism, new nodes added into a network
have higher probability of connecting to the existing nodes
with high connectivity, i.e., a ‘rich-gets-richer’ phenomenon.
For example a newly created web page will more likely
include links to well known, popular documents with high
connectivity.

Thus, the topology of Barabasi-Albert networks grows by
the continuous addition of new nodes starting from a small
number of nodes which increases throughout the lifetime of

the network. The connection or rewiring of the nodes takes
into account the preferential attachmentmechanism, such that
the likelihood of connecting to a node depends on the node’s
degree, i.e. the likelihood is proportional to the number of
links that the existing node already has. Therefore, heavily
linked nodes (called hubs) tend to quickly accumulate even
more links, while nodes with only a few links are unlikely
to be chosen as the destination for a new link. It is as if
the new nodes have a ‘preference’ to attach themselves to
the already heavily linked nodes. This is apparent in Fig. 6c,
which reveals that the nodes of a scale-free network aren’t
randomly or evenly connected but the degree distribution
(number of links per node) follows a power law.

As implied by the Barabasi-Albert model, scale-free net-
works consist of a relatively small number of highly con-
nected nodes, hubs of connectivity and a large number of low
degree nodes which are accumulated around hubs. Scale-free
networks are characterized by (a) a low average path length,
(b) varying clustering coefficient - but much larger than
in random networks - depending on other topology details
(it decreases as the node degree increases), and (c) a power-
law degree distribution. Based on their inhomogeneous topol-
ogy, scale-free networks can be amazingly robust against
random failures. In particular, since failures occur at random
and the vast majority of nodes are those with small degree,
the likelihood that a hub be affected is almost negligible. Even
if such event occurs, the network will not lose its connected-
ness, which is guaranteed by the remaining hubs. Simulations
on scale-free networks [59] reveal that even if as many as
80 percent of randomly selected routers within the Internet
fail, the remaining ones still form a compact cluster in which
there will still be a path between any two nodes. On the other
hand, the presence of hubs makes the scale-free networks
more vulnerable to targeted attacks. To this extend, if we
choose a few major hubs and take them out of the network
(targeted attack), it simply falls apart and is turned into a set of
rather isolated graphs. Therefore, there is an imperative need
to protect the Achilles’ heel of scale-free networks against
malicious targeted attacks in order to maximize the network
lifetime. This of course should be based on further analysis,
for example, on determining how many hubs are essential for
the liveness of a given network.

Despite the fact that the Barabasi-Albert model has been
extensively studied, most of the related work appears to
be of a heuristic or experimental rather than mathematical
nature. Several heuristic and experimental studies on the
Barabasi-Albert model can be found in the extensive sur-
veys [36] and [62]. In contrast, so far there has been rather
little rigorous mathematical work; what there is sometimes
confirms and sometimes contradicts the heuristic results.
See [60], [63]–[65] and [66] for some examples, or the
survey [67].

2) OTHER MODELS
Aiello and Lu [60] proposed a random graph model which
is a special case of sparse random graphs with given degree
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TABLE 1. Scale-free networks are everywhere. After [59].

sequences that satisfy a power-law. This model involves only
a small number of parameters, called logsize and log-log
growth rate. These parameters capture some universal char-
acteristics of massive graphs. The study of these parameters
reveals what other network properties can be derived from its
scale-free nature.

Moreover, a precisely defined model, the linearized chord
diagram or LCD model, was introduced in [61], moti-
vated by the Mobile User Equipment (UEs), Ultra-Dense
cells, BSs, vague description of Barabasi-Albert, and incor-
porating its key features as well as other useful mathe-
matical properties. The LCD model considers two basic
characteristics of a precise version of the Barabasi-Albert
model from the mathematical point of view, namely robust-
ness to random damage, and vulnerability to malicious
attack.

Further elaboration of scale-free models which arise from
attempts to explain the power law, starting from basic
assumptions about the growth of the graph is given in the
survey [67].

D. DYNAMIC COMPLEX NETWORKS THAT CAN
HANDLE MOVING NETWORKS
The extraordinary expansion of the Internet in both the size
and the offered services and its flexibility in accommodating
a number of heterogeneous technologies leading to network
convergence, has gradually led to a change in its architec-
tural paradigm shifting from ‘‘rigid hierarchical - hardware
first - to a more flat and flexible- software first – implemen-
tation’’ [42]. This shift, which is expected to further evolve as
we gradually move beyond 5G towards 6G, necessitates the
adoption of complex networks analytical models and tools
beyond the aforementioned ones. User mobility and minia-
turization have been pivotal in driving this paradigm shift,
promoting the need for adaptivity and re-configurability.
Recent trends imply that mobility may not simply apply to
the end hosts which is the common case (often strongly
coupled to human mobility), but can now also apply to the
intermediary devices, as for example moving base stations
mounted on UAVs or even mobile phones serving as base sta-
tions [68] leading to the ideas of moving networks [26] and
proximity networks. ‘‘Proximity networks are time-varying
graphs representing the closeness among humans moving in

a physical space’’ [69] and significant research efforts have
been reported in the literature to characterize their applicabil-
ity e.g. in message spreading [70] and statistical properties,
revealing complex systems methodologies as for example
power laws [71]. Further, modern complex network theory
tools can be used to account for these effects leading to more
effective designs. The fields of Temporal Networks (graphs)
[72], [73], Dynamic Network Analysis [74] and Evolutionary
Graph Theory [75] are highly relevant to the current Dynamic
Internet, however, new theoretical tools may still need to
be developed to account for the specifics of the considered
problem [69], [76].

