
Received August 22, 2018, accepted October 26, 2018, date of publication November 14, 2018, date of current version March 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2881001

Mobile Health Technologies for Diabetes
Mellitus: Current State and
Future Challenges
SHAKER EL-SAPPAGH 1,2, FARMAN ALI 2, SAMIR EL-MASRI3, KYEHYUN KIM4,
AMJAD ALI 2,5, AND KYUNG-SUP KWAK 2, (Member, IEEE)
1Information Systems Department, Faculty of Computers and Informatics, Benha University, Banha 13518, Egypt
2Department of Information and Communication Engineering, Inha University, Incheon 22212, South Korea
3Digitalization, Sharjah Media City, Sharjah, United Arab Emirates
4Department of Geoinformatic Engineering, Inha University, Incheon 22212, South Korea
5Department of Computer Science, COMSATS Institute of Information Technology, Lahore 54000, Pakistan

Corresponding author: Kyung-Sup Kwak (kskwak@inha.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIT) under Grant
NRF 2017R1A2B2012337.

ABSTRACT The prevalence of diabetes is rising globally. Diabetes patients need continuous monitoring,
and to achieve this objective, they have to be engaged in their healthcare management process. Mobile
health (MH) is an information and communications technology trend to empower chronically ill patients
in a smart environment. Discussing the current state of MH technologies is required in order to address their
limitations. Existing review articles have evaluated the MH literature based on applicability and level of
adoption by patients and healthcare providers. Most of these reviews asserted that MH apps and research
have not reached a stable level yet. To the best of our knowledge, there is no clear description of solutions
to these problems. In addition, no one has investigated and analyzed MH in its contextual environment in
a detailed way. We conducted a comprehensive survey of MH research on diabetes management articles
published between 2011 and September 27, 2017. In this survey, we discuss current challenges in MH,
along with research gaps, opportunities, and trends. Our literature review searched three academic databases
(ScienceDirect, IEEE Xplore, and SpringerLink). A total of 60 articles were analyzed, with 30% from
ScienceDirect, 38% from IEEE Xplore, and 32% from SpringerLink. MH was analyzed in the context of the
electronic health record (EHR) ecosystem.We consider dimensions such as clinical decision support systems,
EHRs, cloud computing, semantic interoperability, wireless body area networks, and big data analytics.
We propose specific metrics to analyze and evaluate MH from each of these dimensions. A comprehensive
analysis of the literature from this viewpoint is valuable for both theoretical and developmental progress.
This paper provides a critical analysis of challenges that have not been fully met and highlights directions
for future research that could improve MH applicability.

INDEX TERMS Mobile health, diabetes mellitus, electronic health record, cloud computing, clinical
decision support system, big data analytics, wireless body area network, medical informatics.

I. INTRODUCTION
A. RATIONALE OF THE STUDY
The number of elderly people with chronic diseases and
disabilities is increasing drastically [191]. Chronic diseases
cause 70% of deaths and account for 78% of healthcare
expenses in the United States [103]. About half of Americans
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have one chronic disease, and one-quarter have two or
more. Diabetes mellitus (DM) is a chronic disease associ-
ated with greater rates of cardiovascular conditions, kidney
disease, vision problems, and non-traumatic amputations [6].
DM is a leading cause of morbidity and mortality world-
wide. About 9% of the US population has some form of
diabetes, and the number is expected to increase [18], [19].
DM can lead to a decrease in quality of life, an increase
in medication costs, and high mortality rates. Patients with
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diabetes, especially type 2 DM, are often elderly. In addi-
tion, physicians are often overloaded with patients and their
data. DM is a silent disease; a patient can have diabetes
for a long time without knowing it. This can cause many
complications. In 2014, there were 29.1 million Americans
with DM, including 8.1 million who were undiagnosed [76].
Continuous monitoring of some vital signs is a critical step
because it can prevent the occurrence of DM. However, it is
often difficult for people with diabetes to adhere to complex
self-management regimens. For example, many people do
not test their blood glucose level, or do not inject insulin
as frequently as required [4]. One survey [5] showed that
only 50% to 70% of Americans with diabetes received the
recommended eye examinations to prevent vision loss. The
management of chronic diseases requires involvement by the
patient in self-monitoring, self-control, and self-management
of conditions during the day [18].

DM cannot be cured, but it can be prevented, detected, and
managed [162]. DM prevention through continuous lifestyle
monitoring can delay the development of diabetes and save
money. DM detection can be achieved by using risk assess-
ment tools to delay or prevent the development of DM,
even from the pre-diabetes state [91]. DM management is
long, costly, and requires continuous adherence to medical
care (e.g., taking medicines, following a diet, and engaging
in exercise and education). In addition, it requires ongoing
self-management and monitoring to mitigate the potential
risks [191]. The regular and daily decisions made by patients
with diabetes (e.g., eating healthy, tracking physical activity,
administering insulin and other medications, monitoring
blood glucose, undergoing foot and eye care, participating in
laboratory studies, making regular clinic visits, maintaining
education) are very important for DMmanagement [92]. Poor
adherence to these activities can lead to significant mortality
and morbidity, as well as poor quality of life [3], [18].

As a solution, information and communications tech-
nologies (ICT) can assist both patients and physicians
to improve adherence by introducing them to electronic
health (e-Health) [6], [61]. According to the World Health
Organization (WHO), mobile health (MH) is a component
of e-Health. By using mobile phones and smart devices,
MH provides promising opportunities to improve diabetes
prevention, detection, and self-management with contin-
uous measurements of a patient’s bio-signs [162]. Of all
medical conditions, diabetes is the condition most targeted
by current commercial mobile apps, followed by depression
and asthma [22]. With MH, blood glucose data can automat-
ically be collected, transmitted, and aggregated with other
physiological data. These data can be analyzed, stored, and
presented as actionable information.MH removes geographic
barriers and engages patients in their health management
by creating a smart environment. It can decrease costs and
improve outcomes. In other words, MH supports the tran-
sition from clinic-centric to patient-centric healthcare where
each agent (hospital, patient, physician, and service) is seam-
lessly connected to the others [151]. MH can serve patients

with diabetes in several ways including (1) in-hospital profes-
sional decision support; (2) continuous and real-time moni-
toring of medication dosages, meals, lifestyle changes, vital
signs, and provision of timely recommendations; (3) manage-
ment of patients’ primary care clinical schemes; (4) person-
alized care for acute diabetes conditions; and (5) support for
active and continuous self-monitoring and self-management.

