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ABSTRACT In a mobile blockchain network, manymobile devices have insufficient computational capacity
to execute computation-intensive tasks locally. To tackle this problem, blockchain tasks can be offloaded
to edge servers with the aid of auction. However, most auction mechanisms on mobile blockchain ignore
the automatic parallel execution and long-term performance. This paper aims to solve the problem of
computation offloading in a mobile blockchain network. We transform this problem into a multi-choice
multi-dimensional knapsack problem which is NP-hard. To improve the total utility of auction participants,
this paper proposes a smart-contract-based double auction mechanism, named long-term auction for mobile
blockchain (LAMB). The subtasks can be offloaded from one mobile device to heterogeneous edge servers.
Also, LAMB satisfies the economic properties of an auction mechanism. Experimental results demonstrate
that, the utility and utilization ratio can be achieved by 130.55% higher and 138.64% higher, respectively,
in comparison to the existing auction algorithm WBD. Furthermore, the proposed LAMB can guarantee
long-term performance for task offloading, and it can achieve automatic execution in an autonomous and
secure environment.

INDEX TERMS Mobile blockchain, smart contract, edge computing, offloading, resource allocation.

I. INTRODUCTION
The global mobile commerce market continues to grow
rapidly in recent years. It is estimated that the annual growth
rate will be 27% by 2020 [1]. In order to guarantee the
reliable and consistent performance of mobile commerce
transactions, some trusted centralized authorities are needed
to provide computational resources. However, it leads to
some issues including a single point of failure and additional
fees. In 2008, a new p2p electronic payment system named
Bitcoin was developed, which is the successful application of
blockchain technologies. It can be widely used to solve the
issues of the solution for centralization and double-spending
[2]. As an underlying technology of Bitcoin, blockchain is an
open, decentralized and tamper-proof ledger that can effec-
tively save transactions among participants in a verifiable
manner [3], [4]. Blockchain can facilitate authentication and
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authorization without dependence on a trusted third party [5].
It has been widely used in various mobile devices, such as
vehicles, smartphones, and Internet of Things (IoT) devices.

To achieve the consistency and correctness of transactions
among different peer nodes, the consensus mechanism is
implemented in blockchain [6]. The pivotal model of the con-
sensus mechanism proposed by Nakamoto is a computation-
intensive protocol named Proof-of-Work (PoW) [7].
A blockchain user or miner needs to solve a pre-set PoW
puzzle to add new blocks to the blockchain. The process of
solving PoW puzzles is defined as mining [8]. It requires
miners to generate a value that is less than a dynamic thresh-
old by a hash function. The steps of a typical PoW process
are summarized as follows. The consensus node uses an
input-attribution function to validate a subset of unidentified
transactions and merge them into new blocks. All the nodes
calculate the PoW solution for the cipher puzzle constructed
by the value of the new block. After the puzzle solution is
acquired, a new block is broadcasted over the whole network.
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Once the new block is successfully verified by most nodes
in blockchain, it would be linked to the previous block [9].
Several designs provide rewards tominers, who find the block
successfully, to maintain the effectiveness of the proof-of-x
type consensus mechanism [2], [8]. However, it is difficult to
obtain the puzzle solution, because the solution requires high
computational capacities and energy. It brings storage burden
to miners when the application data are large [10]. As a result,
mobile devices or other resource-limited IoT devices cannot
participate in the mining locally. Additionally, it is also diffi-
cult for these devices to handle other computation-intensive
data processing tasks, especially the tasks of blockchain-
based applications for IoT [11].

In order to facilitate blockchain applications in a mobile
environment, multi-access edge computing (MEC) is con-
sidered as a promising solution for mobile blockchain
applications. It provides the computing capabilities for
mobile devices using edge servers [12]. Hence, in a mobile
blockchain network with edge computing, the mining tasks
and other computation-intensive tasks can be offloaded to
the edge servers. They are close to mobile devices with edge
computing or multi-access edge computing [13]. The more
miners involved, the better the robustness of the network
[14]. To encourage more miners to join the mining process,
some incentive mechanisms are devised in edge comput-
ing enabled mobile blockchain network. A resource assign-
ment mechanism based on an auction was presented in [15].
Their model considered allocative externalities due to the
competition among miners. Their model can maximize the
social welfare of the resource provider with edge computing.
In order to supervise the trading market, a broker with sparse
information was introduced in the existing work. The authors
presented a trading protocol using the double auction scheme
for incentive, to optimize the computing resources. Their
algorithm also maximized social welfare while the privacies
of the buyers/sellers were considered [16]. To stimulate the
edge servers to share their resources for the applications in a
mobile blockchain network, scholars devised a group-buying
mechanism and proposed a three-stage auction to achieve
resource assignment for mobile blockchain [17]. Double auc-
tion mechanisms were also proposed in previous works to
maximize social welfare for the resource assignment in a
mobile blockchain network with edge computing. [18]–[20].

In the aforementioned works, they focus on the auction
incentive mechanism to optimize maximum social welfare
for buyers/sellers while achieving the computation offload-
ing. However, the long-term performance is ignored, and
their auction mechanism depends on a trusted third plat-
form. This paper investigates the edge computing enabled
mobile blockchain network and design protocols for mobile
devices to execute the mobile blockchain applications using
the resources of edge servers. First of all, we try to solve the
problem of computation offloading for the mobile blockchain
tasks, to improve the total utility of buyers and sellers, and
to guarantee efficiency and long-term performance. Then,
we discuss the automatic execution of the algorithm in an

autonomous environment to eliminate any third auction plat-
form. Finally, we need to ensure the trading between sellers
and buyers to acquire the desired benefits and protect the pri-
vate information, such as the capacity, the computing ability,
and the computing resource states. The major work of this
paper is listed as follows.