E. HYBERBOLIC GEOMETRY OF
COMPLEX NETWORKS
The latest and most promising work is presented in [77].
In this work the authors developed a geometric framework
to study the structure and function of complex networks.
They assumed that hyperbolic geometry (Fig.9) underlies
these networks, and they showed that with this assumption,
heterogeneous degree distributions and strong clustering in
complex networks emerge naturally as simple reflections of
the negative curvature and metric property of the underlying
hyperbolic geometry.

Conversely, they showed that if a network has some metric
structure, and if the network degree distribution is heteroge-
neous, then the network has an effective hyperbolic geometry
underneath. Then, they established a mapping between their
geometric framework and statistical mechanics of complex
networks. This mapping interprets edges in a network as non-
interacting fermions whose energies are hyperbolic distances
between nodes, while the auxiliary fields coupled to edges are
linear functions of these energies or distances. The geomet-
ric network ensemble subsumes the standard configuration
model and classical random graphs as two limiting cases
with degenerate geometric structures. Finally, they showed
that targeted transport processes without global topology
knowledge, made possible by their geometric framework,
are maximally efficient, according to all efficiency measures,
in networks with strongest heterogeneity and clustering, and
that this efficiency is remarkably robust with respect to even
catastrophic disturbances and damages to the network struc-
ture. The above theory can fully apply in 6G networks since
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heterogeneity and clustering are concepts that dominate these
type of networks.

VI. MOBILE COMMUNICATION NETWORKS
AS COMPLEX SYSTEMS
Inspired by the recent advances in complex theory, we should
take a deeper look at the communication network anatomy
and how this may apply in complex mobile communication
networks. It is beyond any doubt that network anatomy is
important to be characterized, because the structural and
evolutionary properties of networks are considered to affect
their function. This study should be embraced by the interplay
between the dynamics and the structure of complex networks.
In fact, in the last few years it became clear that in spite of the
inherent differences, most real communication networks, as,
for example, the Internet [53], the World Wide Web (WWW)
[52], and the mail network [54], [55], are characterized by
similar topological properties as in the complex networks
structures.

Complex networks are generally characterized by large
scale topologies, decentralized/distributed resource manage-
ment, extreme heterogeneity of the constituent elements,
relatively small characteristic path lengths, high clustering
coefficients, power-law degree distributions, modularity etc.,
which are all properties highly correlated to real communica-
tion networks too. Attempts to explain such similarities may
be fueled by the study of universal structural properties in
real communication networks as well as by the theoretical
understanding of evolutionary laws governing the emergence
of these properties.

A. COMPLEX NETWORK ATTRIBUTES
In general, communication networks are characterized by
a chain of possible complex attributes that can be viewed
from the perspective of complex (adaptive) networks. These
attributes are illustrated below:
• Structural complexity: The overwhelming majority of
communication networks have complex topology. As far
as the structural properties are concerned, there was an
increasing voiced need to pay attention to the evolu-
tionary mechanisms that have shaped the topology of a
network, and to the design of new models based on a
theoretical foundation as for example random networks
[49], [50], small-world networks [37], and scale-free
networks [52], [56], which retain the most significant
properties observed empirically. This research wasmoti-
vated by the expectancy that the characterization and
the modeling of the structure of a network would lead
to a better knowledge of its dynamical and functional
behavior.
Furthermore, the structural complexity of a network can
be influenced from both node and connection diver-
sity. Multiple complications can be observed due to the
fact that a network can consist of different kinds of
nodes which can be interconnected through links having

different weights and directions, resulting in a high level
of heterogeneity.
Consequently, even the wiring diagram of a network
is considered to affect its functional robustness and
resilience to external perturbations, such as random fail-
ures, or targeted attacks. At the same time, the net-
work topology plays a crucial role in determining the
emergence of collective dynamical behavior, such as
synchronization, or in governing the main features of
relevant processes that take place in complex networks,
as, for example, the spreading of information.
Apparently, it remains a challenge to answer some fun-
damental questions as, for example, ‘How does one
characterize the wiring diagram of such networks?’,
or ‘Are there any unifying principles underlying their
topology?’.

• Network evolution: The wiring diagram of a communi-
cation network is subject to dynamic changes over time.
This is a basic characteristic of dynamically changing
environments like, for example the WWW or the mobile
network, where links are created and lost over time.
From this point of view, the evolution of a commu-
nication network can be paralleled with the evolution
of a complex (adaptive) network which is considered
to be very sensitive to initial conditions or to small
perturbations, leading tomultiple pathways bywhich the
system can evolve.

