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Abstract

Elucidating mechanistic relationships between and among intracellular

macromolecules is fundamental to understanding the molecular basis of

normal and diseased processes. Here, we introduce jFuzzyMachine – a

fuzzy logic-based regulatory network inference engine for high-throughput

biological data. We describe its design and implementation. We demon-

strate its functions on a sampled expression profile of the vorinostat-

resistant HCT116 cell line. We compared jFuzzyMachine’s inferred reg-

ulatory network to that inferred by the ARACNe (an Algorithm for the

Reconstruction of Gene Regulatory Networks) tool. Potentially more sen-

sitive, jFuzzyMachine showed a slight increase in identified regulatory edges
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compared to ARACNe. A significant overlap was also observed in the iden-

tified edges between the two inference methods. Over 70 percent of edges

identified by ARACNe were identified by jFuzzyMachine. Beyond identify-

ing edges, jFuzzyMachine shows direction of interactions, including bidirec-

tional interactions – specifying regulatory inputs and outputs of inferred

relationships. jFuzzyMachine addresses an apparent lack of freely available

community tool implementing a fuzzy logic regulatory network inference

method – mitigating a limitation to applying and extending benefits of the

fuzzy inference system to understanding biological data. jFuzzyMachine’s

source codes and precompiled binaries are freely available at the Github

repository locations:

https://github.com/paiyetan/jfuzzymachine and

https://github.com/paiyetan/jfuzzymachine/releases/tag/v1.7.21.

1 BACKGROUND

Elucidating mechanistic relationships among intracellular macromolecules is

fundamental to understanding the molecular basis of normal and diseased pro-

cesses. Traditional approaches to elucidating these involved low-throughput

methods of obtaining reaction kinetics with attending resolution of associated

partial or ordinary differential equations (ODEs) [6] [3][5,21,42]. However, such

approaches being highly sensitive to quantitative errors and increased com-

plexities when the inferential problem involves multiple parameters are sub-

ject to inaccurate analytical estimates, with respect to experimental data from

high-throughput profiling [14, 37]. Partly to address these, the advent of high-

throughput profiling approaches has been greeted with the development of re-

verse engineering and computational analyses methods that attempt to tease

mechanistic relationships from attendant high-throughput data [6,11,45][13,35].

Amongst these, the classical fuzzy logic approach employs varying degrees of
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truth to describe relationships between interacting molecules. The fuzzy logic

reasoning methods [48], having had significant successes in the design and im-

plementation of high-end control systems [47, 49, 50], were first applied to bio-

logical data by Woolf and Wang [46]. In the subsequent years, methods have

been proposed to address identified shortfalls associated with the original im-

plementation and to improve the inferential capability of the fuzzy approach

[?,?,4,7,12,16,24,25,31–34,43,44][38][36][9,15]. In spite of advances in the the-

oretical basis and relative biological validity of the fuzzy approach, there exists

the very apparent lack of analytical tools [1] that implement these methods avail-

able to the scientific and research community. The apparent lack of ready and

freely available community tools limits applying the fuzzy inference approach to

biological data. This also limits necessary comparisons and bench-marking of

results obtained by the method against those obtained from comparable meth-

ods. To elucidate mechanistic relationships, and to make more readily available

the Fuzzy logic inference approach, we developed the jFuzzyMachine as a freely

available tool.

2 MATERIALS AND METHODS

2.1 Dataset

To demonstrate jFuzzyMachine’s functionalities, including comparing results

with similar computational tool and to show how jFuzzyMachine may be used

to infer regulatory network interactions among a population of genes, we down-

loaded and derived a sampled expression profile from the NCBI GEO Dataset

GSE56788. The dataset is detailed under the BioProject accession PRJNA244587.

This consists of a total of 45 assay samples from 15 biosamples, each ran in 3

independent biological replicates. RNA-seq expression profiles were acquired
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by next-generation sequencing of vorinostat-resistant HCT116 cells, following

knockdown of potential vorinostat-resistant candidate genes. Expression pro-

files were compared to mock transfection (control). The authors of the study

sought to understand the mechanisms by which these knockdowns contributed

to vorinostat response. They employed the siRNA-mediated knockdown of each

of some previously identified resistance candidate genes in the HCT116-VR cell

line. RNA sequence expression data were downloaded from the NCBI Sequence

Read Archive [19,20], with accession number SRP041162.