• In a mobile blockchain network with edge computing,
a double auction architecture is presented, which is
based on smart contract without any trusted third auction
platform. Moreover, a long-term auction mechanism
with an approximation ratio of 1 + ε is contributed to
encourage edge servers to provide services and facilitate
the execution of computation-intensive tasks on mobile
devices.

• A platform with MEC is presented for computation
offloading in a mobile blockchain network. Three ways
of task offloading are implemented to execute appli-
cations. This platform can guarantee the computation
efficiency and can maximize the total utility of buyers
and sellers.

• We theoretically prove that the proposed double auction
algorithm can satisfy computation efficiency, individ-
ual rationality, budget balance, and truthfulness. Exper-
imental results demonstrate that LAMB can achieve
130.55% higher utility and 138.64% higher utilization
ratio, compared with the existing heterogeneous task
auction algorithm WBD. Besides, the proposed LAMB
guarantees the long-term performance of the double
auction.

The remaining structure of this paper is as follows.
Section II describes related work. Section III outlines the
system architecture, model and problem formulation. Fur-
thermore, it also describes the design of smart contracts.
Section IV describes the incentive mechanism. Section V
shows the simulation and real-world experiments with com-
putation offloading platforms. Section VI concludes our
work.

II. RELATED WORK
A. COMPUTATION OFFLOADING
Some computation offloading works have been presented to
facilitate more edge servers to provide services for mobile
applications. The authors in [21] proposed an incentive
mechanism with a bidding scheme and a resource alloca-
tion scheme to solve the mixed integer programming. By
means of a group-buying mechanism, the authors in [22]
presented a three-stage auction tomaximize the social welfare
of the whole platform. In their work, cloudlet deployment
and resource assignments were combined. The Lyapunov
optimization technique was adopted in the online incen-
tive mechanism to obtain minimum provisioning costs of
users [23]. The authors in [24] presented a framework map-
ping and translating ARM vector intrinsics to ×86 vector
intrinsics. With the help of this framework, any applica-
tions with ARM architecture can be executed directly on
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the ×86 architecture. This framework reduces the execution
time of compiled code offloading. In order to satisfy the
heterogeneous requirements of users in MEC, the authors
in [25] presented a combinational auction mechanism. And
the authors in [26] presented a two-stage auction mechanism
to obtain maximum total utility of the system. Nevertheless,
tasks at one mobile device cannot be divided into subtasks
in [22], [23], [25], to expedite the execution via offloading.
In order to improve energy efficiency of smartphones, a col-
laborative mobile data offloading scheme was presented on
the basis of WiFi [27]. Various offloading mechanisms were
presented to boost task offloading efficiency in [28]–[31].
However, their successful deployment in practice depends on
whether all buyers and sellers are willing to execute their
algorithms in a cooperative way or not, which ignores the
selfishness nature of buyers and sellers. Regardless of the
total utility, buyers are often willing to obtain the better
resources with minimum cost, while sellers are often willing
to choose higher bid for their resources.

B. SMART CONTRACT
As described in [2], at the cryptocurrency level, the currency
systems of the companies should be guaranteed to be running
autonomously without any interventions in the whole trading
process. The smart contract can meet this requirement. Once
a smart contract is deployed, it can work automatically and
autonomously [32].

Firstly developed by Nick Szabo [33], the smart con-
tract is one of the critical components in blockchain. It is
a collection of executable codes that runs on the dis-
tributed ledger technology platform, driven by the event and
state [34], [35]. Ethereum is one of the most widespread
decentralized platforms that support smart contracts success-
fully [36]. Fig. 1 shows the framework of smart contract
in Ethereum. Ethereum Virtual Machine (EVM) provides
an anonymous and a secure running environment for smart
contracts [37].

Nowadays, many applications of smart contracts have
been presented. Mccorry et al. [38] used a smart contract
to construct a decentralized voting protocol without reliance
on any trusted parties for the tally calculation and privacy
protection. In [39], the authors presented a fair undeniable
service provisioning scheme for Industrial Internet of Things
(IIoT) scenarios where the blockchain is utilized as a ser-
vice publisher and an evidence recorder. Smart contracts are
used to solve disputes. In [38], a decentralized and self-
adjustment voting network was established. Smart contracts
were used to store voting rules and other data. The privacy
of all voters can be controlled so that the fairness of voting
was guaranteed. In particular, for auction, many authors have
studied smart contracts. Wu et al. [40] proposed a new smart
auction contract named CReam on the Ethereum blockchain.
CReam replaces the centralized auctioneer, and rational buy-
ers and sellers operate properly and safely without trusted
third authorities. However, the process of auction and trans-
action written in smart contracts gives rise to more fees.

FIGURE 1. Framework of the Ethereum smart contract.

Wang et al. [34] proposed a negotiation for adaptive
Qos-aware service composition based on smart contracts.
Smart contracts can guarantee that the transactions are per-
formed reliably and automatically. Additionally, smart con-
tracts can identify troubled service providers.

Based on the smart contract, the authors of [41] introduced
an auction mechanism implementing a Vickrey second price
auction for energy transactions in Ethereum. However, there
was only one winner among bidders, and bidder collusion
may exist. The rules of smart contracts can be executed
automatically so that it can reduce disputes. Therefore, it is
an important part of the blockchain network. To my knowl-
edge, this paper is the first work to combine the incentive
mechanism with the smart contract to achieve decentralized
long-term double auction for the computation offloading in an
edge computing enabled mobile blockchain network, without
reliance on a trusted third party.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. AUCTION ARCHITECTURE BASED ON SMART
CONTRACT
The purpose of this paper is to offload the multiple tasks
of mobile devices to multiple edge servers by the double
auction mechanism based on a smart contract without any
trusted third auction platform. Fig. 2 shows the proposed
architecture where sellers and buyers can transact with the
help of a trusted Ethereum smart contract. Following the
agreed rules between sellers and buyers, the smart contract
can achieve the automatic execution and guarantee the reli-
ability of transactions. The proposed mechanism is distinct
from a traditional e-auction system, composing of seller,
buyer and third-platform.