• Dynamical complexity: The network and each node
within it could be non linear dynamical systems which
their state may vary over time as a result of the evolu-
tion. The understanding of the evolutionary laws gov-
erning the emergence of the structural properties could
be based on the study of dynamical processes of complex
networks. In this context, network problems in tradi-
tional areas such as robust flow and congestion control,
fault and attack tolerance, error resilience, decentral-
ized/distributed operation, which are just in the forefront
of the current research on network dynamics, are prime
candidates to be addressed based on concepts arising
from the dynamical processes of complex networks.
To this end, from the perspective of non linear dynam-
ics, we would like to understand how an enormous
network of interacting dynamical systems (e.g., mobile
user equipment (UEs), mobile nodes, ultra-dense cells,
BSs, sensor nodes, routers, etc.) will behave collectively,
given their individual non linear dynamics and coupling
architecture.

All the aforementioned attributes of networked systems
remain open challenges which potentially can be effectively
addressed by complex systems theory. Powerful new ideas
and techniques can be found by studying the similarities
between communication networks and other complex sys-
tems. In this respect, complex systems science can be seen
to bridge the gaps between the natural, social and formal sci-
ences, and especially between engineering and the sciences.
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FIGURE 9. Poincare disk model [77].

B. COMPLEX NETWORK DESIGN PRINCIPLES
Our increasing ability to address the aforementioned chal-
lenges are based on some basic features of complex systems
which were discussed earlier to some extend, such as 1) self-
organization and adaptability, 2) robustness and resilience,
3) decentralized/distributed operation and 4) engineering
self-organisation and emergent behaviour. These features are
analyzed below and may be seen as the main design princi-
ples of contemporary networked systems. The study of these
features - from complex systems perspective - is based on a
combination of the growing mass of empirical data which
has recently become accessible, and the large increase in
computational power which can support and underpin signif-
icant advances in the theoretical understanding of complex
systems.

Given the emergent design of 6G networks, it is imperative
that these powerful tool be adopted at an early stage for
its design and analysis and also for 5G with emerging and
adopted system functionalities.

1) SELF-ORGANIZATION AND ADAPTABILITY
Self-organization refers to the evolution of a system into an
organized form in the absence of external directives. Self-
organization leads a system from a large region of state
space to a persistent smaller one, under the control of the
system itself. This smaller region of state space is called an
attractor.

There are three major principles of self-organization mech-
anisms: feedback loops, local state evaluation, and interaction
between individuals. One major component in understanding
the interaction of components producing a complex pattern
are positive and negative feedback loops as shown in Fig. 10.
As explained in Section IV, positive feedback acts as an
amplifier for a given effect (or perturbation), leading to an

FIGURE 10. System control using positive and negative feedback loops.
After [80].

explosive growth. This feedback, will drive the system even
further away from its own original setpoint, thus amplify-
ing the original perturbation signal, and eventually become
explosive. In negative feedback loop the system responds
in an opposite direction to the perturbation. It is a process
of feeding back to the input a part of a system’s output,
so as to reverse the direction of change of the output. This
tends to keep the output from changing, so it is stabilizing
and attempts to maintain constant conditions. This often
results in equilibrium such that the system will return to
its original setpoint. In fact, negative feedback is used to
efficiently control the system behavior in order to prevent
over-reactions and mis-regulations. The second ingredient is
the local state. This means that all subsystems acquire and act
upon information that is stored locally. Any global control or
dependency is prevented in order to enable fully autonomous
behaviour embedded into a global context. Information trans-
fer between individuals is necessary to update the local state.
There are two ways to conduct such interactions: direct
interaction or communication between related subsystems
and indirect information exchange by interacting with the
environment [79].
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Because of its decentralized character, self-organization
tends to be robust, resisting perturbations. A self-organizing
system is typically driven by non-linear dynamics, because of
circular or feedback relations between the constituent com-
ponents. Non-linear systems have in general several stable
states, and this number tends to increase as an increasing input
of energy pushes the system farther from its equilibrium.

Adaptability allows for the modification of a system’s
behavior in order to adapt to requirements posed by exoge-
nous factors (e.g. users of a network) or environmental
changes. Therefore, adaptation may be driven by users to
provide them flexibility and ensure that their exact require-
ments will be fulfilled. Furthermore, to adapt to a changing
environment, a system needs a variety of stable states that is
large enough to react to all perturbations but not so large as to
make its evolution uncontrollably chaotic. The most adequate
states are selected according to their fitness, either directly by
the environment, or by subsystems that have adapted to the
environment at an earlier stage.

Formally, the basic mechanism underlying self-organiza-
tion is the (often noise-driven) variation which explores dif-
ferent regions in the system state space until it enters an
attractor. This precludes further variation outside the attractor,
and thus restricts the freedom of the system components to
behave independently. This is equivalent to the increase of
coherence, or decrease of statistical entropy, that defines self-
organization.

The study of such complex methodologies promises to
enable more scalable self-organizing communication net-
work infrastructures. Especially in the area of complex com-
munication networks that are subject to dynamic topology
changes (e.g., 5G/6G, ad-hoc, sensor networks and the Inter-
net of Things), such solutions are considered of prime impor-
tance in order to enable them to simplify development and
deployment. Self-organization and adaptability promise to
drive the implementation of novel autonomously evolving
mechanisms, capable of coping with global tasks (emergent
behavior).