2.1.1 RNA Sequence Analyses – quality assessment, preprocessing

and normalization

For quality assessment (QA) of curated fastq files, the fastqcr, ngsReports and

Rqc R/bioconductor tools [17] [10, 28, 30], modeled after the FASTQC [2] tool

philosophy were used. To quantify expression, sequence reads were aligned to

the genome (NCBI GRCh38 build) using the TopHat2 [18] [40, 41] tool. In-

dex files were downloaded from Illumina iGenomes archive. Accepted hits and

annotation information in the BAM format [39] output files were assembled

into an expression matrix of feature counts using the featureCount routine in

the Rsubread package [22]. Feature counts were normalized using the DESeq2

package [23] tools-implemented regularized-log transformation to account for

disparate total read counts in the different files and to allow for comparison

across the different samples. For demonstration and evaluation purpose, the

expression profile of 14 features were extracted. These include those for the

genes PTHLH, KRT86, RUBCNL, CYS1, LINC00707, LINC00634, LINC00886,

GCNT4, TAGLN3, ROBO4, MGAM, 2orf78, LOC105371789, and SERPINB7.
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2.2 The fuzzy Logic Inference

Given an expression profile, the fuzzy logic approach involves three major steps:

• Fuzzification

• Rule evaluation, and

• Defuzzification

The fuzzification step derives qualitative values from the expression profile’s

crisp values. It is often described as a mapping of non-fuzzy inputs to fuzzy

linguistic terms [29]. Given qualitative values of HIGH, MEDIUM, or LOW,

the fuzzification step takes a feature’s expression value and assigns it degrees to

which it belongs to the respective class of HIGH, MEDIUM or LOW expression

values. The rule evaluation step takes combinations of features and utilizes an

inference engine rules of the form IF-THEN, including fuzzy set operations such

as AND, OR, or NOT to evaluate input features in relation to outputs features.

This has been described as attempting to make an expert judgment of collective

linguistic terms; attempts to find a solution to an evaluation of the concurrent

state of existence of linguistic description of states. The defuzzification step

attempts to report a corresponding continuous numerical variable from a fuzzy

state linguistic variable.

jFuzzyMachine implements the fuzzy inference steps described in [38][36][9,

15]. After an initial data transformation of log2 expression ratios by the arctan

function and dividing values by π
2 , to project the ratios onto [−1, 1], the fuzzi-

fication step utilizes a membership function consisting of three fuzzy sets (low,

medium, and high expression). Given three fuzzy sets (y1 = low, y2 = medium,

y3 = high), its fuzzification of a gene expression value x results in the generation

of a fuzzy set y = [y1, y2, y3] as follows:
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y1 =

 x, x < 0

0, x ≥ 0

y2 = 1− |x|, ∀x

y3 =

 0, x ≤ 0

x, x > 0

We specified our rule configuration (the specification of if-then relationships

between variables in fuzzy space) in the form of a vector r = [r1, r2, r3]. We spec-

ified the state of an output node z = [z1, z2, z3] to be determined by the fuzzy

state of an input feature y = [y1, y2, y3] and the rule describing the relationship

between the input and the output, r = [r1, r2, r3] as follows:

z = [yr1, yr2, yr3]

An inhibitory relationship, for example, specified as [3, 2, 1] implies, if input

is low (r1), then output is high (3); if input is medium (r2), then output is

medium (2), and if input is high (r3), then output in low (1). Classic fuzzy logic

rule evaluation using the logical AND connective results in a combinatorial rule

explosion i.e. an exponential increase in the number of rules to be evaluated and

computational time, with additional inputs to be considered [8]. To address a

combinatorial rule explosion situation, jFuzzyMachine implements the logical OR

(union) rule configuration, an algebraic sum in fuzzy logic [48][27] as described

in [37].
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For Defuzzification, a conversion of fuzzy inferences or output node expres-

sion value predictions, in fuzzy space, back to regular or crisp values, we em-

ployed the simplified centroid method [27]. Given a predicted fuzzy values of

an output node y = [y1, y2, y3], we defined defuzzified expression values (x̄) as:

x̄ =
y3 − y1

y1 + y2 + y3

After defuzzification, we reverse transformed back to log2 expression values

by multiplying derived values by π
2 and applying the tangent function.

2.2.1 Inferred regulatory model fit or error

jFuzzyMachine estimates the an error of the fit for M samples or perturbations

of an output feature x = {x1, x2, ..., xM} as:

E = 1−
∑M

i=1(xi − x̃i)
2∑M

i=1(xi − x̄i)2

where x̃ = {x̃1, x̃2, · · · , x̃M} is the set of defuzzified numerical log expression

ratios predicted for the output feature and x̄ is the mean of the experimental

values of x across the samples or perturbations observed. A perfect fit would

result in a maximum E of 1.0. jFuzzyMachine uses the estimated error to rank

possible models of interactions that predict on output node.