In the proposed architecture, there are three key entities,
i.e., mobile device, edge server, and smart contract. Mobile
devices and edge servers run Ethereum blockchain, and they
communicate with each other through the base station. The
base station does not run the blockchain application. Proof-
of-Stake (PoS) is used as a consensus mechanism.

The entities are detailed as follows.
• Edge Server: The edge server is the seller in our pro-
posed double auction mechanism. It writes its resource
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information and price information into the smart con-
tract and receives the matching result from the auction-
eer. Besides, it receives a reward from the buyer after
completing the buyer’s computation tasks.

• Mobile Device: The mobile device is the buyer in our
proposed double auction mechanism. It writes its task
information and price information into the smart con-
tract and verifies the smart contract. Besides, it sends
the tasks to the seller and pays for a reward to the seller
after the tasks are finished.

• Smart Contract: The smart contract is the auctioneer
in our proposed double auction mechanism. The smart
contract accepts and stores action data from sellers and
buyers. It runs algorithm LAMB and returns matching
results to sellers and buyers.

All programmable computation in Ethereum needs fees,
whose fundamental unit is gas [42]. Gas is consumed during
the process that smart contracts are deployed and executed.
To some extent, the amount of gas consumed by the processes
of smart contracts represents the complexity of the process
of the smart contract. The more complex the process of
smart contract, the higher the value of gas consumption is
[35]. Hence, for the process of smart contracts, the simpler
the better. The proposed algorithm LAMB is computational
efficiency and it runs in polynomial time that will be proved
in the following section.

In the proposed system, a new contract is created on the
blockchain in each time period. After the smart contract
is created, sellers and buyers can join in the auction. The
smart contract can accept and store action data from both of
them, and the smart contract will run LAMB automatically.
According to the optimal matching results, the transactions
between sellers and buyers are initiated, sellers will provide
computing resources for buyers, and then the buyers will
provide resource coins (such as ether [42]) for sellers.

B. SYSTEM MODEL
Users with unexecuted mining tasks play the part of buy-
ers, and edge servers plays the part of sellers. The smart
contract play the part of an auctioneer. The whole assign-
ment time T is divided into multiple time slots (i.e., mul-
tiple rounds). Auction is performed in each round. There
are N buyers in the mobile blockchain network, denoted as
Y = {y1, y2, · · · , yN}. The i-th buyer yi requires resources
to implement its computational tasks. Each task can be
divided into K independent and heterogeneous subtasks, i.e.,
yi = {yi1 , yi2 , · · · , yiK }. The subtasks of one buyer can
be executed by different servers. According to the report of
Google data centers [43], the arrival intervals among tasks
distribute exponentially. Therefore, our assumption is that the
arrival process of subtasks follows a Poisson distribution in
each round [44]. We divide the arrival process into3 periods.
In a period of time λ ∈ 3, the number of resource requests
from the i-th buyer is denoted by l(t)iλ , where t is the round
number. There are M sellers in the mobile blockchain net-

work, denoted by S = {s1, s2, · · · , sM}. Let o(t)j indicate the
number of computing resources that the j-th seller sj owned
in the round t . The bid of the j-th seller sj ∈ S includes o(t)j .
During each round, for the seller sj, the unit price of its
resources is denoted by p(t)j , its workload is denoted by w(t)

j ,

the computation efficiency is denoted by c(t)j , and the data

transmission efficiency is denoted by e(t)j [45]. When the
applications of buyer need to be offloaded, the buyer will bid
to the auctioneer. During each round, for yi, let r

(t)
ik indicate

the resource demands of the k-th subtask, and v(t)ij indicate
the valuation of the buyer yi ∈ Y for the seller sj ∈ S.
Moreover, because each buyer is constrained by its budget,
we utilize Bi to represent the buyer yi’s total budget in all
rounds. Meanwhile, the auctioneer gets the bids from sellers.
Then, the auctioneer allocates resources.

C. PROBLEM FORMULATION
In a mobile blockchain network, edge computing devices are
closer to the mobile devices in a distributed geographical
location. These mobile devices can obtain different qualities
of services provided by the different edge servers. Besides,
in light of sensing capability, CPU, memory, bandwidth,
each buyer will make different valuations for different sellers
according to their preferences for different computation capa-
bility in one round. The valuation is calculated as follows.

v(t)ij = a(t)i + k̂1
e(t)j

r (t)i
+ k̂2

c(t)j

w(t)
j

(1)

where a(t)i is the valuation of yi’s task in round t , ∀t ∈ T ,
i = 1, 2, · · · ,N , j = 1, 2, · · · ,M , and k̂1, k̂2 are two constant
coefficients. Let X (t) represent an M × N assignment matrix
in each round. The meaning of x(t)ij is as follows.

x(t)ij =

{
1, if s(t)j serves for y(t)i in the round t ,

0, otherwise.
(2)

Definition 1: The utility of a buyer refers to the valuation
minus the payment. The payment includes the demanding
resource fee of the buyer, and the gas fee for the smart
contract.

The final unit trading price of round t is denoted by f (t)ij ,
which is the unit price to pay for the obtained resources asked
by sellers. When the buyer wins the auction, the utility u(b)i of
the buyer yi can be calculated as follows.

u(b)i =
T∑
t=1

M∑
j=1

K∑
k=1

x(t)ij (v
(t)
ij − r

(t)
ik f

(t)
ij )− k̂3θi (3)

where θi represents the gas fee of yi, i = 1, 2, · · · ,N , and
k̂3 is a constant coefficient. Therefore, the objective for the
i-th buyer is to maximize its total utility in order to provide
an incentive. The objective function is formalized as

F1 = max
N∑
i=1

u(b)i (4)
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FIGURE 2. Double auction architecture based on smart contract in edge computing enabled mobile blockchain network.