In the last few years, there was an increasing need to
develop robust and efficient techniques which would be
able to address various issues as, for example, conges-
tion/overload control, data dissemination, quality of ser-
vice (QoS) provision, power consumption, etc., in the forth-
coming pervasive networking world. Given the often large
number of perturbations that influence the structure and
operation of a networked system, it became obvious that
the implementation of the aforementioned techniques should
be done on the basis of self-organization and adaptability.
Towards this direction, the goal is to ‘‘teach’’ each node
belonging to the network to self-organize for performing
the requested tasks like event detection, periodic/continuous
measurements, control and tracking taking into consideration
energy and QoS constraints, i.e. showing an emergent global
behavior [81].

Motivated by recent studies on complex nature and bio-
logical systems, researchers strive to adopt and apply the

underlying principles to engineering and computer science,
especially for self-organization. The combination of nature
and self-organizing technical systems was first introduced
by Eigen and Schuster [82]. In a recent study, Gerherson
and Heylighen [83] provides a discussion on when and how
to best model a system as self-organizing, and argues that
self-organizing systems, rather than other type of systems,
are a perspective for studying, understanding, designing,
controlling, and building systems. The study of nature and
biologically-inspired systems is as diverse as nature; it counts
on the artificial immune system [84], swarm intelligence [80],
evolutionary (genetic) algorithms [81], [85], [86], and cell
and molecular biology based approaches [87]. Early attempts
include the study of the behavior of swarms of insects,
typically ants and bees, in an attempt to adapt the discoveries
to build more efficient sensor networks [88], [89], to bird
flocking for congestion control [81]. Furthermore, a spe-
cial form of biologically-inspired computing with organic
properties, namely organic computing [90] is attempting to
build high-scalable architectures, which are self-organizing,
self-maintaining, and self-healing. According to [91], typ-
ical features of self-organization include: (a) absence of
external control (autonomy), (b) dynamic operation (time
evolution), (c) fluctuations (noise/searches through options),
(d) symmetry breaking (loss of freedom/heterogeneity),
(e) global order (emergence from local interactions), (f) dis-
sipation (energy usage/far-from-equilibrium), (g) insta-
bility (self-reinforcing choices/nonlinearity), (h) multiple
equilibria (many possible attractors), (i) criticality (threshold
effects/phase changes), (j) redundancy (insensitivity to dam-
age), (k) self-maintenance (repair/reproduction metabolism),
(l) adaptation (functionality/tracking of external variations),
(m) complexity (multiple concurrent values or objec-
tives), and (n) hierarchies (multiple nested self-organized
levels).

2) ROBUSTNESS AND RESILIENCE
The robustness and resilience of critical infrastructures (e.g.
real communication networks) in particular, and complex
networks in general, are issues of great importance. Com-
plex communication networks seem to display a high degree
of robustness and resilience even though key components
regularly malfunction and local failures rarely lead to loss
of the global information-carrying ability of the network.
This property of complex networks is often attributed to their
design (i.e. the redundant wiring of their underlying network
structure) and evolution. However, even though they remain
unaffected by random component failures, they seem vulner-
able to targeted attacks on its key components. Nevertheless,
it remains an open challenge to identify whether and to what
extent the network topology - beyond redundancy - is able
to play a substantial role in the robustness and error/attack
tolerance of such complex systems.

Recent work on network theory has started to address pri-
marily the topological aspects of robustness and resilience in

VOLUME 8, 2020 89021



C. Sergiou et al.: Complex Systems: Communication Networks Perspective Towards 6G

complex networks with respect to failure and directed attack
caused by edge and/or node removal.

Initial efforts towards this direction were made by [49] and
[92] addressing the reliability of a network with respect to
edge removal based on random graph theory. The network
model used in these early investigations was a randomly
connected graph HN consisting of N nodes. By removing a
p fraction of edges, the researchers were seeking to evalu-
ate the probability that the resulting subgraph is connected
and extract any dependencies among connectedness and the
removal probability p. Results carried out by [92] revealed
that a broad class of HN graphs displays a threshold-oriented
behavior. In particular, a threshold probability pc(N ) exists,
such that for p < pc(N ) the subgraph remains connected, but
for p > pc(N ) the subgraph is considered fragmented similar
to phase transition phenomena, which abound in nature.

Needless to say that the removal of a single edge is not
considered as harmful as the removal of a node. In the latter
case, the effects on the robustness of an arbitrary graph are
even more devastating, since the removal of a node results
in the malfunctioning of all the edges attached on it as well.
The effects of node removal have been recently studied with
respect to random graphs and scale-free networks addressing
their robustness against accidental node failures and inten-
tional attacks.