2.3 Design and Implementation

The jFuzzyMachine tool is implemented in the platform-independent Java pro-

gramming language to facilitate an extensive community reach. It is modular

in design to facilitate an easy decoupling of component parts. It consists of:
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1) the Initiation Module, 2) the Main Module, and 3) the Utilities Module

(see Figure 1). The ‘Initiation Module’ consists essentially of the program con-

figuration and run parameter specification units. Depending on user-desired

added-functionality beyond regulatory model inference, a user may choose to

specify parameters that apply only to desired post-inference processing. The

Main Module houses the application’s main functionality – the fuzzy logic based

regulatory inference engine. The module implements the: fuzzification, rule

evaluation, and defuzzification schemes [31,46][29]. It currently implements the

‘Union Rule Configuration’ (URC) rule evaluation scheme of Coomb’s et al [8,36]

and an optimized version of the ‘Exhaustive search’ algorithm of Sokhansaj et

al [?]. The Utilities Module consists of two submodules: a) the Postprocessing

Submodule and, b) the Add-ons (or Plug-ins) Submodule. The Postprocessing

Submodule consists of three Units – the ‘Graph’, ‘Evaluation (or Validation)’,

and the ‘Dynamic Simulation’ Units. The Graph Unit consolidates the best

fitted models derived from the fuzzy inference system into a network graph as

explained in Gormley et al [15]. The Evaluation Unit simply compares expres-

sion profile predictions by inferred models to the experiment observed values.

Depending on the user-specification, this may be against original model eluci-

dation data (default) or an independent dataset. Also depending on the user, a

re-calculation of the model’s fit may be specified, particularly to quantitatively

describe how well models fit independent datasets. The ‘Dynamic Simulation

Unit’ implements and executes model dynamic simulations as also described

in Gormley et al [15]. To facilitate downstream data integration, the dynamic

simulations’ stop criteria is dependent on the user-specified number of iteration

steps and not the computed error. However the error estimates at the end of

the simulation runs are reported. In anticipation of community contributions,

the Add-on (or Plug-ins) Submodule is described. Current in-house created
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Figure 1: The jFuzzyMachine Application Components

functionalities that would fit appropriately configured add-on units include an

“In-Silico Knockout Simulations” add-on and a “Visualization” add-on which

depends on a secondary-installed program. These are also freely available on

request.

2.4 Getting jFuzzyMachine

jFuzzyMachine’s source codes and precompiled binaries are freely available at the

Github repository locations https://github.com/paiyetan/jfuzzymachine
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and https://github.com/paiyetan/jfuzzymachine/releases/tag/v1.7.21

respectively.

2.5 Installation Requirements

jFuzzyMachine is platform independent. It would run on a Windows, Mac, or

UNIX-based Operating System (OS) with an appropriately preinstalled Java

Runtime Environment (JRE). Java 7 or above is required. You may download

the latest version of Java from https://www.java.com/en/download/.

To run the visualization add-on (plugin), provided as an added-value, a

UNIX-based OS with the R program statistical computing environment prein-

stalled, is required. R may be downloaded from https://cran.r-project.org/.

2.6 Installing jFuzzyMachine

Unzip the compressed application package into a directory of choice. The con-

tent of the unzipped folder should include: One primary java archive (.jar)

folder, four runtime configuration (.config) files, and four subdirectories (etc/,

lib/, plugins/, and src/),

• JFuzzyMachine.jar

• jfuzzymachine.config

• jfuzzymachine.graph.config

• jfuzzymachine.evaluator.config

• jfuzzymachine.simulator.config

• etc

• lib

• plugins

• src

10
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The configuration files are pre-filled to satisfy required parameters for this

manual’s demonstration. Users may appropriately fill-in their own specifications

and experiment with the tool. See configuration options below.

2.7 Running jFuzzyMachine

To run the tool, on the command-line,

1. Navigate into the application directory

2. Appropriately fill-in the desired run-time options in the configuration files

and

3. Depending on application module or functional unit of interest, type the

following commands, one at a time:

To elucidate fuzzy logic-based regulatory relationships, run the commands

1 java -Xmx10G -cp JFuzzyMachine.jar jfuzzymachine.

JFuzzyMachine jfuzzymachine.config

2

To derive a composite network graph, including rule frequencies, run

1 java -Xmx10G -cp JFuzzyMachine.jar jfuzzymachine.

utilities.graph.Graph jfuzzymachine.graph.config

2

To evaluate or validate how well inferred fuzzy logic-based regulatory mod-

els fit the data, run

1 java -Xmx10G -cp JFuzzyMachine.jar jfuzzymachine.

utilities.ModelValidator jfuzzymachine.evaluator.config

2
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To run dynamic simulation of regulatory network, and tease expression

values at systems steady state, run

1 java -Xmx10G -cp JFuzzyMachine.jar jfuzzymachine.

utilities.simulation.Simulator \

2 jfuzzymachine.simulator.config

3

The -Xmx10G option indicates the amount of memory space available to the

program during the program execution. It is specified as 10 Gigabytes. For

very large expression data, it is recommended to be increased. The -cp option

indicates the location of our Java program class files – specified as JFuzzyMa-

chine.jar. It is assumed this is located in the current working director.