Many of the current MH interventions for DM (74%)
focus on medication adherence and healthy lifestyle choices,
and another 33% of the apps address DM prevention [23].
The majority of the required data by these apps are entered
manually [77], [153]. In 2014, more than 382 million people
around the globe suffered from diabetes. Most of these people
were between ages 40 and 59, where requiring a lot of data
from them is not an acceptable situation [162], [191]. In addi-
tion, physicians are often overloaded with patients, so mobile
apps must not add to the burden by requiring a lot of data
entry. By early 2016, over 1,500 different apps related to
DM management existed on the market [12], [21], [78]–[84]
and were available from Apple’s App Store and Google
Play. Apps fall into different categories, such as logbooks
and diaries (e.g., Glucose Buddy and MyNetDiary); elec-
tronic health records (EHRs) and connectivity platforms
(e.g., Glooko, Diasend, mySugr Scanner, and Tidepool);
fitness and food regimens (e.g., Fitbit, myFitnessPal, Figwee,
and GoMeals); and lifestyle monitoring (e.g., WellDoc,
Omada, Withings, and iHealth). In addition, many different
devices are available for tracking health factors (e.g., body
weight and body mass index [BMI], dietary intake, physical
activity, blood pressure, blood glucose). Even with a large
number of apps, their real effect is still not seen. On the
other hand, MH can result in major advances in expanding
healthcare coverage, improving decision-making, monitoring
chronic conditions, and helping in emergencies [28]. All of
these improvements can be achieved for DM.

As a medical problem, DM needs personalized detec-
tion procedures, self-monitoring, and treatment [162]. This
personalization process requires the complete history of the
patient, not just a set of parameters entered in real time.
Villarreal et al. [198] asserted that most of the current mobile
apps for patient monitoring through mobile devices were
not developed by considering the personal characteristics
of each patient. They were developed based on the general
behavior of the disease. Many apps depend on a set of unified
questions asked for all patients in the same way. Based on
their answers, the same set of information is used to derive
conclusions. For example, the American Diabetes Associa-
tion (ADA) provides a calculator with only seven parameters
to diagnose diabetes, which is not sufficient; WellDoc [63] is
a diabetes-monitoring app requiring manual entry of food and
glucose parameters; METABO [64] is a monitoring app for
recording and interpreting the patient context. These appli-
cations provide general monitoring, regardless of patients’
individual peculiarities. This kind of monitoring is helpful
for both patient and physician. To prescribe a suitable drug,
a mobile app needs to have the patient’s medical history,
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current medical conditions, vital signs, symptoms, and a
diagnosis, as well as drug contraindications, side effects, and
allergies. These factors are often compounded by uncertainty
and semantic complexity. Manual entry of these data causes
the application to create incorrect results that hamper physi-
cian decisions regarding patients. As a result, we need to
look at MH technologies and applications in the context of
global healthcare systems or the EHR ecosystem [56]. These
technologies must be integrated or plugged as components in
the existing medical systems. In addition, the development
of MH applications has to include four aspects [30]: (1) a
mobile client with medical sensors, (2) a wireless network
medium, (3) a distributed cloud service, and (4) an EHR
backend system.

B. OBJECTIVE OF THE STUDY
The primary aim of this paper is to provide a comprehensive
review of the recent peer-reviewed literature on MH inter-
ventions for DM. In this survey, we study MH technologies
in the context of the EHR ecosystem. In addition, we try
to answer two questions: Can we consider MH applications
as a component of an EHR system? Can MH applications
be plugged into the EHR environment? To address these
questions, we must check the interoperability between appli-
cations and distributed EHR systems, and check the clinical
decision support system (CDSS) capabilities provided by
MH apps (if any) and the compatibility with EHR deci-
sion support standards. We should determine the roles for
Internet of Things (IoT) wearables and wireless body area
networks (WBANs) to facilitate data aggregation and knowl-
edge provision. We should determine the role of big data
analytics to improve the intelligence from MH decisions.
To the best of our knowledge, no studies have discussed these
issues.

The remainder of this paper is organized as follows.
Section II provides a definition ofMH technology. Section III
covers related work for MH in the DM domain. Section IV
explains the methodology used to conduct this study.
Section V presents the results and a discussion. Section VI
looks at current challenges and future directions, and
Section VII is the paper conclusion and future work.

II. MOBILE HEALTH
According to the Pew Research Center [8], 81% of house-
holds with an annual income above $75,000 a year and 47%
of households with an income below $30,000 a year had
smartphones. For example, 90% of Americans used mobile
phones in 2014, and 64% used smartphones [13]. About
five billion individuals had mobile phones worldwide [18],
and about 500 million used mobile apps for sport, diet, and
chronic disease management in 2015 [20], [152]. Szydło and
Konieczny [191] pegged the availability of mobile phones
at 100% in developed countries. Therefore, the opportunities
for real-time health data tracking and individualized feedback
are enhanced due to the widespread uptake of smartphones,
wearable devices, and mobile apps [6]. The WHO defines

e-Health as ‘‘the use of ICT for health,’’ and according
to Pawar et al. [61], MH is ‘‘the application of mobile
computing, wireless communications, and network technolo-
gies to deliver or enhance diverse healthcare services and
functions in which the patient has a freedom to be mobile,
perhaps within a limited area.’’
MH receives a lot of attention from patients, health-

care professionals, application developers, network service
providers, and researchers [1]. According to a Pew 2013
Research Center report, 69% of US adults tracked at least
one health indicator, such as weight, diet, or exercise level,
highlighting the potential impact of mobile apps for self-
monitoring [9]. The tools used inMH include text messaging,
video messaging, web sites, and mobile phone applica-
tions. These tools can provide immediate access to health-
care resources and patient records, and can transmit clinical
data or communicate with healthcare providers. According
to one WHO survey [2], these tools are not costly, and
provide service around the clock, which makes them a
potentially viable option in a wide variety of settings.
MH can extend the reach of healthcare services to places
where little or no healthcare is available, such as rural
areas. It can provide faster emergency services, improve
CDSS capabilities, and enhance the detection, prevention,
and management of chronic diseases. However, MH is more
than just some applications on a mobile phone. It includes
numerous sophisticated applications that involve sensors,
WBANs, and mobile devices to provide numerous healthcare
services, plus healthcare professionals, intelligent CDSSs,
EHR backend systems, social media, cloud computing, and
big data analytics tools [28].
Regarding diabetes detection, many mobile apps can take

input from a patient in the form of a questionnaire and return
a risk score for developing diabetes or one of its complica-
tions. These are known as risk calculators. The most popular,
official, and widely used risk calculators include one from
the ADA1 (with seven questions) and the Canadian diabetes
risk questionnaire (CANRISK)2 with 13 questions. Most of
these risk factor calculators are naïve. They depend on a
short list of patient factors and process them in a shallow
manner [153]. Regarding DMmanagement, physical activity,
healthy eating, medication adherence (e.g., insulin dosing),
monitoring (e.g., blood glucose and weight tracking), educa-
tion, and problem solving are the six essential behaviors
for improving DM self-management [10]. Many mobile
apps offer options to support these behaviors [11]. In 2009,
the number of apps was 60; in 2011, it was 260; and in
2015, there were more than 1100 publicly available apps.
However, no robust studies evaluated the impact of apps
on DM self-management [12]. Szydło and Konieczny [191]
asserted that most of the offered solutions in MH are of
the closed variety, and there are few differences between
the offered solutions. No applications provided customized