Because of its immediate practical consequences to Inter-
net and distributed systems, the problem of characterizing
the robustness and error tolerance of complex networks
has received growing attention, especially after the seminal
papers by Crucitti et al. [43], who addressed node removal
in scale-free models of Internet, and Callaway et al. [45]
investigation on exponential networks under attack. Other
related works include Holme and Kim [93] comprehensive
comparative investigation of the resilience of several types of
networks considering different schemes for attacking nodes
and edges, and Cohen et al.’s analysis of Internet breakdown
[44]. Works targeting specific types of network include, but
are not limited to, Newman’s investigation of e-mail net-
works [94], Jeong et al. study of metabolic systems [95], and
Dunne’s analysis of food webs [96]. More recently, the con-
cept of L-expansions of a complex network was suggested
[97] which, by enhancing the network connectivity, was
believed to present good potential for increasing the resilience
of existing networks. Moreover, Motter and Lai [47] showed
that for many physical networks, the removal of nodes can
have amuchmore devastating consequencewhen the intrinsic
dynamics of flows of physical quantities in the network is
taken into account.

These studies suggested that the network connectivity, and
hence its functionality, is robust against random failure of
nodes, and to some extent is even robust against intentional
attacks. Results revealed that real networks (e.g. Internet) are
naturally evolved to be quite resistant to random failure of
nodes, but the presence of a few nodes with exceptionally
large load, which is known to be ubiquitous in natural and

man-made networks, has a disturbing side effect: the attack on
a single important node with high load may trigger a cascade
of overload failures, capable of disabling the network almost
entirely. Such an event has dramatic consequences on the
network performance, because the functionality of a network
relies on the ability of the nodes to communicate efficiently
with each other.

More specifically, Crucitti et al. [43] studied error and
attack tolerance in exponential (random) and scale-free net-
works. They demonstrated that complex communication net-
works which incorporate a scale-free behavior, such as the
Internet and theWWW, display a surprising degree of robust-
ness, even though some significant constituent components
are regularly subject to malfunction and local failures rarely
lead to the loss of global information-carrying ability of the
network. In order to address the error tolerant characteristic of
exponential and scale-free networks, they studied the changes
in their diameter (the average length of the shortest paths
between any two nodes in the network), when a small fraction
f of nodes was randomly or intentionally removed. Mea-
surements revealed that in case of random node removal in
exponential networks, the diameter increases monotonically
with f , despite their redundant wiring. This behavior is rooted
in the homogeneity of such networks: since all nodes have
approximately equal number of edges attached on them, they
all contribute equally to the network’s diameter, thus the
removal of each node causes the same amount of damage.
On the other hand, scale-free networks display a totally dif-
ferent behavior. It was illustrated that scale-free networks
including the Internet and the WWW, display an unexpected
degree of error tolerance against random failures due to their
inhomogeneous (power-law) connectivity distribution. Such
networks display an unexpected degree of robustness, such
that their ability to communicate to high failure rates remains
unaffected even by unrealistically high failure rates. However,
these networks are extremely vulnerable to directed attacks
since their diameter increases rapidly, doubling its original
value if 5% of the nodes are intentionally removed. On the
contrary, measuring the diameter of an exponential network,
they found that owing to their homogeneity, there is no sub-
stantial difference whether the nodes are removed randomly
or in decreasing order of connectivity.

3) DECENTRALIZED OPERATION AND CONTROL
Complex networked systems consist of similar components
which directly interact with their nearest neighbors. Even
when these components interact with their neighbors in a
simple and predictable fashion, the resulting system often
displays complex behavior when viewed as a whole.

Decentralized operation and control are considered to
be inextricable ingredients of complex networks since they
provide resistance against perturbations (robustness and
resilience). In fact, decentralization is the process of dispers-
ing decision-making closer to the point of service or action.
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This feature of complex communication networks allows
flexibility that facilitates self-organization. Such flexibility is
facilitated by lack of dependency on central decision-making.
However, it has to be done in a manner that allows some
control. This control may arise through the self-organization
itself, or through the interaction between components that is
enabled by self-organization.

Apparently, formal control theory cannot be efficiently
applied in complex networks since most optimal control tech-
niques suffer from severe limitations as they cannot handle
systems of very high dimension and with a large number of
inputs and outputs, further exacerbated when non-linearities
are considered. It is also infeasible to control these networks
with centralized schemes (the typical outcome of most opti-
mal control design techniques) as these require high levels of
connectivity, impose a substantial computational burden, and
are typically more sensitive to failures, attacks, and modeling
errors than decentralized schemes.

The decentralization of decisions is often recommended
in the design of complex networks, and the decomposi-
tion and coordination of decisions are a great challenge.
The mechanisms behind this network of decentralized
design decisions create difficult management and coordi-
nation issues. Standard techniques to modeling and solving
decentralized design problems typically fail to understand
the underlying dynamics of the decentralized processes
and therefore result in sub-optimal solutions. From this
angle, it remains crucial to understand the mechanisms and
dynamics behind a decentralized set of decisions within a
complex design process. Towards this direction, the struc-
ture as well as the evolution of the network should be
exploited for the development of successful optimal control
techniques.

4) ENGINEERING SELF-ORGANISATION AND EMERGENT
BEHAVIOUR IN COMPLEX NETWORKS
‘Self Organisation’ and ‘Emergent properties’ represent
one of the most significant challenges for the engineering
of complex systems [98], [99]. As outlined earlier, emer-
gent properties can be thought of as unexpected behav-
iors that stem from interaction between the components
of an application and their environment. In some con-
texts, they can be beneficial, but they can also be harm-
ful if they undermine important operational and safety
requirements [100].