Definition 2: The utility of a seller refers to the payoff
minus the cost. The cost includes the providing resource fee
of the seller, and gas fee for the smart contract.

And the utility u(s)j that the seller sj ∈ S gains by selling its
computing resources can be given as

u(s)j =
T∑
t=1

N∑
i=1

3∑
λ=1

x(t)ij l
(t)
iλ (f

(t)
ij − p

(t)
j )− k̂3θj (5)

where θj represents the gas fee of sj and k̂3 is a constant
coefficient, j = 1, 2, · · · ,M . Thus, the seller’s objective is
to maximize its utility,

F2 = max
M∑
j=1

u(s)j (6)

It is apparent that the above bi-objective problems can be
transformed into a single objective problem as follows.

max αF1 + βF2 (7)

where α + β = 1, α is the weight of the buyer’s utility, β is
the weight of the seller’s utility. The solution is the supported
solution under this weight trade-off. If the buyer’s utility is
of higher concern, we can set α > β, where α > 0.5.
In a similar way, if we attach more importance to the seller’s
utility, we can set β > 0.5. When the two objectives are
of equal importance, α = β = 0.5. In this paper, we set
α = β = 0.5.

During the process of assignment, the buyers can obtain
the resources from the sellers. But because the resources are
limited, the number of used resources cannot surpass the
number of resources that are provided by sellers. Thus, we can

obtain the constraint as follows,
T∑
t=1

N∑
i=1

K∑
k=1

x(t)ij r
(t)
ik <

T∑
t=1

o(t)j (8)

According to (3), we can know that the final payment to the
seller cannot exceed the valuation that the buyer is willing to
pay. Thus, we can obtain the constraint as follows,

T∑
t=1

M∑
j=1

3∑
λ=1

x(t)ij l
(t)
iλ fij

(t) <

T∑
t=1

M∑
j=1

x(t)ij v
(t)
ij (9)

And the valuation of a buyer cannot surpass its budget Bi
in T . Thus, we can obtain the constraint as follows,

T∑
t=1

M∑
j=1

x(t)ij v
(t)
ij ≤ Bi (10)

for i = 1, 2, · · · ,N .
Theorem 1: The proposed problem described by (1)-(10) is

NP-hard.
Proof 1: It is well known that the multiple-choice multi-

dimensional knapsack problem has been already proved to be
NP-hard [46]. The objective of this paper is to maximize the∑N

i=1 vixi. The capacity of the knapsack problem corresponds
to the resources that each seller owned in each round. The
weight of items in the knapsack problem corresponds to the
buyer’s requests. Thus, the problem defined by (1)-(10) cor-
responds to a multiple-choice multi-dimensional knapsack
problem. This concludes the theorem.

D. ECONOMIC PROPERTIES
An incentive mechanism is needed to solve the alloca-
tion problem as described in subsection C . Meanwhile, the
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mechanism should satisfy the economic properties, such as
truthfulness, individual rationality, budget balance, and com-
putational efficiency [25], [47].

• Truthfulness: If an auction is regarded as a truthful trans-
action, the utility of all participants will be maximum for
the truthful valuation of the bidder. No buyer yi or seller
sj could increase his own utility by bidding untruthfully.
In other words, for yi ∈ Y , the true valuation equals
to the cost that is required by executing the application
itself. And the bidder cannot improve its utility by giving
its untruthful valuation.

• Individual rationality: The utility of each winning
buyer/seller is non-negative. Each winning buyer pays
less than his bid and each winning seller obtains more
than his ask. i.e.,

u(b)i > 0 and u(s)j > 0, for ∀yi ∈ Y and ∀sj ∈ S

For the entire incentivemechanism, this is themost basic
condition for each participant.

• Budget balance: The final fees that buyers paid are
greater than or equal to the total charge of sellers. There-
fore, the remaining participants need not pay additional
surplus and they can guarantee their non-negative utility.

• Computational efficiency: The algorithm terminates in
polynomial-time.

E. SMART CONTRACT
Smart contracts are mutually agreed upon the prespecified
rules to execute conditions such as ‘IF-THEN’ mechanism.
They can be regarded as cryptographic autonomous boxes
that are unlocked only when pre-defined conditions are sat-
isfied. Smart contracts are capable of processing data, oper-
ating transactions and managing smart assets [48]. Here,
in order to deploy and utilize a smart contract on the
blockchain, we can write it by many high-level languages.
Mainly three languages (e.g. Solidity, Serpent and LLL) are
employed to write smart contracts in Ethereum. Solidity is
considered the most popular and stable one [40]. The smart
contract code in memory is held by contract accounts which
store instructions, and the contract accounts are activated by
external accounts or other contract accounts [49].

In an agreement, the contract executes when the
time or event is triggered [50]. As shown in Fig. 2, the key
events on the blockchain in each time period are given below.

• A new contract is deployed on the blockchain.
• All participants pay the deposits.
• Sellers and buyers submit prices to the auctioneer.
• The auctioneer executes LAMB to determine the opti-
mal matching for sellers and buyers.

• The transaction is initiated. Sellers provides computing
resource for buyers.

• After tasks are finished, buyers reward sellers with
resource fees.

• All participants can withdraw the deposits.

FIGURE 3. Process of a double auction based on smart contract.

In the proposed scheme, the prices from sellers or buyers
are sealed. In other words, each one cannot view the prices of
others until the prices are revealed. Additionally, due to the
security of blockchain, all the trading data are stored on the
blockchain. Fig. 3 shows the process of a double auction on
the basis of the smart contract. Fig. 4 shows the overview of
the functions of the proposed double auction smart contract.
The main functions of the entire trading process include
Init , Create, CommitBid , RevealBid ,Matching, Transaction,
Withdraw.