2.7.1 The jfuzzymachine.config file

1 ## jfuzzymachine.config

2 inputFile =./ etc/projects/demo/inputs/exprsMat.txt

3 outputDir =./ etc/projects/demo/outputs/runJFuzzy

4 maxNumberOfInputs =-1

5 numberOfInputs =3

6 outputInRealtime=TRUE

7 eCutOff =0.6

8 useAllGenesAsOutput=FALSE

9 iGeneStart =1

10 iGeneEnd =14

11 useParallel=TRUE

12

The jfuzzymachine.config has, at least, the above listed parameters (’key’=’value’

pairs). The associated values listed here are for demonstration purposes in this

manual. The inputFile option specifies the relative path to the data matrix of
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normalized expression values. The outputDir specifies the path to the directory

where results from jFuzyMachine are to be placed. The maxNumberOfInputs

option is a flag that specifies how jFuzzyMachine should handle input (regula-

tory) features. A negative flag indicates that exactly the specified numberOfIn-

puts option be considered. A positive value specifies to jFuzzyMachine to con-

sider all possible number of inputs up-to the specified value. E.g. a positive

value of 4, simply says to jFuzzyMachine to consider all possible combinations of

1, 2, 3, and 4 regulatory inputs to an output feature. Current implementation of

jFuzzyMachine allows up to 5 inputs. A negative flag however, says to jFuzzyMa-

chine to consider only possible combinations of 3 regulatory inputs (specified by

the numberOfInputs option in the above configuration) to an output feature. The

outputInRealtime option tells jFuzzyMachine to output its runtime informations

onto a standard output (the console). This typically includes derived models,

inferred regulatory rules, and computed fit estimates. The eCutOff option spec-

ifies the cut-off for which to consider a computed fuzzy logic model. Models

below the specified value are discarded. The useAllGenesAsOutputs option spec-

ifies whether to consider all features in the expression values matrix or a limited

set specified by the iGeneStart and iGeneEnd options. The iGeneStart and iGe-

neEnd options specify the range of features to use from a numerically ordered

list – the expression matrix row numbers. The options iGeneStart=1 and iGe-

neEnd=14 in the configuration above, simply says to jFuzzyMachine to consider

features of expression profiles from the first to the 14th row, in the expression

matrix (inputFile), as probable outputs in the regulatory model inference. The

useParallel option indicates whether to run jFuzzyMachine in the optimized mode

for speed (distributed across computing cores available at runtime).

2.7.2 The jfuzzymachine.graph.config file

1 ## jfuzzymachine.graph.config

13
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2 exprsFile =./ etc/projects/demo/inputs/exprsMat.txt

3 input =./ etc/projects/demo/outputs/runJFuzzy

4 runId=_demo

5 fitCutOff =0.6

6 useAnnotatedGraphModel=TRUE

7 outputEdges=TRUE

8 topFittedModelsToOutput =150

9

The above are parameters (runtime options) to the jFuzzyMachine Graphical

unit. The exprsFile option specifies a path to the expression matrix from which

regulatory models were inferred. The input option specifies a path to the direc-

tory in which jFuzzyMachine inferred models and output result files are placed.

The runId option is a user-specified identifier prepended to outputted results’ file-

names (please see the Results section). The nomenclature (naming convention)

of the outputted result files is of the form <runId> runJFuzzUtils.<fileType>.

The fitCutOff option specifies a cut-off for considering models. Models above

specified fitCutOff are considered for inclusion in a consolidated network model.

Only the regulatory edges of the passing models are considered. The useAnno-

tatedGraphModel tells jFuzzyMachine Graph unit to model regulatory network as

a directed acyclic graph. If TRUE, the outputted adjacency matrix (.adj or .mat

file) is a directed graph. By default, jFuzzyMachine’s Graphical unit outputs

only an adjacency matrix file, to represent the inferred regulatory network, but

the option outputEdges specifies to jFuzzyMachine to also print edges (a .edg file)

of the consolidated network. The topFittedModelsToOutput applies to ouputting

fitted models. It specifies the number of alternate top ranked models that pass

fitCutOff filter option to report in the output (.fit2) file.