A novel goal in any system is to strive toward engineering
proven self-organisation and emergent behaviour. However,
this is an area still in its infancy, and perhaps disputed
[98], [99], whereby the dichotomy between the following
two approaches does not help: i) On the complex systems
side one ‘lets’ systems be and ultimately ‘hopes’ to display
adaptation, self-organization and emergence — for example
no one designed the internet or the transportation network;
ii) But on the control engineering side the complex systems

approach is an omen, as an engineer would question how
one can let the system be, without any designed and proven
properties in terms of stability, convergence, optimality and
consistency of operation? Their primary difference stems
from the fact that systems designed through classical control
engineering processes are expected to perform foreseeable
tasks in a bounded environment, whereas complex systems,
either natural (living organisms, insect colonies, ecosystems)
or large-scale man-made (communication networks, trans-
portation networks, cities, societies, markets, multinational
corporations) are expected to function in complex, open
environments with unforeseeable contingencies, and thus
require high adaptability so systems can evolve novel con-
figurations emerging from organising their components in
new ways. Whatever the case, adopting the emergent and
self-organisation engineering paradigm in 6G can open per-
spectives on how strategies that mimic adaptation of highly
evolved systems can be developed with simple rules/agents,
leading to fundamentally and continually adapting and evolv-
ing networks.

However, as inmany otherman-made systems, engineering
these properties at the outset is not realistic. In the real
world, 6G networks are being designed and build in a linear
evolutionary manner, with multiple decision points and ideas
‘evolving’ before an operational design ‘emerges’, driven
by the many actors involved, such as the standards bodies,
telecom equipment manufacturers, telecom operators, etc.
Even so, there are still opportunities one can seek in aspects
of 5G/6G to engineer self-organisation and emergent proper-
ties at design time, e.g. by incorporating specific features with
positive and negative feedback, that will be useful for engi-
neering the local interactions [98], [101]. Ultimately, with
‘proven’ self-organisation and emergent properties, whenever
there are environmental changes the network can sponta-
neously and without external control evolve and re-organise,
and hence strive toward predictable control and performance.
It is worth noting that self-organization in networks has
been identified by the 3rd Generation Partnership Project
(3GPP) as one of the key concepts to reduce the operating
cost associated with the management of a large number of
nodes, albeit in a less ambitious form from what is described
above [102].

C. MODELING PATTERN FORMATION IN
COMPLEX NETWORKS
Complex systems consist of multiple elements which are
arbitrarily interconnected and interact with each other as well
as with their environment in unpredictable and unplanned
ways. From this mass of interactions patterns emerge as a
result of negative and positive non-linear feedback mecha-
nisms acting at different spatiotemporal scales. Even though
the interactions may be simple, the behavior of the whole
system can be quite complex. Similarly, a network consists
of nodes which are interconnected through arbitrary links
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FIGURE 11. 6G cell architecture [103].

FIGURE 12. 6G cell less architecture [104].

and interact with each other in unpredictable and unplanned
ways, using rules imposed by various protocols. From this
point of view, complex systems seem to provide a theo-
retical framework for the study of the robustness and sta-
bility in real communication networks under perturbations,
based on self-organized and decentralized operation. The
way the patterns are formed and evolve within a com-
plex environment can be investigated and the inherent com-
plex mechanisms that provoke this behavior will provide
the basis on which robust networking approaches can be
developed.

The study and the modeling of pattern formations in
existing communication networks should involve some basic
steps. Initially, the identification of sub-units and interactions
involved in a collective process can be carried out through
observations and experiments in the complex system’s envi-
ronment. Then, a hypothesis formation (simulation and/or
modeling) should be developed and its correctness based on

its capability to cope with system’s perturbations should be
carefully tested. In other words, by changing the rules or
parameters of the system in a controlled manner, it should be
determined whether the outcome matches that was predicted
by the hypothesis (simulation/model).

VII. WAY FOR COMPLEX NETWORK ANALYSIS
OF 5G/6G NETWORKS
Based on the analysis above and bearing in mind the future
of 6G as presented in several research works so far, it is
far from obvious how the complex analysis of the 6G net-
works will depend on the network architecture or archi-
tectures that will prevail. Two prominent architectures are
the cellular architecture (Fig. 11) that already exists in
mobile communication networks or the cell- less architecture
(Fig. 12) that is being promoted as a new concept in 6G
networks.
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For the first case (cellular architecture), as in the topology
suggested in Fig. 11, a Power Law characterization would be
more suitable to describe the network. In this case central cel-
lular antennas and the mini-cell antennas can be considered
as high-degree nodes which are disproportionately attractive
(large degree), acting as hubs. These nodes are robust to
random node failures, but extremely fragile to the failure of a
hub which essentially disconnects the network. In the second
case (cell- less architecture), as in the topology of Fig. 12
which implies that all nodes are equivalent in terms of degree
(networks with Poissonian degree distributions) the network
is not robust to random failures, however it is not vulnerable
to targeted attacks on the hubs (as there are no hubs in them).
Thus, besides information dissemination (e.g., hubs reaching
a large portion of the network) degree distribution is also very
important for the percolation/connectivity properties of the
network.