• Init: The function Init defines some variables used in a
new smart contract and sets the initial value. wl denotes
the seller’s workload. f denotes the final unit clearing
price. bBids denotes the list of bids from a buyer. sBids
denotes the list of bides from a seller. bBidders denotes
the list of buyers. sBidders denotes the list of sellers.
When the time point tbeginAuction comes, sellers and buy-
ers can start to commit their bids. tfinishCommit indicates
the deadline for sellers and buyers to commit their sealed
bids. tfinishReveal indicates the deadline for sellers and
buyers to reveal their sealed bids. tbeginTrans is the time
that sellers begin to provide services for the buyers.
tfinishTask indicates the moment the seller has finished
the buyer’s task. tfinishTrans is the time that sellers have
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FIGURE 4. Double auction smart contract.

completed services for the buyers and the buyers have
completed payment.

• Create: The deployment of a new smart contract on the
blockchain is executed by one of the sellers calling the
function Create. Anyone of the participants can create
a new smart contract. The address of the smart contract
on the blockchain is obtained from this function. The
entities can interact with the address in the future. After
a smart contract is deployed, all the auction participants
can access it. If a seller wants to initialize a new con-
tract, he must call the function Init . Any one of the
sellers or buyers can start a new smart contract. Hence,
in order to prevent a vicious seller or a buyer from
initializing mendacious auctions and then withdrawing
from them, the seller and the buyer are required to pay
s.deposit and b.deposit to the contract and their deposits
will be verified.

• CommitBid: When the tbeginAuction point comes, sellers
and buyers can submit their sealed bids to the smart
contract. At this time, they are not allowed to reveal
their bids. The data on the blockchain is public, any
bidders can observe others’ information. Therefore,
the sealed bids are needed to protect them from being
observed by other sellers or buyers. The commitBid

accepts the tuples < b, hbbid, deposit, nonce >

and < s, hsbid, deposit, nonce >, where hbbid =
H (b.bid, nonce) and hsbid = H (s.bid, nonce),
H denotes a trapdoor function (e.g., a cryptographic
hash function), and nonce denotes a value generated ran-
domly. hsbid and hbbid will be stored on the blockchain
until the tfinishCommit comes. The function CommitBid
also requires that sellers and buyers transfer deposit
to the smart contract to prevent them from submitting
mendacious bids. Sellers and buyers can fully withdraw
their deposits.

• RevealBid: After the point tfinishCommit , all the bidders
including the sellers and the buyers must trigger the
RevealBid to reveal their bids so that the smart contract
can execute thematching operation to allocate resources.
The RevealBid includes the tuple < bid, nonce >

with the same bid and nonce used in CommitBid . The
bids can be verified to guarantee that the revealed
bid equals the value in CommitBid by checking
hsbid == H (s.bid, nonce) and hbbid ==

H (b.bid, nonce). This phase still verifies whether the
deposits are sent to the smart contract or not. The bids
with no deposit will be rejected for the security.

• Matching: After all the bids are revealed, the smart con-
tract will run LAMB to determine the results of resource
allocation and the clearing prices.

• Transaction: After the execution of LAMB, the match-
ing results will be sent to sellers and buyers. The seller
interacts with the corresponding buyer and provides the
resource for the buyer. After the tasks are completed,
the buyer will pay for the resource fees.

• Withdraw: After the transaction is completed (t >

tfinishTrans), sellers and the buyers can withdraw their
deposits. The deposit is designed to improve security.
Hence, the deposits will be returned to the bidders.

IV. INCENTIVE MECHANISM
A. ASSIGNMENT ALGORITHM
During the round t , after subtasks arrive, the auctioneer cal-
culates the unit price of buyers’ resources. The unit price
between yi and sj can be calculated as follows.

p̂(t)ij =
v(t)ij
3∑
λ=1

l(t)iλ

(11)

for i = 1, 2, · · · ,N , j = 1, 2, · · · ,M .
After getting each unit resource price p̂(t)ij , the auctioneer

calculates the difference between the unit price of buyers and
the unit price of sellers, i.e., p̂(t)ij − p

(t)
j . Next, the auctioneer

sorts the list of differences in descending order. Next, the auc-
tioneer matches buyers and sellers according to this list. For
resource allocation, matching starts if the max difference in
the list is positive. In the process of matching, the buyer
yi and the seller sj with max difference matches first. This
match succeeds if the number r (t)ik of resource requests of the
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subtasks yik does not exceed the resource number o(t)j , and

the payment of the buyer does not surpass its valuation v(t)ij .
Otherwise, the buyer yi matches the next seller sj+1 in the list.
At the same time, if the seller sj cannot satisfy the current
buyer yi, it matches the next buyer yi+1 in the list. When total
computing resources are not enough for buyers or all of the
buyers’ requirements are met, the process of matching exits
and the next round auction begins.

When the buyer yi and the seller sj match successfully,
similar to [51], the final unit clearing price fij is calculated
as

f (t)ij =
p̂(t)ij + p

(t)
j

2
(12)

From a McAfee auction [52], the proposed algorithm
LAMB can be described as in Algorithm 1.

Algorithm 1 LAMB: Long-Term Auction for Mobile
Blockchain
Input: The number of rounds T buyers M , sellers N and

subtasks K , the bid of buyers v(t)ij , r
(t)
i and of sellers o(t)j ,

p(t)j , c(t)j ,e(t)j , w(t)
j

Output: The charges for buyers G and the payments to
sellers P

1: for t ← 1 to T do
2: X (t)

N∗M ← ∅;
3: for i← 1 to N do
4: for j← 1 to M do
5: p̂(t)ij ← v(t)ij /

∑3
λ=1 l

(t)
iλ

6: end for;
7: end for;
8: D(t)

← ∅;
9: for i← 1 to N do
10: for j← 1 to M do
11: d (t)ij ← p̂(t)ij − p

(t)
j ;

12: D(t)
← D(t)

∪ d (t)ij
13: end for;
14: end for;
15: Sort d (t)ij in D(t) in descending order;

16: if max(d (t)ij ) < 0 then
17: exit
18: end if;
19: H (t)