2.7.3 The jfuzzymachine.evaluator.config file

1 ## jfuzzymachine.evaluator.config

2 exprsToValidate =./etc/projects/demo/inputs/exprsMat.txt

14
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3 fitFile =./ etc/projects/demo/outputs/runJFuzzy/runJFuzzUtils/

_demo_runJFuzzUtils.fit

4 fitCutOff =0.6

5 validationType=validations

6

In jfuzzymachine.evaluator.config file, the exprsToValidate option specifies a

path to the expression matrix from which regulatory models were inferred – in

the case of evaluating the performance of the inferred models against the model–

generating data. For an independent evaluation of the model, this is a path to

the expression matrix of the independent dataset. The fitFile specifies the path

to derived .fit file from jFuzzyMachine’s Graph unit. The .fit file contains the

best fitted models. The fitCutOff specifies an estimated fit cut–off value above

which to consider models. The validationType option, specifies what validation is

being performed. Acceptable values include validations (default) and ivalidations.

Specifying ivalidations implies an independent validation is being performed.

2.7.4 The jfuzzymachine.simulator.config file

1 ## jfuzzymachine.simulator.config

2 exprsMatFile =./etc/projects/demo/inputs/exprsMat.txt

3 edgesFile =./ etc/projects/demo/outputs/runJFuzzy/runJFuzzUtils/

_demo_runJFuzzUtils.edg

4 fitFile =./ etc/projects/demo/outputs/runJFuzzy/runJFuzzUtils/

_demo_runJFuzzUtils.fit

5 fitCutOff =0.6

6 simulationType=simulations

7 maxIterations =5000

8 eCutOff =0.000001

9 initialOutputsValues=ALL

10 alpha =0.01

11

In the jfuzzymachine.simulator.config, the exprsMatFile specifies a path to the
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expression matrix from which regulatory models were inferred – in the case of

evaluating the performance of the inferred models against the model–generating

data. For an independent evaluation of the model, this is a path to the expres-

sion matrix of the independent dataset. The edgesFile and fitFile options specify

the path to the .edg and .fit files derived from jFuzzyMachine’sGraph unit. These

contain the edges of the consolidated network and the best fitted models from

the regulatory model elucidating steps. The fitCutOff specifies an estimated

fit cut-off value above which to consider models. The simulationType option

specifies the sort of dynamic simulation to be performed. Acceptable values

include simulations (default) and isimulations. Specifying isimulations implies a

dynamic simulation of consolidated network, using previously derived models as

simulation parameters on an independent dataset is being performed. The max-

Iterations, eCutOff, initialOutputsValues and alpha are other dynamic simulation

parameters. The maxIteration and eCutOff are the stopping criteria – maximum

iteration steps and error estimate cut–off respectively. Default values are 5000

and 10e− 7 respectively. To better facilitate integration with downstream anal-

yses, the Dynamic Simulation Unit defaults to preferably using the maxIteration

option as stopping criteria. The initialOutputsValues specifies which ’perturba-

tion’, ’sample’, or ’time–point’ values, from the expression matrix, to use as

initial values in the simulation. It defaults to ALL, i.e. all values are sequen-

tially used. Other values are FIRST and RANDOM, implying the first column

and a random column values respectively. The alpha option specifies the ’mixing

parameter’, α, of the simulation model. Based on Gormley et al, linear combina-

tion of new and old values ensures that the system smoothly converges towards

equilibrium. And accordingly, jFuzzyMachine’s Dynamic Simulation Unit com-

putes new values of each node (I1) based on the initial conditions and the fuzzy

relations inferred from the data; values in the next iteration were calculated as
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a linear combination of the inferred values (In) and the initial values (In−1) as

follows:

In+1 = αIn + (1− α) In−1 (1)

2.8 Comparing jFuzzyMachine’s inferred network to ARACNe’s

To compare regulatory network inferred by jFuzzyMachine with that inferred

by the ARACNe (an Algorithm for the Reconstruction of Gene Regulatory

Networks algorithm [26], mutual information matrix of sampled features ex-

pression profile was inferred using the R/bioconductor minet package build.mim

routine and specifying the spearman option as the estimator. The minet pack-

age ARACNe algorithm implementation was used to derived weighted adjacency

matrix of the inferred network. The identified edges were compared to those

inferred from the best fitted models from a jFuzzyMachine inference, given the

same expression profile.

3 RESULTS AND DISCUSSION

In this section we describe results outputted from a typical jFuzzyMachine exe-

cution. These are are described as results produced by the different modules of

the tool - the Main module and Utilities module. Presented results are those of

the sampled data expression profile.