1http://www.diabetes.org/are-you-at-risk/diabetes-risk-test/
2http://www.diabetestest.ca/
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and personalized services, and their results were not accu-
rate [152]. Regarding blood glucose tracking, the majority of
apps require manual data entry, while others receive trans-
mitted data from external devices, such as glucometers, via
USB connection or low-energy Bluetooth. Some apps support
data upload features, which enhances direct sharing of data.
Regarding data sharing, most apps are designed only for
the patient’s perspective. In addition, some apps enable the
sharing of data between physician and patient via email.
Most of the education apps (95%) provide general and non-
evidence–based information about the disease. In addition,
the information is not tailored to every specific patient [6].

III. RELATED WORK
In recent years, we have seen great advancements in medical
information technology [162]. Yang et al. [62] summarized
these technologies in health sensing, big data analytics,
and cloud computing. MH is one of the technologies that
benefit from these advancements. It has gained increasing
attention from researchers due to its practical relevance to
patients, healthcare service providers, developers, and others.
Concentrating on DM, there are many existing surveys of
its research and applications, which differ according to the
embedded components in the proposed systems [78]–[84].
Embedded features in current proposals include delivering a
short message service (SMS), providing a CDSS, connecting
to an EHR, providing big data analytics, connecting to a
cloud environment, and using sensing devices and WBANs.
For DM, the majority of the studies published used SMS
technology in disease prevention or management [75]. Gener-
ally, researchers encourage the use of diabetes apps to
track blood glucose and improve diabetes management and
self-monitoring systems [89]. However, the current state of
diabetes apps may not reach this goal [90]. Fu et al. [90]
asserted that current apps have limited functionality and inter-
action. For example, the clinical effectiveness measured by
reductions in glycated hemoglobin (HbA1c) only ranges from
0.15% to 1.9%.

Most of the existing surveys on MH discuss commer-
cial mobile applications’ effects on patient health. They
concentrated on the benefits of mobile applications
for enhancing patient monitoring and disease preven-
tion [1], [6], [7], [12], [16]. The reviewed topics fell into cate-
gories that include the following: app descriptions (number of
available apps, cost, user ratings, language, security, social
networking, and audience [such as patient or physician]),
usability analysis, and app content (self-monitoring, educa-
tion). Some surveys asserted that we cannot measure an
application’s success [18]. Other studies asserted that we
have not yet reached the needed level of utilization [24].
They discussed the functionalities provided and the ratings
of these applications. The majority of the current MH apps
for diabetes prevention and management are standalone,
depending on the data collected from the patient in real time.

Rehman et al. [1] surveyed some of the mobile appli-
cations related to DM, physical activity, and smoking.

This survey mentioned that apps mainly depended on the
provision of SMS messages to patients with diabetes. SMSs
tended to be used for medication adherence, appointment
reminders, and to deliver motivational messaging [7]. This
is not adequate, because a patient needs personalized and
specific guidance for effectiveness. This requires connec-
tions with the EHR, a CDSS, a WBAN, the cloud, big data
analytics, and clinical practice guidelines (CPGs) [48], [49],
which were not discussed. Hartz et al. [6] reviewed DM
prevention and management technologies and identified
less explored areas where MH tools showed promise; they
asserted that wearable activity trackers and mobile apps were
the most prominent MH technologies for type 2 DM. In addi-
tion, they asserted that non-invasive and invasive wearable
devices, blood glucose tracking, diabetes education, and data
sharing could improve DM management. However, their
paper did not discuss the technical advances or limitations
of the technologies.

Brzan et al. [56] evaluated 65 apps for diabetes manage-
ment (21 from Google Play, 31 from the App Store, and
13 from the Windows Phone Store). They stated that 56 of
these apps (86.15%) did not meet even minimal require-
ments, or did not work properly. In addition, they concluded
that only nine of the 65 reviewed apps (13.85%—five from
Google Play, three from the App Store, and one from the
Windows Phone Store) could be versatile and useful enough
for diabetes self-management. Fijacko et al. [91] surveyed
type 2 DM risk-assessment mobile apps; they asserted that
nine out of 31 reviewed mobile apps disclosed the name of a
risk calculator, but no upgrade was done to this information.
Diabetes risk assessment is not only about calculators; the
whole of the patient EHR profile must be taken into consid-
eration, and decision rules must be imported from standard
CPGs and updated regularly. Garabedian et al. [12] found
only 20 peer-reviewed articles published since 2010 with
robust evidence of the effectiveness of MH interventions
for diabetes, such as HbA1c enhancement. Gray et al. [16]
surveyed type 2 DM risk calculators based on smart-
phones. Miah et al. [66] reviewed MH from an information
systems–design point of view; they identified the design
themes of MH apps. Georga et al. [77] presented the state
of the art in wearable medical devices for monitoring
and controlling blood glucose levels (e.g., OneTouch Verio
Sync, Guardian REAL Time, Freestyle Navigator II, iPro
Evaluation, GlucoDock, iBGStar, Dario, and GlucoDay S).
In addition, they surveyed mobile diabetes self-management
interventions. Lee [93] reviewed the limitations of type 2 DM
apps, concluding that MH has great potential to improve
DM management, but expressed concern over connections
with EHR ecosystems, provision of CDSS capabilities, and
security and privacy enhancement. In addition, the Inter-
national Diabetes Federation surveyed the role of MH in
improving DM management [94]. They concluded that inte-
grationwith existing healthcare systems, privacy, and interop-
erability issues must be handled to improve acceptance levels
and service effectiveness. Olla and Shimskey [97] proposed
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a taxonomy of MH applications. Khansa et al. [88] tried to
identify the gaps in mobile apps by monitoring 31 patients
with diabetes. Khansa et al. [88] and Olla and Shimskey [97]
concluded the following: (1) there is a lack of interaction
between patients and healthcare providers, (2) there are
challenges in managing the complex care of diabetes, and
(3) there is a lack of standards. This means that mobile apps
were not connected to the healthcare organizations’ EHR
systems. In addition, the apps did not model and handle prob-
lems correctly. Most of the previous reviews concentrated
on the medical limitations of MH studies and applications.
They all highlighted the problems, but they did not provide
direct causes of the problems, and did not offer applicable and
clear solutions to them. They all declared that DM prevention
and self-management apps were not fully useful; in addition,
we can see the increased percentage of patients with diabetes,
and the increased number of DM complications.