← ∅;
20: for ∀d (t)ij ∈ D

(t) do
21: for λ(t)← 1 to 3(t) do
22: if l(t)iλ < o(t)j and H (t)

i + cost (t) < v(t)ij
and Bi > 0 then

23: o(t)j ← o(t)j − r
(t)
ik ;

24: D(t)
i ← D(t)

i ∪ cost
(t);

25: s(t)ik j← r (t)ik ;

26: X (t)
ij ← 1;

27: Bi← Bi − v
(t)
ij

28: end if;
29: end for;

30: end for;
31: end for;
32: P← ∅ ;
33: for sj ∈ S do
34: pj←

∑T
t=1

∑N
j=1

∑3
λ=1 X

(t)
ij l

(t)
iλ f

(t)
ij ;

35: P← P ∪ pj
36: end for;
37: G← ∅
38: for yi ∈ Y do;
39: gi←

∑T
t=1

∑M
i=1

∑K
k=1 X

(t)
ij r

(t)
ik f

(t)
ij ;

40: G← G ∪ gj
41: end for;
42: return P,G

B. THEORETICAL ANALYSIS
Theorem 2: Algorithm LAMB is truthful in the mobile

blockchain network.
Proof 2: For the buyer yi ∈ Y , it can change its bid by

increasing or decreasing its valuation. But the untruthful bid
will result in auction failure or utility decrease, i.e.,

u(b)i > max{0, ũ(b)i } (13)

where ũ(b)i is the utility of the i-th buyer’s untruthful bid,
i = 1, 2, · · · ,N .

For the seller sj ∈ S, it can change its bid by increas-
ing or decreasing its unit price of resources. If the bid is
smaller than the truthful value, according to (11), the payment
for their resources will decrease even lower than the truthful
value. Therefore, the utility u(s)j will decrease. If the bid is
higher than the truthful value, the order of sj ∈ S in the list of
differences will retreat and fail to auction.

u(s)j > max{0, ũ(s)j } (14)

where ũ(s)j is the utility of the j-th seller’s untruthful bid,
j = 1, 2, · · · ,M . Therefore, the algorithm LAMB is truthful.
Theorem 3: Algorithm LAMB is individual rational in the

mobile blockchain network.
Proof 3: For the buyer yi ∈ Y , when the match is

successful, it needs to pay

gi =
T∑
t=1

M∑
j=1

K∑
k=1

X (t)
ij r

(t)
ik f

(t)
ij (15)

The payment for the seller sj ∈ S is

pj =
T∑
t=1

N∑
i=1

3∑
λ=1

Xijl
(t)
iλ f

(t)
ij (16)

As we know, a match can succeed if p̂ij−pj > 0. Hence, from
(11), we obtain

p(t)j ≤ f
(t)
ij ≤ p̂

(t)
ij (17)

We know that

u(s)j =
T∑
t=1

N∑
i=1

3∑
λ=1

x(t)ij l
(t)
iλ (f

(t)
ij − p

(t)
j )
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and

u(b)i =
T∑
t=1

M∑
j=1

K∑
k=1

x(t)ij (v
(t)
ij − r

(t)
ik f

(t)
ij )

where v(t)ij = rik p̂
(t)
ij , i = 1, 2, · · · ,N , j = 1, 2, · · · ,M ,

t = 1, 2, · · · ,T . Then according to (17) we can know that
utility of both buyers and sellers are no-negative.
Theorem 4: Algorithm LAMB is budget balance in the

mobile blockchain network.
Proof 4:When allocation succeeds, we have

K∑
k=1

r (t)ik =
3∑
λ=1

l(t)iλ (18)

for i = 1, 2, · · · ,N .
After substituting (18) into (15) and (16), we obtain

gi = pj, for i = 1, 2, · · · ,N , j = 1, 2, · · · ,M , which
concludes this theorem.
Theorem 5: Algorithm LAMB is computationally efficient

in the mobile blockchain network.
Proof 5: During the process of sorting and the process

of allocation (line 1 to 30), the time complexity is O(NMT ).
Process of calculating the payment and charge (line 31 to
40) runs inO(max{N ,M}). Hence, LAMB is computationally
efficient.
Theorem 6: The approximation ratio of the solution of

LAMB is (1+ ε).
Proof 6: We relax the indicator variable constraint (2)

temporarily, x(t)ij ∈ [0, 1]. According to (3), (5), (8) and (9),
we can obtain the optimal solution of total utility Uopt in
round t as

U (t)
opt =

N∑
i=1

M∑
j=1

(x(t)ij v
(t)
ij −

K∑
k=1

s(t)ik jp
(t)
j ) (19)

where sik j is the number of resources that the k-th subtask of
the i-th buyer yi obtained from the j-th seller sj. In LAMB,
some tasks of buyers cannot be executed by the edge server
due to the resource constraints, and theUopt is the total utility
of both sellers and buyers when all resources of servers are
allocated.

It is noteworthy that the resource requests of buyers and the
total resources that sellers owned in one round should satisfy

M∑
j=1

o(t)j ≤
N∑
i=1

K∑
k=1

r (t)ik (20)

Let 1(t) be the utility. When tasks are assigned success-
fully, 1(t) is

3∑
λ=1

(xij(v
(t)
ij − r

(t)
ik f

(t)
ij )+ l(t)iλ (f

(t)
ij )− p(t)j )) (21)

Let U (t)
opt =

N∑
i=1

M∑
j=1

K∑
k=1

1+ U (t)
rest , where

U (t)
rest =

N∑
i=1

M∑
j=1

K∑
k=1

(s(t)ik j − x
(t)
ij r

(t)
ik )(p̂

(t)
ij − p

(t)
j ) (22)

After substituting (20) and (22) into (19), then

U (t)
opt

=

N∑
i=1

M∑
j=1

K∑
k=1

(1(t)
+ (s(t)ik j − x

(t)
ij r

(t)
ik )(p̂

(t)
ij − p

(t)
j ))

≤

N∑
i=1

M∑
j=1

o(t)j (p̂(t)ij − p
(t)
j )

+

N∑
i=1

M∑
j=1

K∑
k=1

(s(t)ik j − x
(t)
ij r

(t)
ik )(p̂

(t)
ij − p

(t)
j ) ≤ U (t)(1+ ε)

(23)

where ε = (
K∑
k=1

N∑
i=1

(
M∑
j=1

s(t)ik j − x
(t)
ij r

(t)
ik ))/

M∑
j=1

o(t)j .