Another important parameter that needs to be considered
in 6G networks, is the average distance or diameter. 6G
topologies are expected to have ‘‘small-world’’ properties as
the connections are not deterministic/ordered, as for example
in a chain or a grid where ‘‘small- world’’ properties are not
expected. In random networks (Poissonian/Erdos-Renyi) the
diameter (longest shortest path) is proportional to lnN where
N is the size of the network. This small ‘‘worldness’’ is due
to randomness in the connections that create shortcuts in the
network. Power- law (or scale-free) networks are also small-
world networks if the power law exponent is γ > 3 and ultra-
small worlds [diameter growing as ln(lnN )] if the power-law
exponent is 2 < γ < 3. Clearly, small-worldness is important
for efficient navigation/routing [105].

Moreover, clustering, or triangles in the network, i.e., the
probability that two neighbors of a random node are them-
selves connected is an important feature that is expected to
appear in 6G networks. In 6G networks nodes (e.g. Device-
to-Device and UE-Based Virtual Base Stations [68]) are
expected to be deployed on a wide geographic space and
communicate if they are within transmission range to facil-
itate BS offloading. Strong clustering is also important for
information propagation as it provides path diversity in the
network, e.g., if some links go off/fail bypasses can be found.
On a tree topology for example (has zero clustering) there
are no bypasses and as a result if a link fails the topology gets
disconnected.

Blockchain technology is also envisioned to play a central
role in the management of the massive data that are expected
to be created and handled in 6G communication networks.
The authors in [106] show that the Ethereum network, being
a platform used for human interactions, can also be described
and modeled using a network theory approach. According to
their work, the degree distribution of this type of networks,
often displays a power law distribution. This phenomenon can
also be observed when constructing a network that represents
Ethereum transactions between wallets. In this case each
wallet is a vertex and a transaction between two wallets is

an edge. Adopting a similar concept, the authors in [107]
propose a random graph model for performance modeling
and analysis of the inventory-based protocol for block dis-
semination. The proposed model addresses the impact of key
blockchain parameters on the overall Bitcoin performance.
The overlay Bitcoin network is modeled using an Erdos-
Renyi model to generate connected random graphs.

Programmable Wireless Environments enabled by Hyper-
Surfaces and Intelligent Surfaces [30], [32] are also expected
to play a central role in the unpredictable wireless envi-
ronment [16], especially at combating the distance prob-
lem [108]. ProgrammableWireless Environments result from
the mass deployment of HyperSurface units within a space,
enabling (i) complete, software-defined control over the wire-
less propagation phenomenon within HyperSurface-coated
environments, and ( ii) the interplay with existing soft-
ware services and networking equipment. Pivotal studies has
shown that these traits can yield impressive gains in wirelesss
communication efficiency, interference mitigation, physical-
layer security and wireless power transfer [16]. Recently real
time dynamic control of HSFs was proposed [109], which is
especially appealing for moving networks.

Further to the above, due to the diversity of nodes/connec-
tions that are expected in 6G networks, modern temporal
network theory [110] could be a useful tool for modeling
them. In this theory attributes beyond simple nodes and
links as in classical graph theory, are included. Introducing
information about times of interactions can make predictions
and mechanistic understanding more accurate.

Further, as indicated in Section V, user and interme-
diary node mobility and miniaturization have been piv-
otal in driving a paradigm shift in the Internet towards
a flat, software first implementation, promoting adaptiv-
ity and re-configurability, rendering it dynamic in nature.
This dynamic nature paves the way for the adoption and
development of alternative mathematical tools [69], [76],
for the analysis of complex systems deviating from tra-
ditional approaches. In particular, the fields of Temporal
Networks (graphs) [72], [73], Dynamic Network Analy-
sis [74] and Evolutionary Graph Theory [75] which have
appeared in different contexts are highly relevant to the cur-
rent ‘‘dynamic’’ Internet. Temporal Networks can be crudely
considered as time varying networks where the graph links
appear and disappear at specific time instants generating a
sequence of graph representations over the same set of nodes.
This time variance generates important properties relative
to static graphs nicely reviewed in [73]. In addition, Evo-
lutionary Graph Theory aims at exploring how the underly-
ing topology affects the evolution of population in a setting
where individuals occupy vertices and edges characterized
by weights which represent reproductive rates. The afore-
mentioned tools are coupled to the dynamic nature of the
network. This dynamic nature stems from node mobility
which often necessitates the need for re-configurability and
adaptivity. Re-configurability is harnessed by novel enabling
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technologies expected to be pivotal in future 6G design at
different layers as for example software defined network-
ing at the network layer and phased antenna arrays and
meta-surfaces at the physical layer. The prospect of exerting
programmatic control over all aspects of impinging electro-
magnetic waves on a metasurfaces, as recently realized in
[29], [111], paves the way for real time configuration of the
physical layer properties, redefining even the fundamental
communications laws, realizing extraordinary applications
such as Programmable Wireless Environments [16]. More-
over, these tools may prove to be handy in analysing 6G
challenges pertinent to information flow. Advanced hardware
capabilities, have led to radical advances in computational
intelligence with extraordinary applications in critical infras-
tructures such as the smart grid and intelligent transportation.
These, have in turn increased the security threats in both
their intensity, impact and significance, something which is
expected to be even more vivid in 6G deployments. Graph
theoretic tools and networks theory have been used exten-
sively in theoretical biology to investigate the spread of dis-
eases in networks [112], [113] and can thus be used to analyse
and combat cyberattacks which to some extent show similar
behaviour [114]. Moreover, they may prove a useful tool
in analysing information flow for machine learning/artificial
intelligence applications within the network, characterizing
their effectiveness. Network monitoring, in many cases feed-
ing machine learning techniques have been realized by tech-
nologies such as Deep Packet Inspection, and due to the
dynamic resource allocation and orchestration often facil-
itated by SDNs/NFVs, dynamic information flow charac-
terization is crucial in determining the effectiveness of the
proposed methods.