In this study, we try to analyze the causes of the current
limitations in MH, and we suggest some applicable solu-
tions to enhance the capabilities of these critical applications.
We evaluate MH in its global context, where MH has to be
treated as a pluggable component in the EHR ecosystem.
To achieve these goals, the current literature was surveyed
to study the importance of MH technology as a whole, and its
importance for diabetes prevention and management. A total
of 60 studies from the diabetes literature were extensively
reviewed to highlight the current limitations of diabetes MH
research.

IV. METHODS
This study conducts a review of the literature on diabetes
mobile health, which was carried out in the following steps.

A. INFORMATION SOURCES AND SEARCH STRATEGY
In this study, we depend on three academic databases (DBs):
ScienceDirect3 (SD), SpringerLink4 (SL), and IEEE
Xplore5 (IX). MH research for diabetes mellitus was not
popular before 2011. As a result, these databases were used
to collect the journal conference research papers published
from 2011 to 27 September 2017, inclusive. For the search
strategy, we used ‘‘$’’ AND ‘‘#’’ where ‘‘$’’ represented
keywords like mobile health, MH, mobile application, and
mobile computing and ‘‘#’’ represented other groups of
keywords, including [EHR OR electronic health record OR
medical record], [CDSS OR DSS OR decision support OR
expert system], [interoperability OR integration], [diabetes
mellitus], [big data AND medical], and [cloud computing
AND medical]. Other searched keyword groups include
[Internet of Things AND diabetes mellitus], and [wearable
AND diabetes mellitus]. The last group of keywords was
[diabetes mellitusAND (WBANOR BANOR (wireless) body
area network OR sensor area network)].

3http://www.sciencedirect.com/
4https://link.springer.com/
5http://ieeexplore.ieee.org/Xplore/home.jsp

We acknowledge that many other areas are highly impor-
tant and should be included, such as security, privacy,
(wireless) networking, global positioning systems (GPSs),
and sensors, among others. Due to length restrictions, we had
to limit the scope of the review, and it is our sincere hope that
others will cover omitted topics.

B. ELIGIBILITY CRITERIA
First, we collected the current literature for each combination
of keywords from the three databases, and we then selected
from each category a set of representative papers to study
deeply and analyze. All the studied papers are in English.
To examine the importance ofMH research, we first surveyed
the literature for each group of keywords, and then concen-
trated on diabetes for deeper study. The exclusion criteria
were non-medical studies, security and privacy, GPSs and
geographic information systems, electronics, non-English
studies, studies where the searched keywords are not in both
the title and the abstract, and studies that focused on multiple
diseases. If the full text of the paper was not available, it was
excluded.

C. STUDY SELECTION
We collected the relevant articles for our topic from the three
databases, as shown in Fig. 1. The SD database has the largest
number of papers in the MH domain, followed by SL and IX
databases. In addition, we noticed that the number of research
papers increased from 2011 to 2016. For example, the SD
database held 7.2% of all papers from 2011 to 2017. However,
in 2016, that database held 20.19% of the total, a difference
of 12.99% over 2011. In the same way, the SL database
held 7.69% of all papers from 2011 to 2017, but in 2016,
it was 19.67%, a difference of 11.98%. The IX database held
10.76% of all papers from 2011 to 2017, and in 2016, it was
18.67%, an additional 7.91%. This means that the topic got
much more attention in this period.

FIGURE 1. The total number of papers for each year.

By concentrating on DM, Fig. 2 illustrates the number
of research papers from all databases in each year. As can
be seen, diabetes research papers were increasing each year
except 2012. This shows that the MH topic garnered more
interest as a method to improve diabetes detection, preven-
tion, monitoring, and management.

Fig. 3 shows the total number of articles in the diabetes
mellitus domain, grouped by keywords. These statistics were
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FIGURE 2. The total number of papers for diabetes mellitus from all
databases.

collected from all three academic databases. For mobile
health, DM was in 12.36% of the literature; and for the
abbreviationMH, DM was in 14.09%. Similarly, for the term
mobile computing, DM was in 2.08% of the literature; for the
term mobile application, DM was in 4.91%.
We can see that mobile health technologies and research

received a great deal of attention in the period under
study. Fig. 3 shows that WBAN technology was of great
interest. However, the percentage of patients with diabetes
still increased, and diabetes still produced complications and
severe comorbidities. This means that diabetes mobile apps
did not have the intended effect. To solve this issue and to
propose suitable solutions, we have to criticize the current
state of the literature according to specific guidelines.

For each of the surveyed topics including the relationships
between MH and EHRs, big data, CDSSs, cloud computing,
the IoT, and WBANs], we concentrated on diabetes mellitus
mobile health advancements. Our strategy included the
following steps, which are detailed in the next section.

1. We include the original articles in the analysis.
2. We discuss the criticality or importance of each topic

to the success of mobile health.
3. We give examples from the literature in general.
4. We put specific focus on DM to measure the advance-

ments in each topic, to define gaps and challenges,
and to suggest guidelines for possible future research
directions.

V. RESULTS AND DISCUSSION
To derive the dimensions of this study, we performed a
comprehensive literature survey of MH. We classify the MH
challenges into the following five categories: (1) connec-
tivity between MH and EHR systems and their semantic
interoperability, (2) MH’s CDSS capabilities, (3) big data
analytics features, (4) connectivity with cloud computing
environments, and (5) connectivity withWBANs and the IoT.
For every category, we conducted a literature review of the
current research status; then, we identified several research
challenges that need to be addressed. These challenges may
provide a platform and directions for future research in the
MH domain and can affect how MH applications will be
designed, developed, evaluated, and adopted.We decided that
security and privacy issues are outside the scope of this study.

We agree that MH cannot solve all healthcare problems.
In addition, MH may not completely automate the delivery
of healthcare services because of the potential damage and
injuries to the patient’s health. However, MH applications
must add real and advanced value to all parties (e.g. patients
and healthcare professionals). These values can be achieved
only by working with a complete picture of these integrated
and complementary technologies (mobile devices, the IoT,
WBANs, CDSSs, EHRs, big data, and the cloud).