According to (8) and (9), then

N∑
i=1

K∑
k=1

rik ≤
N∑
i=1

K∑
k=1

M∑
j=1

sik j ≤
M∑
j=1

oj (24)

followed by

K∑
k=1

N∑
i=1

(
M∑
j=1

s(t)ik j − x
(t)
ij r

(t)
ik ) ≤

M∑
j=1

o(t)j (25)

where ε ∈ [0, 1]. Consequently, the approximation ratio of
the solution is (1+ ε).

V. EVALUATION
A. SIMULATION SETUP
Firstly, we assess the performance of our platform. Then,
we conduct the long-term performance of the proposed algo-
rithm.
Definition 3: Utility refers to the sum utility of buyers and

sellers.
Definition 4: Satisfaction ratio r̄s is the amount of offloaded

subtasks n̄p divided by the amount of all subtasks n̄t , i.e.,

r̄s =
n̄p
n̄t

(26)

Definition 5: Utilization ratio r̄u represents allocation effi-
ciency. It is the number of used resources n̄u divided by the
number of all resources n̄a, i.e.,

r̄u =
n̄u
n̄a

(27)

The criterias used in this paper are (1) utility, (2) satisfac-
tion ratio, and (3) utilization ratio. To assess the performance
of LAMB, the following algorithms are employed.
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• WBD: This double auction scheme is presented in [53].
Heterogeneous tasks are offloaded to servers in accor-
dance to different bid densities. The higher the bid
density is, the earlier the bidder will be matched. With
the completion of the matching, the utility is calculated
according to the VCG mechanism [25].

• RAND: This scheme shows that all tasks on a mobile
device are offloaded to servers randomly. For onemobile
device, if the selected server cannot satisfy the task
requests, the task will be executed by itself.

• MATCH: The scheme uses KM algorithm [54], tasks on
mobile devices are offloaded in accordance to the value
of their bids. The higher the value of its bid is, the earlier
the bidder will be matched.

Due to the feature of a single round of the aforementioned
three algorithms, LAMB is also executed for a single round.
In order to verify the long-term performance of LAMB,
LAMB is executed for multi-rounds in comparison to the
multi-round auction algorithm POEM [55]. The experiments
are implemented with Matlab 2018a. All data are the average
results for 100 iterations.

Assume that 900 mining tasks are offloaded to 5 edge
servers [47]. For the computational resources that consist
of CPU memory, battery, etc, their amount is generated
randomly between 0 and 5, and the value of their bids
is generated randomly between 1 and 5.5. For each edge
server, the value of resources is generated randomly between
100 and 1000, and the unit price is selected randomly
between 0 and 1.

B. SIMULATION RESULTS
Fig. 5 shows the performance comparisons in terms of sat-
isfaction ratio for T = 100. The satisfaction ratio decreases
against the increasing number of tasks. With the increasing
number of tasks, only some subtasks can be served due to
limited resources, resulting in a decrease of the satisfaction
ratio. When the number of tasks is small, the satisfaction ratio
of POEM is much higher than that of the other algorithms,
because POEM offloads the subtasks, instead of the whole
task, to tackle the small requests. LAMB outperforms POEM
because of the task disintegration in LAMB, although POEM
outperforms LAMB under the circumstance there is no task
disintegration. Especially, the downward trend is not obvious
for the MATCH, RAND and WBD. The reason is that the
buyer has run out of its budget in the first few rounds. Thus,
the number of winning buyers is small in each round. In other
words, the average percentage is low. Averagely, LAMB out-
performs POEM by 5.66%, and POEM outperforms LAMB
without subtasks by 0.58%. At the same time, LAMB outper-
forms WBD, MATCH and RAND by 71.22%, 111.86% and
120.24%, respectively, in light of satisfaction ratio.

The comparison results in total utility are exhibited in
Fig. 6. It shows the impact of task number on total utility
when T = 100. The total utility increases with the increasing
number of tasks, due to the more executed tasks and subtasks.

FIGURE 5. Comparisons in satisfaction ratio.

FIGURE 6. Comparisons in total utility.

FIGURE 7. Comparisons in utilization ratio.

The total utilities are also improved. Moreover, both the
proposed algorithms and compared ones achieve the same
increasing speed. LAMB aims to maximize the utility of
buyers, although POEM outperforms LAMB after x = 200.
Note that, the more subtasks are executed, the more subtasks
are served by devices with better computational capabilities.
POEM can achieve the highest utility. Due to the insufficient
resources of servers, total utility will reach a constant value
when more tasks participate, as shown in Fig. 6. Averagely,
POEM outperforms LAMB, WBD, MATCH and RAND by
5.51%, 36.9%, 72.3% and 122.3%, respectively.

From Fig. 7, the utilization ratio of each algorithm
increases with the increasing number of tasks. It means that
increasing the number of tasks can significantly improve the
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FIGURE 8. Requirement of winner.

FIGURE 9. Truthfulness.

utilization ratio. When the number of tasks is less than 300,
the utilization ratio of POEM and LAMB increases with the
increasing number of tasks. Nevertheless, when the number
of tasks is larger than 300, utilization ratios of both POEM
and LAMB converge to a constant value. There still exist
some resources which cannot be used for each task, which are
expensive and insufficient. Averagely, LAMB outperforms
POEM, WBD, MATCH and RAND by 2%, 41.43%, 81.71%
and 82.92%, respectively. Fig. 8 shows the relation between
the requirement of the winner and the number of rounds.
After the previous rounds, averagely, the resource requests
of a round winner in LAMB are smaller than that in POEM,
due to the punishment mechanism in POEM.