It is a fact, that the issue of complexity is also critical in
future 6G Networks and a major issue is to facilitate complex
systems methodologies to harness the difficulties associated
with the underlying complexity. Towards this end, recent
work [115] has indicated the potential of machine learning
and artificial intelligence methods to be used for prediction
purposes thus harnessing the often chaotic system behaviour
from a dynamical systems perspective. In addition, the idea
of system degeneracy, with reference to structurally different
functional topologies having functionally identical properties
has been exploited in [42], [116] to enhance distributed com-
putation. The latter reveals how structure arising in complex
systems at different scales can be exploited for resource
optimization thus paving the way for similar explorations in
different contexts and applications.

The above discussion illustrates that the adoption of com-
plex theory is essential in the design and modeling of the
new mobile networks and especially in the heterogeneous
5G/6G mobile communication networks, and this should
be done from the outset. An exemplary approach appears
in [42], [117], where the communication network itself is
treated as a complex system. The focus of their study is
the organizational structure of communication networks that

affects the execution of network functions by studying their
complexity, degeneracy and the principles of emergence.
Within this framework they introduce the functional com-
plexity metric and show that it has high correlation with
network metrics, thus enabling the design of network aspects
related to those metrics before the network is operational.
A factor which can hinder the adoption of complex sys-
tems theory by the communication networking world is the
plethora of proposed complexity metrics is an area where
confusion often arises. Being a multidisciplinary field with
often separate developments, a large number of metrics
were defined by researchers from their own perspective
to characterize complexity. Indicatively, Loyd [118] in his
2001 article ‘Measures of Complexity: A Nonexhaustive
List’, lists over 40 metrics, including centrality (betweeness
centrality, eigenvector centrality, etc..), node degree, aver-
age path length, emergence, degeneracy, clustering coeffi-
cient, functional complexity, excess entropy, neural com-
plexity, and matching complexity, which he classifies into
3 broad categorizations. However, beyond a mere classifi-
cation, we argue that for communication networks we need
to define and more tightly link the complexity metrics with
commonly adopted communication networking metrics, thus
opening up the complex systems theory to the wider 5G/6G
researchers.

As a final remark, new network designs as for example
the 5G/6G and the Internet of Things (IoT), should adopt
the principles of complex networks from the outset. A con-
certed socialisation effort is required to convince all actors
of the utility of this approach, and this is where the various
research funding and standards bodies can take a leading
role.

VIII. CONCLUSIONS
In this paper we present basic concepts and properties exhib-
ited in complex adaptive systems and discuss the most impor-
tant network modeling paradigms that emerged over the last
few years. Furthermore, we present communication networks
from the perspective of complex systems. Previous research
efforts by Erdos and Renyi, Watts and Strogatz, Barabasi and
Albert, Carlson and Doyle as well as more recent works like
those of Dmitri Krioukov, Fragkiskos Papadopoulos et al,
popularized the idea that networks form randomly into a
direction of organization and hidden order. The characteris-
tics of random networks, small-world networks and scale-
free networks can be observed in many levels of different
disciplines. This dictate an imperative need to develop a new
theoretical framework to help explain the complex and unpre-
dictable behaviors of communication networks and design
alternative network protocols which are provably effective
and robust. Such a framework can serve as a starting point
to develop a unified theory for complex systems, useful in
explaining how the interaction between the individual com-
ponents of such systems allows the emergence of a global
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behavior that would not be anticipated from the behavior
of components in isolation. Modeling of complex commu-
nication networks like 5G or 6G can benefit from complex
analysis including modern approaches on the subject like
the works presented in [77] and [117] on the Hyberbolic
Geometry of Complex Networks, as well as the modern
temporal network theory [69], [110]. We are also confi-
dent that the complexity, the diversity and the heterogene-
ity of 6G Wireless Communication Networks will lead in
the researching of revolutionary theories in order to accu-
rately model them. As a final concluding remark, we urge
the complex theory and networking communities to come
together and collaborate toward the evolution of the new and
continuously challenging networks of 5G and beyond. It is
clear from the above discussion that a concerted socialisa-
tion effort is required to convince all actors of the utility
of this approach, and furthermore, this is an area where the
various research funding and standards bodies can take a
leading role.
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