In the second part, we describe, the results obtained from a comparison of

the results of jFuzzyMachine and that of the ARACNe algorithm with respect to

potential regulatory interactions derived from the sampled data.
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3.1 The Main Module - Inference Engine

The main output results from the jFuzzyMachine inference engine are writ-

ten to the outputDir. These are files or single file ending with .jfuz. From

the demo run, this would be the ./etc/projects/demo/outputs/runJFuzzy/exprs-

Mat.1.14.3.TRUE.jfuz. This consists of 4 major sections indicated by the >

character at the begining of the line. These sections include; a prologue, run

parameter listing, the main result, and an epilogue. The prologue section stores

information such as the run’s start-time, while the epilogue stores the run end-

time and duration. The main section is a tab-delimited table with columns:

Output, NumberOfInput(s), Input(s), Rule(s), and Error(E). The Output column

indicates the output node in the model; the NumberOfInput indicate the number

of input nodes, the Input(s), considered. The Rule(s) column indicate the fuzzy

logic rule that associates the respective input node to the output node. The

Error(E) column indicates the model’s fit. Shown below is a sample output from

the demo run:

1 > StartTime: Mon Jul 20 23:47:25 EDT 2020

2 > Search Parameters:

3 inputFile = ./etc/projects/demo/inputs/exprsMat.txt

4 maxNumberOfInputs = -1

5 numberOfInputs = 3

6 outputInRealtime = TRUE

7 eCutOff = 0.6

8 useAllGenesAsOutput = FALSE

9 iGeneStart = 1

10 iGeneEnd = 14

11 useParallel = TRUE

12 outputFile = ./etc/projects/demo/outputs/runJFuzzy/

exprsMat .1.14.3. TRUE.jfuz

13 modelPhenotype = FALSE

14
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15 Initiating ...

16 Searching (Exhaustive Search)...

17 All Genes#: 14

18 Output Nodes Considered #: 14

19 > Begin Search Result Table:

20 Output NumberOfInput(s) Input(s) Rule(s) Error(E)

21 PTHLH 3 [KRT86 , RUBCNL , CYS1] [[1, 3, 3], [1, 3, 2], [2, 1, 1]]

0.6057812852061071

22 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[1, 1, 1], [1, 2, 2], [2,

1, 1]] 0.6395610849445412

23 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[1, 1, 1], [1, 2, 3], [1,

1, 1]] 0.6055562465480613

24 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[1, 1, 1], [1, 3, 2], [2,

1, 1]] 0.7444440833291

25 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[1, 1, 1], [3, 2, 3], [2,

1, 1]] 0.6035443648873104

26 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[2, 1, 1], [1, 2, 2], [2,

1, 1]] 0.664214821186895

27 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[2, 1, 1], [1, 3, 2], [1,

1, 1]] 0.6474161595899811

28 PTHLH 3 [LINC00707 , RUBCNL , LINC00634] [[2, 1, 1], [1, 3, 2], [2,

1, 1]] 0.7321145800582836

29 ...

30 C2orf78 3 [SERPINB7 , CYS1 , LINC00886] [[3, 3, 1], [1, 2, 3], [1, 3,

3]] 0.6316025202379136

31 LINC00634 3 [LINC00886 , GCNT4 , MGAM] [[1, 3, 3], [3, 2, 1], [2, 1,

1]] 0.6000086433874239

32 LINC00634 3 [KRT86 , LINC00886 , GCNT4] [[3, 1, 1], [2, 2, 3], [3, 1,

1]] 0.6009588086189968

33 > End Search Result Table

34

35 ... Done!

36 > Epilogue

37

38 Started: 1595303245550: Mon Jul 20 23:47:25 EDT 2020
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39 Ended: 1595303288832: Mon Jul 20 23:48:08 EDT 2020

40 Total time: 43282 milliseconds; 0 min(s), 43 seconds.

3.2 The Utilities Module

jFuzzyMachine’s Utilities Module consists of the ’Postprocessing’ and the ’Add-

ons’ submodules. The postprocessing module consists of the ’Graph’, ’Evalua-

tion’ and ’Dynamic Simulations’ Units.

3.2.1 The Graph Unit

Outputs from the graph unit execution are placed in the runJFuzzUtils subdirec-

tory. With regards to this demonstration, this would be the ./etc/projects/de-

mo/outputs/runJFuzzy/runJFuzzUtils directory. These tab-delimited result files

include:

• demo runJFuzzUtils.adj

• demo runJFuzzUtils.edg

• demo runJFuzzUtils.edg2

• demo runJFuzzUtils.fit

• demo runJFuzzUtils.fit2

• demo runJFuzzUtils.fre

The demo runJFuzzUtils.adj file is a directed graph adjacency matrix de-

scribing the connections in the inferred network. A connection between two

nodes is indicated by 1 and 0 vice versa. Features in the rows are the inputs

while those in columns are the output nodes. The demo runJFuzzUtils.edg and

demo runJFuzzUtils.edg2 result files are about the same. Describing the edges in

the inferred network, they both have the columns; From, To, Rule, and Weight in

common. These correspond to the input node, output node, fuzzy logic rule as-

sociating the input with the output node, and estimated model fit respectively.
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The ’HashCode’ column in the ”.edg” file is only included for programmatic

debugging. Likewise, the demo runJFuzzUtils.fit and demo runJFuzzUtils.fit2

result files are about the same. While the .fit2 reports all models above the

specified fitCutOff in the jfuzzymachine.graph.config file, the .fit file reports only

the best fitted model to each output node. Sampled outputs from the related

demo run are shown below:

1 # _demo_runJFuzzUtils.fit

2 Output NumberOfFittedModels InputNodes(BestFit) Rules Fit

3 C2orf78 7 [SERPINB7 , CYS1 , MGAM] [[3, 3, 1], [1, 2, 3], [3, 1, 1]]

0.7246192458666514

4 LINC00634 2 [KRT86 , LINC00886 , GCNT4] [[3, 1, 1], [2, 2, 3], [3, 1,

1]] 0.6009588086189968

5 ...

1 # _demo_runJFuzzUtils.fit2

2 Output InputNodes Rules Fits

3 C2orf78 [SERPINB7 , CYS1 , MGAM] [[3, 3, 1], [1, 2, 3], [3, 1, 1]]

0.7246192458666514

4 C2orf78 [SERPINB7 , CYS1 , MGAM] [[3, 2, 1], [1, 2, 3], [3, 1, 1]]

0.646429505593284

5 ...

6 SERPINB7 [ROBO4 , C2orf78 , GCNT4] [[3, 2, 3], [3, 2, 1], [1, 3, 3]]

0.6002583965182628

7 SERPINB7 [ROBO4 , C2orf78 , LINC00634] [[1, 2, 3], [3, 1, 1], [2, 3,

1]] 0.6002285026737246

8 SERPINB7 [PTHLH , CYS1 , C2orf78] [[1, 3, 1], [3, 1, 1], [3, 2, 1]]

0.600143816707301

9 PTHLH [LINC00707 , RUBCNL , LINC00634] [[1, 1, 1], [1, 3, 2], [2, 1,

1]] 0.7444440833291

10 PTHLH [LINC00707 , RUBCNL , LINC00634] [[2, 1, 1], [1, 3, 2], [2, 1,

1]] 0.7321145800582836

11 ...

The demo runJFuzzUtils.fre reports the frequency of the fuzzy rules eval-
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uated in the inferred models with an estimated fit value above the fitCutOff.

Please see Gormley et al and Sokhansanj et al for a detailed explanation of the

rules.

3.2.2 The Evaluation Unit

The Evaluation Unit compares expression profile predictions by inferred models

to an experiment values – either the fuzzy logic models’ model-elucidating data

or an independendent dataset. Its output are reported in the demo runJFuzzUtils.val

file – an expression matrix of predicted values of output nodes, given the values

in the exprsToValidate file and the set of fuzzy logic models in the fitFile specified

in the jfuzzymachine.evaluator.config.

3.2.3 The Dynamic Simulation Unit

The ‘Dynamic Simulation Unit’ implements and executes model dynamic sim-

ulations as also described in Gormley et al. The unit implements an iterative

scheme to determine the state of the network at equilibrium. Simulation values

are reported in the runJFuzzyUtils/simulations/ subsub-directory in the jFuzzy-

Machine main output directory. These are captured in the .dta and .sim files.

The .dta files report the error values following each iteration, while the .sim file

reports the estimate for each output node in the network at each iteration. The

numerical value in the naming convention of the derived files show the column

index, in the expression matrix, of the ’sample’, ’perturbation’, or ’time-point’

from which initial values for the respective simulations were derived.

3.3 Add-ons

jFuzzyMachine and its outputs are designed to either be standalone resources,

or be easy to integrate with other analyses pipelines and platforms. Add-ons or
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plug-ins provide an avenue to easily integrate additional functionalities or inte-

grate other tools to the base application. For a better appreciation of results, we

have included an example plug-in to enable some visualization of results demon-

strated in this manual. As previously stated (please see publication), plug-ins

can be platform dependent and may rely on secondary applications for full

functionality. The plug-in bundled with jFuzzyMachine requires a UNIX-based

platform or OS with the R statistical programming environment pre-installed.

In addition to having the R program pre-installed, the following R/Bioconductor

packages are required:

• optparse

• org.Hs.eg.db

• xtable

• igraph

• graph

• Rgraphviz

• pheatmap

• ReactomePA

To execute, simply run the following commands from within the jFuzzyMa-

chine application working directory:

1 plugins/viz/rJFuzzyMachineUtilsExec.sh

2

3 plugins/viz/rJFuzzyMachineUtilsNetworkExec.sh

Example output figures, saved in the ./etc/projects/demo/outputs/plugin-

s/viz/figs directory are presented below:

Figure 2 shows the predicted values by the best fitted models for a the sample

output node, the C2orf78 gene product. It can be appreciated that predicted
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values across the assay samples tend to trend similarly as the observed values

indicated in gray. jFuzzyMachine predictions are model-based. A model consists

of a set on input nodes and an output node with regulatory rule relationships

among these.