We also evaluate the truthfulness, as shown in Fig. 9.
It describes the utility of the buyer yi versus its bid. The curve
describes the change of utility of two compared schemes
with untruthful bids of the i-th buyer from 1 to 23. For
each yi, the truthful bid is 8.3. While the untruthful bid is
from 1 to 8.3, the bid is too small so that the transactions
cannot successfully match. Therefore, the utility is 0. While
the untruthful bid increases from 8.3 to 13.5, the averaged
utility increases with the increasing bids.While untruthful bid
increases from 13.5 to 23, the payment is more than the cost
of yi, resulting in the negative utility.

C. REAL-WORLD IMPLEMENTATION
For the proposed double auction mechanism, this paper
implements a prototype system. The environment is depicted
in Fig. 10. The experiments are performed on a Raspgerry Pi,

FIGURE 10. Desktops, raspberry pi and supercomputer.

a supercomputer and two desktops. The client applications
are executed in one Raspberry Pi in order to simulate the
mobile devices. Each client has the same CPU core as its
processor. In Fig. 10, from Boxes 1 and 2, the screen of the
computer terminal shows that the mining tasks are running on
the host, i.e., the server device (Box 2). The communication
between the Raspgerry Pi in Box 3 and the server utilizes the
wireless network. The functions of major entities in our real-
world experiments are as follows,

• Client (Buyer): When mining applications in client need
to be executed by other devices, client will bid to the
auctioneer to get right of using server. After that, it will
offload the tasks to server and wait for a return.

• Server (Seller): The Server can bid to the auctioneer
according to their computing resources and computa-
tional capabilities. When server gets applications, it will
execute the applications and return the results to the
client which applications belong to.

• Smart Contract (Auctioneer): Auctioneer obtains bids
from servers and clients. ThenAuctioneer will match the
servers and clients according to the different algorithms,
i.e., LAMB, WBD, RAND and MATCH.

The basic steps can be implemented as follows. First,
the buyers and the seller submit bids to the auctioneer, then
the auctioneer calculates and matches double sides in accor-
dance to their bids. When a buyer matches successfully, its
tasks can be executed by the matched seller. In the real-world
experiments, we constructed 105 tasks in the Raspgerry Pi
and 3 servers in our supercomputer and desktops. The tasks
contained 900Mb specific files including all kinds of files.
These tasks can be offloaded to three servers. When servers
obtain the root hash of the Merkle Tree based on these files,
the results will be sent to client applications.

D. REAL-WORLD EXPERIMENT RESULTS
Due to the limited computational capability of our equip-
ments, there is a total of 105 mining tasks to be offloaded
in real-world experiments. When the number of mining tasks
is larger than 105, our equipment will crash. We investigate
the running time of computation offloading. There are three
ways to execute the applications,

• Executing locally.
• Offloading part of subtasks.
• Offloading all subtasks.
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FIGURE 11. Running time.

FIGURE 12. Satisfaction ratio of real-world experiments.

Fig. 11 shows the running time tendency of three ways
with the increasing number of documents. Offloading all
documents is faster than part-offloading by 27.97%, and than
executing locally by 41.44%, since the computational capa-
bility of server is much better than the local device.

Similar to Fig. 5, Fig. 12 shows the relation between
satisfaction ratio and the number of applications. It is clear
that the satisfaction ratio decreases following the increasing
number of tasks both in Fig. 5 and in Fig. 12. Only some
subtasks can obtain service from the edge server due to
the limited resources. The performance of LAMB in real-
world experiment is similar to that of the simulation in terms
of satisfaction ratio. Averagely, LAMB outperforms POEM,
WBD, MATCH and RAND by 13.01%, 77.65%, 128.91%
and 202.03%, respectively.

Fig. 13 shows the total utility generated by the real-
world experiments. It increases with the increasing number
of tasks, similar to the tendency in Fig. 6. With the increas-
ing number of mobile applications which are successfully
offloaded, the total utilities of buyers are improved. As a
result, the total utility continually increases in Fig. 13. Aver-
agely, LAMB outperforms WBD, MATCH and RAND by
130.55%, 194.8% and 237.89%, respectively. Due to the
limitation of computational capability of mobile devices,
the number of demanding resources of buyers cannot surpass
the number of providing resources of sellers.

Fig. 14 shows the relation between the utilization ratio
and the number of tasks. Similar to Fig. 7, the utilization

FIGURE 13. Total utility of real-world experiments.

FIGURE 14. Utilization of real-world experiments.

ratio of LAMB increases with the increasing number of tasks.
When more applications can be offloaded successfully, more
resources of edge servers are assigned to improve the utiliza-
tion ratio. LAMB offloads the subtasks, instead of the whole
task. The utilization ratio of LAMB is higher than that of other
algorithms. Averagely, LAMB outperforms WBD, MATCH
and RAND by 138.64%, 158.8% and 225.02%, respectively.

VI. CONCLUSION
In this paper, we have proposed a smart contract-basedmobile
blockchain architecture with edge computing for double auc-
tion without any trusted third platforms. Considering the
incentive mechanism and computation offloading simulta-
neously, we have proposed a long-term auction mechanism
with an approximation ratio of 1 + ε. We have built a task
offloading environment on the basis of the proposed incentive
mechanism so as to obtain the optimal completion time for
the tasks. The incentive mechanism has addressed the task
scheduling and heterogeneous preference of the computa-
tional capability of sellers. By the theoretical analysis, We
have demonstrated that the proposed incentive mechanism
satisfies properties such as individual rationality, budget bal-
ance, truthfulness, and computational efficiency. Our future
work will concentrate on load balancing of the tasks under
the proposed architecture.
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