A. RECORD SELECTION AND ARTICLE TYPE
For each category, we selected the most suitable and orig-
inal set of articles based on the article title and abstract.
We independently reviewed the titles and abstracts of poten-
tially relevant articles based on the inclusion criteria; studies
that violated the inclusion criteria were excluded. Selected
studies were retrieved for full-text review. These articles were
extensively reviewed by all the authors of the study, and
data were extracted from each article. The extracted data
depended on the category of the article. For instance, for
diabetes/mobile CDSS papers, the collected data include the
decision support mechanisms used, connections to WBANs,
execution of continuous machine learning, interactions with
EHRs, handling of uncertainty, etc. Conducting an analysis of
these articles enables us to get an extensive overview of the
current state of research in MH, and uncovers future research
challenges.

Our review was done with the following steps based
on the PRISMA6 methodology. Fig. 4 is a flow diagram
that identifies the sequence of steps taken to identify the
most relevant list of articles. In the identification phase,
a total of 3540 articles were identified and collected based
on searches of the three databases. In the screening phase,
we excluded duplicates (n= 2404), andwe screened the titles,
abstracts, and keywords of the remaining articles (n = 1136)
based on the defined inclusion criteria. A total of 880 arti-
cles were removed as not relevant, based on title, abstract,
and keywords. In the eligibility phase, the full text of each
remaining article matching the inclusion criteria (n = 256)
was reviewed, and 196 articles were additionally excluded
as not relevant based on the exclusion criteria. Finally, for
the inclusion phase, 60 articles complying with our eligibility
criteria were chosen for this study.

B. CATEGORIZATION OF MH RESEARCH
In this section, a general analysis of each category is provided
to determine the state of the art. Next, we concentrated on
diabetes research to compare it with the current state of the
art in each category.

1) MH AND EHR SEMANTIC INTEROPERABILITY
An EHR contains comprehensive patient medical and admin-
istrative data. Connecting MH apps to this repository is crit-
ical, because it allows the combination of all patient historical

6 http://www.prisma-statement.org/
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FIGURE 3. The total number of papers for diabetes mellitus grouped according to keywords.

FIGURE 4. PRISMA flow diagram for our study selection process.

and real-time data, whereas mobile devices have less memory
and less storage capacity [56]. This connection provides end-
to-end comprehensive care, and supports sharing of real-time
data between healthcare provider, physician, and patient.
Iwaya et al. [65] asserted that an MH application has to
connect with an EHR system and provide decision support
capabilities. The collected data can subsequently be super-
vised and studied by physicians. In addition, these data can
be integrated with other patient data and used by machine

learning tools to discover advanced information. Moreover,
the apps can automatically get more data about the patient,
so they have more information and can provide accurate
real-time decisions [102].

By integratingMH apps and the hospital EHR repositories,
the fast and automatic collection of high-quality data helps to
improve usability, especially for the elderly.

However, an EHR system is always distributed with
heterogeneous components, each with different standard data
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models (e.g., Health Level 7 [HL7] v2, Reference Informa-
tion Model [RIM] v3, Fast Health Interoperability Resources
[FHIR], Clinical Document Architecture [CDA], OpenEHR,
ISO/IEEE 11073, CEN EN13606, and Digital Imaging and
Communications in Medicine [DICOM]). Each has different
encoding terminologies (e.g., Systematized Nomenclature of
Medicine Clinical Terms [SNOMED CT, or SCT], Logical
Observation Identifiers Names and Codes [LOINC], Unified
Medical Language System [UMLS], RxNorm, International
Classification of Diseases [ICD], Medical Subject Headings
[MeSH]), different datatypes, different schemas, different
vendors, different formats, etc. [102], [106]. Linking EHRs
with MH apps requires solving the problem of semantic
integration and interoperability, because there is no universal
standard or terminology [25]. Ahmadian et al. [114] revealed
that the diversified terminologies adopted by EHRs and
CDSSs result in problems of semantic interoperability. Many
organizations help in defining global standards, including
the International Organization for Standardization (ISO),
HL7, WHO, and the International Medical Informatics
Association (IMIA).

There are many standards for data transfer, including
binary, Extensible Markup Language (XML), JavaScript
Object Notation (JSON), Comma Separated Variable (CSV),
and so on. However, the data may be represented in the same
format but with different semantics. Medical data must be
fetched via the standards of the EHR to preserve semantics
and consistency.

In addition, the collected data from IoT devices must be
standardized, compatible, and semantically consistent with
the patient’s EHR data to preserve the meaning of the inte-
grated data. MH and sensor-collected data can be added
to the EHR, or a gateway can be used with a standard
interface (e.g., HL7 CDA) to communicate different types
of data [98]. Khan et al. [175] proposed Adapter Interop-
erability Engine (ARIEN) as a middleware gateway among
EHRs to provide semantic mapping between different stan-
dards using the Mediation Bridge Ontology (MBO); this
centralized middleware has many limitations, and it was
improved with distributed middleware by Lomotey and
Deters [176]. Up to the time of writing this article, there
were no unified standards for data storage and communi-
cations. The EN13606 standard tried to harmonize them
with HL7 v3’s RIM and CDA, and openEHR archetypes.
Other studies [102] depended on EN13606 as a reference
framework to build an interoperable EHR. This study imple-
mented the iCabiNET system’s access standard EHR from
mobile apps.

Interoperability between healthcare systems must be
handled. The world’s biggest professional services company
recognized that interoperability is a key enabler of
scalable MH.

It includes syntactic interoperability (e.g., patient age and
date of birth), and semantic interoperability (e.g., liver disease
is a hepatopathy, and choledochocele is a type of liver
disease). Syntax interoperability can be achieved by using

a unified standard, such as HL7 RIM or OpenEHR, which
unify the structure (i.e., data model) of the data. In addition,
in case of heterogeneous standards, the mappings between
standards using a semantic ontology can solve the problem.
For semantic interoperability, Berges et al. [87] asserted that
EHR semantic interoperability has not been achieved yet.
The Joint Initiative for Global Standards Harmonization7

defined semantic interoperability as ‘‘the ability for data
shared by systems to be understood at the level of fully
defined domain concepts.’’ It is the ability of many computer
systems to exchange data, where the receiving system accu-
rately and automatically interprets the meaning of that data as
defined by the sender. HL7 defines semantic interoperability
as ‘‘the ability to import utterances from another computer
without prior negotiation, and have your decision support,
data queries, and business rules continue to work reli-
ably against these utterances.’’ Interoperability can be seen
from different perspectives as technical (i.e., the exchange
of messages between systems via XML, service-oriented
architecture [SOA], and web services), semantic (i.e., using
common information models, like HL7 RIM, and common
terminologies like ICD) and procedural (i.e., the interoper-
ability of people interacting with technology) [106].