Figure 3 shows predictions at steady states of an inferred regulatory network.

Observed convergence gives a bit of added assurance that inferred relationships

are likely to be feasible. A lack of convergence may indicate a suboptimal

network inference secondary to suboptimal fits of derived models.

Figures 4 and 5 show the inferred networks of the jFuzzyMachine and that of

the ARACNe algorithm respectively. It is observed that jFuzzyMachine both ap-

pear to have a large overlap in the number of predicted edge relationships. Fig.

6. jFuzzyMachine almost always predict the direction of relationship (i.e. what is

regulating what). Given a evidences from the two tools of potential interaction

between pairs of features, the biological significance of such interactions may be

worth further pursuit.

4 CONCLUSION AND RECOMMENDATION

The Fuzzy logic inference approach to elucidating regulatory networks, although

relatively mature, has little to no freely available tool to facilitate its adop-

tion, to a greater extent, in elucidating high-throughput biological expression

data. The jFuzzyMachine tool fills this apparent need. jFuzzyMachine mitigates

the limitation of applying and appropriating the benefits of the fuzzy inference

system to biological data. With respect to predicting regulatory interactions,

jFuzzyMachine compares favorably with other regulatory inference tools. We

expect to continue to include added functionalities and improve its current im-

plementation. With our modular design and plan to accommodate third-party
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Figure 2: An Evaluation (Validation) Plot. A visual evaluation of predictions of
a fitted model for a sample output node, the C2orf78 gene. The estimated fit
was 0.72. The input (regulatory) nodes were the genes SERPINB7, CYS1, and
MGAM. The y-axis indicates the normalized expression values and the a-axis in-
dicates the sample perturbations or treatment. Samples were reverse transfected
vorinostat-resistant colon cancer, HCT-116, cell lines. Each sample was treated
with the indicated small interferring ribonucleic acid (siRNA) to knockdown
the respectively indicated gene products. The grey plot line shows the observed
expression profile of the gene C2orf78, while the ”red” line shows the predicted
expression value from the expression of the regulators in the given data, and
the rules associating the regulators to the output. The inferred patterns of reg-
ulation (rules) are indicated in Figure 4. It can apparently be appreciated that
the fuzzy logic model is able to tease out trend in the dataset.
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Figure 3: A Dynamic Simulation Plot. Having randomly chosen a sample (the
25th column sample) from the normalized expression matrix to provide ini-
tial values of expression, and given the best fitted models, the plot shows pre-
dicted expression values for the inferred outputs KRT86, PTHLH, SERPINB7,
C2orf78, CYS1 and LINC00634 over 5000 iterations. It is appreciable that the
inferred network achieves an equilibrium state at a little over 1000 iterations,
when a change in predicted values tend to zero.
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Figure 4: The Fuzzy Logic-based Regulatory Network Inferred. A composite
regulatory network is inferred from the best fitted models for each node. The
inferred network consists of 13 nodes (genes), and 18 edges (regulatory connec-
tions). The arrow heads indicate the regulatory direction from the input node
to the output node. The edge labels, shown by the fuzzy rules, indicate the
regulatory interaction. From Gormley et al, Rule configuration is the specifica-
tion of if-then relationships between variables in fuzzy space. For example, an
inhibitory relationship is represented by the rule vector r = [r1, r2, r3] = [3, 2, 1]
(i.e., if input is low (r1), then output is high (3); if input is medium (r2), then
output is medium (2), and if input is high (r3), then ouput is low (1). From the
composite regulatory network, the regulatory effect of the MGAM gene on the
C2orf78 gene is indicated by the rule 3, 1, 1. This implies that when MGAM is
low (r1), C2orf78 is high (3); when it is medium (r2), C2orf78 is low (1); and
when MGM is high (r3), C2orf78 is low (1). Notice that the bi-directional re-
lationship between the pair of genes C2orf78–CYS1, and C2orf78–SERPINB7
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Figure 5: The ARACNe-inferred Regulatory Network. As described in the
Materials and Methods section, mutual information between pairs of features
was estimated using the correlation approach, to derive a mutual information
matrix.
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Figure 6: Identified edges between jFuzzyMachine and the ARACNe algorithm.
A total of 16 edge relationships were identified by jFuzzyMachine. Two of these
are observed to be by directional (Fig 2). The ARACNe algorithm identifies 14
network edges, over 70 percent of which are equally identified by jFuzzyMachine
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add-ons, we hope to facilitate community contributions and a scientific ecosys-

tem of adopters. Also, we hope to continue to facilitate its integration with

other high-throughput biological inference tools.
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