Semantic interoperability must exist among different
EHR systems. In addition, it must be maintained between
EHRs and CDSSs; between different CDSSs, EHRs,
and mobile apps; and between EHRs and sensing
devices [48], [49], [87], [88]. A full study of semantic inter-
operability issues, and solutions was compiled by Pileggi
and Fernandez-Llatas [74]. Park et al. [71] asserted that the
current mobile apps for disease management have issues with
reliability, interoperability, and scalability. In the e-Health
domain, where data are clinical and biomedical, Seman-
ticHealthNet8 is a chronic heart failure project that ended in
May 2015. It focused on semantic interoperability of biomed-
ical knowledge. It developed an ontological framework that
is compliant with SCT, HL7 CDA, ISO/EN13606, and
OpenEHR. This facilitated seamless exchange of EHR data.
HL7 developed CDA to semantically exchange messages
between heterogeneous EHR systems; Haque et al. [98] used
this format to propose a framework where mobile apps send
and receive secure CDA messages to/from EHRs.

Recently, HL7 developed FHIR. It can accurately support
storing, exchanging, and using health information in a mobile
environment; it overcomes the limitations of HL7 V2 and
CDA. However, in the MH domain, there are heteroge-
neous data that need to be considered. These data are from
different resources with heterogeneous formats, such as IoT
sensor data. Web Ontology Language 2 (OWL2) extensions
should be incorporated to solve the problem of hetero-
geneous medical ontologies, terminologies, and standards.
Mouttham et al. [106] proposed an interoperability ontology
for collaborative care delivery. Based on this ontology, they

7http://www.skmtglossary.org
8http://www.semantichealthnet.eu/
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proposed a generic EHR architecture to support interoper-
ability between different parties including MH. Xu et al. [42]
handled the heterogeneity problem of medical data formats
in IoT platforms by using a semantic data model.

Antón-Rodríguez et al. [101] proposed an EHR system
(EHRmobile) accessible from mobile devices, based on
HL7-CDAR2 andDICOM standards and aMySQL database,
for patients with mental disabilities. Parashar et al. [25] built
the mOpereffa Android-based mobile app. They designed the
mobile user interface based on standardOpenEHR archetypes
to ease subsequent integration with the EHR backend.
However, the demo was very abstract. It has not been applied
to, or tested for, any medical problem, and its performance
was not tested. A mobile application for a standard EHR
called Healthsurance was proposed by Jain et al. [99], which
is based on mOpereffa. Its main idea is to generate a dynamic
GUI based on openEHR archetypes. The authors first created
archetypes using Archetype Definition Language (ADL); the
archetypes are then parsed by an ADL parser and wrapped
into Java classes; then these classes are used to build dynamic
GUI forms, and the data are stored in a MySQL rela-
tional database based on Hibernate technology and a generic
schema, i.e. entity attribute value (EAV).

Archetypes have attracted interest when building interop-
erable systems, because approximately 100 archetypes are
enough to build an interoperable primary care EHR [100].
Microsoft adopted OpenEHR in its Connected Health Frame-
work v.2 [26]. However, there are many global standards
that use different mechanisms other than archetypes. In addi-
tion, many studies did not discuss the problem of unstruc-
tured sensor and real-time data. The majority of the studies
physically store the mobile data in a database at specific
intervals. The contents of these databases are synchronized
with EHR data. Utilizing gateways with standard interfaces
can connect the complete EHR in a hospital with mobile
personal health records (mPHRs) stored on smart devices or
in the cloud [104], [105]. PHR message formats have some
XML-based standards, including the ATSME2369-05 Conti-
nuity of Care Record (CCR) [107] and the HL7 Continuity of
Care Document (CCD) [108].

According to the National Alliance for Health Informa-
tion Technology [71] ‘‘a PHR is an individual’s electronic
record of health-related information that conforms to nation-
ally recognized interoperability standards that can be drawn
from multiple sources while being managed, shared, and
controlled by the individual.’’ Zapata et al. [105] evaluated
24 mobile PHR applications. The results showed that all
PHR studies are not suitably structured and have many
limitations. Lomotey and Deters [104] tried to solve the
problem of data synchronization between an EHR and a
mobile PHR database by proposing a distributed mobile
architecture based on distributed cloud-hosted middleware.
Hsieh et al. [40] proposed a mobile EHR system based on the
HL7 standard to help nursing staff administer medications.
The system was based on the HL7 exchange standards (i.e.,
CDA) to communicate data between end users and distributed

heterogeneous databases. However, the system could not
handle semantic interoperability as required, simply because
it was based on a single standard (i.e., HL7). Park et al. [71]
proposed the Self-Management mobile Personal Health
Record (SmPHR). It offers chronic disease management in an
Android 4.0.3–based mobile app. The system implemented
standard protocols that try to provide interoperability between
various health devices and EHRs. The sensor data were
collected in a SQLite database through ISO/IEEE 11073, and
for transmission to the EHR, these data were converted to
EHR’s HL7 V2.6 standard.

FIGURE 5. Progress in the literature on EHRs and semantic
interoperability for the MH domain.

From the three databases, we surveyed the existing studies
that connect MH to EHRs with interoperability and integra-
tion. The number of papers increased each year, as shown
in Fig. 5, which means this topic attracted interest. However,
this problem is still a hot point of research. Ontologies
and their formal description logics can provide intelli-
gent solutions for the problem. Ontologies are superior to
relational databases and taxonomies in terms of expressive-
ness [109]. They support knowledge sharing, reuse, and
inference. Yilmaz et al. [109] proposed an architecture for
developing intelligent EHR systems. It stores data using
OWL ontologies and supports sharing of data between
different hospitals. However, they built a local ontology,
and there will be a problem integrating standards-based
systems. The optimum solution for this kind of problem is the
harmonization of OWL ontologies, medical terminologies,
and EHR standards to implement the whole interoperability
stack. For example, Noran and Panetto [110] argued that the
healthcare interoperability approach defined by ISO 14258
should be based on predefined shared ontologies. To the
best of our knowledge, there are no such studies in the
MH domain.

After studying the literature regarding the relationship
between mobile health, EHRs, and semantic interoperability,
we concentrated on the diabetes domain. We measured the
current research status in diabetes regarding these technolo-
gies. As shown in Table 1, the evaluation is based on a set of
important metrics, including the following.

1. Data format: determines the format of the collected
data in an EHR or a PHR as either a relational database
or a NoSQL database.
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TABLE 1. Diabetes-related EHR studies.

2. Destination: determines if the data are collected in a
private mobile device, in the cloud, or on local servers.

3. Syntax interoperability: determines the open standards
data model used to handle syntax interoperability
between different data models.

4. Diabetes type: determines the covered diabetes type.
The codes used are T1 for type 1DM, T2 for type 2DM,
and G for gestational DM, but not all studies defined a
specific type.

5. Semantic interoperability?: indicates how interoper-
ability between different encoding and terminology
systems is handled.

6. Platform: determines the physical location of the
storage and whether it is a full EHR or a PHR.

7. Connection with a WBAN?: indicates if the study
supports the collection of IoT sensor data in an EHR
database.

8. Handles unstructured big data?: indicates if semi-
structured and unstructured data, such as social media
data and freely entered data, are handled within the
collected data.

In general, the number of quality studies on mobile health
for diabetes based on the EHR is not high. Table 1 lists the
most relevant papers studied. As seen in Table 1, all the
studies have many limitations that need to be addressed. Due
to space restrictions, we use the table’s comparisons only to
highlight the limitations in the literature. Although T1 and T2
diabetes are treated differently, the majority of the studies did
not differentiate between them. Many studies still depend on
relational databases for EHR and PHR storage. Although the
current open source technologies of NoSQL databases are
still not suitable for storing sensitivemedical data, a relational
database cannot deal with current medical big data.

Syntax and semantic interoperability are critical for
building distributed environments with diverse data formats,
terminologies, data models, and sources. In addition,
handling (collecting, storing, processing, and analyzing) big
data collected from a WBAN has not been properly handled
in the literature.

FIGURE 6. Progress in the literature on the CDSS and MH.

2) MH AND THE CDSS
There are many mobile apps to help users with chronic
diseases. A CDSS is a computer program that provides
personalized decision support based on a knowledge base
and a patient database. Fig. 6 illustrates the importance of
CDSS studies, and shows the increases in CDSS usage every
year. However, the CDSS impact on patient outcomes is
marginal [160]. Without decision support capabilities inte-
grated with the EHR system, the EHR is only a repository of
a huge volume of raw data that cannot be utilized to provide
real assistance for patients and physicians. Integration of
the two facilitates self-monitoring, delivers customized and
actionable knowledge, elicits positive behavior changes, and
supports effective self-management of DM. It is essential at
three different levels of complexity. The first level is imple-
mented on the patient’s mobile device, and this system is
for lightweight and extremely time-sensitive decisions that
do not require much processing, do not need much data,
preserve battery lifetime, and at the same time, need to be
fast (even with a lost internet connection). The second level
is implemented in the cloud, and it depends on the EHR level
exported to the cloud and the amount of metrics collected
from the patient via WBAN. The CDSS offers decisions that
are more complex, that require processing power and analysis
of a large set of data. The third level is in the healthcare
backend system, which is the most complex level. It depends
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on the whole EHR system. This type can be used in public
health strategic decisions and for decisions that depend on
deep analysis of the medical temporal data.

A mobile CDSS must be smart enough to make the correct
decision in real time [77]. Farmer et al. [85] proposed a
system to collect patient data and send it to a domain expert
for decision making.

This is not suitable for DM; MH CDSS applications are
critical for chronic disease management because they can
make decisions in critical situations where the patient cannot
contact a physician, e.g., a diabetes patient goes into a coma at
night [47]. To do that, the CDSS must be built with a formal,
standard, and up-to-date knowledge base. In addition, it must
make customized decisions based on specific (i.e., current
and historical) patient profile data. The CDSS can reduce
the patient’s visiting times and improve quality of life by
providing suitable guidance anytime, anywhere. As asserted
by the HL7 standard, the CDSS must be scalable, intelligent,
interoperable, and accurate. Many incorrect decisions occur
due to lack of correct and complete data [28], [44], [47].
The incorrectness can come from manual interaction of the
patient with the CDSS when entering data. The CDSS must
be able to access the complete patient history in addition to
current-state data. Sensing devices and WBANs can improve
this process because they provide continuous monitoring of
the patient’s vital signs, and automatically transfer these data
to a mobile device. For patients with diabetes, this real-time
monitoring can avoid many adverse events. Generally, many
of the current DM CDSS tools are utilized to provide treat-
ment adjustments, but only for research purposes [77], [86].

Healthcare professionals must consider symptoms,
medical history, lab results, and diagnostic tests (among other
things) in reaching medical decisions. A mobile CDSS must
have the ability to access the medical history of the patient
stored in distributed and heterogeneous EHR environments
to make sophisticated, individualized, and customized deci-
sions [48]. Moreover, the CDSS has to be active by extracting
the most recent information from every suitable resource,
such as recent CPGs inferred knowledge from machine
learning techniques, social media, and domain experts [47].
This capability can be achieved by building a CDSS based on
a standard interface (e.g., the HL7 GELLO common expres-
sion language and the vMR data model) and a sharable and
standard knowledge base (e.g., HL7 Arden Syntax, Guideline
Interchange Format [GLIF], Sharable Active Guideline Envi-
ronment [SAGE9], PROforma, Prescribing Rationally with
Decision-Support in General-Practice Study [PRODIGY],
Asbru, and Global Uniform Interoperable Data Exchange
[GUIDE]). Zhang et al. [113] proposed a CDSS based on
a sharable knowledge base where each knowledge module
is semantically well defined based on standard information
model, medical terminology, and representation formalism.
Service-oriented architectures can provide some solutions to
this issue [113], [148]. Loya et al. [148] surveyed CDSSs

9http://sage.wherever.org/

and provided some future directions. Currently, in mobile
computing and MH domains, there are many systems for
specific needs, but they are independent, isolated, and incom-
patible with surrounding environments [46]. These systems
are not usable because they quickly become out of date.
The current EHR environments have significant limita-
tions in allowing pluggable CDSS services within complex
workflows [49].

Integration of the EHR and CDSS, and interoperability
between heterogeneous CDSSs require the handling of
semantic interoperability challenges [44], [48], [147], [160].
Zhang et al. [160] asserted that a CDSS must be based
on CPG information represented in a standard format and
integrated into the EHR with encoded and standard content.
Interoperability is based on terminologies, definitions of
concepts, and reference models. Standards like HL7’s CDA,
RIM, Arden Syntax, and vMR can play a critical role in
this issue, where patient data and decision knowledge are
mapped to/from standard data model formats [47], [113].
Terminology can be based on standard medical terminolo-
gies, such as SCT and UMLS, and/or OWL2 ontologies
(e.g., gene ontology [GO], the Foundational Model of
Anatomy [FMA], Disease Ontology [DO], Diabetes Mellitus
Treatment Ontology [DMTO], Diabetes Diagnosis Ontology
[DDO], etc.)10 [36], [72]. Definitions of concepts can be
based on archetypes, as in openEHR, using Archetype
Definition Language. Many standardization organizations
have proposed reference models, such as RIM under HL7.
Zhang et al. [160] proposed a solution for CDSS semantic
interoperability that is based on a representation of CDSS
knowledge and data using an OWL ontology and HL7’s RIM.
Sáez et al. [44] proposed semantic interoperability of a rule-
based CDSS and an EHR focusing on standardized input
and output documents conforming to an HL7 CDA wrapper
However, there are no such studies into mobile environ-
ments. A small number of studies in the literature handled
these issues, and nearly no existing apps have implemented
these capabilities. Torre-Díez et al. [50] reviewed CDSSs in
ophthalmology, and concentrated on mobile apps available
from the Google Play virtual store11 for Android devices
and the App Store12 for Apple’s iOS. They concentrated on
whether the CDSS is connected to an EHR, the cloud, and
data mining algorithms. They asserted that existing CDSSs
are hardly ever applied in a practical way, and they are far
from reaching potential optimization in healthcare systems.
This can explain why the number of patients with diabetes
keeps increasing, despite the huge number of diabetes mobile
apps. Castaneda et al. [147] tried to answer such questions,
and asserted that current CDSSs provide weak features
because they have to be integrated with EHR systems via
standards.

10http://bioportal.bioontology.org/
11https://play.google.com
12http://store.apple.com
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TABLE 2. Some smart CDSS studies evaluated according to a set of measures.

Other barriers against mobile CDSSs include the unstruc-
tured, varying, and uncertain (i.e., vague) nature of medical
data, which are difficult for computer systems to process.
One possible solution is the encoding of CDSS information
and EHR data with unified and standard medical ontolo-
gies, such as RxNorm, ICD, etc. Using ontologies and
semantic reasoners in combination with the CDSS reasoning
mechanisms enables the creation of more intelligent apps
capable of discovering new information and inferring facts
from the available information [111]. Bobed et al. [111]
asserted that the popular and currently available descrip-
tion logic (DL) reasoners (e.g., CB, ELK, HermiT, jcel,
JFact, Pellet, and TrOWL) could be used on Android-based
devices. In addition, there are new mobile DL reasoners
(e.g., mTableau, Pocket KRHyper, Delta, and Mini-ME)
developed for mobile devices [111]. However, there has not
been widespread adoption of these efforts in the medical
domain. Pappachan et al. [112] used a semantic reasoner in
a mobile device to infer possible diseases for rural patients,
given their symptoms and context, where connectivity is
usually nonexistent. Uncertainty can be handled by fuzzy
logic and statistics.

A fuzzy ontology extends fuzzy semantics. However, there
is no support for any fuzzy ontology reasoners, such as
fuzzyDL, on mobile devices yet [111].

In the literature for MH, there are some studies that tried
to handle part of these requirements [27], [39], [45], [47],
as shown in Table 2. Miller and Mansingh [27] proposed
the design and implementation of a distributed, intelligent,
mobile agent–based CDSS called OptiPres for drug prescrip-
tions. The authors asserted that the mobile system must be
integrated with an EHR system andwith artificial intelligence
techniques, such as case-based reasoning (CBR) or rule-
based reasoning (RBR). Vedanthana et al. [115] proposed
Decision-Support and Integrated Record-keeping (DESIRE),
a tablet-based nursing CDSS tool to assist rural clinicians
taking care of hypertension and HIV patients in Kenya.
This app supports the retrieval of patient data from an
EHR using cellular networks. However, as seen in Table 2,
this app has many limitations. For example, they tried to
integrate the EHR with a CDSS but did not rely on any

standards. In addition, the reasoning mechanism was not
discussed. Bourouis et al. [116] proposed an Android-based
intelligent system integrated with a microscopic lens that
supports patients’ regular eye examinations after a diag-
nosis of retinal disease. The authors used artificial neural
networks (ANNs) to analyze the retinal images to identify
retinal disease conditions.

Another dimension that improves the efficiency of a
CDSS and enhances its inference capabilities is the inte-
gration of a CDSS knowledge base with a real-time
machine-learning (ML) engine to keep the CDSS up
to date [40], [54], [117], [149]. These CDSSs, classi-
fied as Type Four CDSSs according to the Australian
National Electronic Taskforce Report 2000 [45], can update
their information dynamically, incorporating new predictive
models or employing incremental learning methods. The
ML engine can continually mine the collected big data to
infer new information, which can be used in reactive and
preventive monitoring of patients. The learning approaches
can be divided into data-driven approaches, knowledge base
approaches, and hybrid approaches [141].
Data-driven approaches are classified as supervised, semi-

supervised, or unsupervised algorithms. Supervised learning
approaches (with completely labeled training data) are arti-
ficial neural networks, Bayes networks (BNs), decision
trees (DTs), support vector machines (SVMs), k-nearest
neighbor (KNN), etc.

For instance, Gyllensten and Bonomi [142] proposed a
feed-forward neural network with five-fold cross validation
to train the data of free-living subjects in daily life from a
single accelerator. Unsupervised learning methods (without
any labeled training data) include K-means clustering and
the Gaussian mixture model [143]. Semi-supervised tech-
niques fall in between unsupervised learning and supervised
learning [200].
Knowledge-based approaches represent and extract

knowledge from a domain expert to build a CDSS.
These approaches consist of syntax-based, logic-based and
ontology-based approaches. The syntax-based approach uses
grammar, which defines the structure based on language
modeling. It follows a hierarchical structure for two layers
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of hidden Markov models (HMMs) and BNs on the bottom,
with context-free grammar on top. A logic-based method
(e.g., description logic) describes concepts, and uses logical
rules for high-level reasoning. The ontology is flexible
and used in the IoT-enabled healthcare field due to its
reusability, computational completeness, decidability, and
practical reasoning algorithms.
Hybrid approaches combine both data-driven and

knowledge-based approaches. Qi et al. [141] collected a
set of machine learning studies that are based on WBAN
data. Ahmed and Abdullah [51] and InSook et al. [52]
discussed the potential importance of data mining applied to a
CDSS. Big data mining, semantic data mining, and temporal
data-mining algorithms are the important techniques for
discovering knowledge from the patient’s historical and
real-time data [62]. Verma et al. [39] proposed a cloud-based
IoT framework to monitor students for waterborne diseases.
After collecting sensor data and storing them in the cloud,
temporal classification algorithms (i.e., a decision tree by
C4.5 and k-nearest neighbor) were used to mine information
from these data; then, the information was used to build a
CDSS to alert various parties.

Forkan and Khalil [117] developed a real-time, multi-label
classification algorithm to forecast vital-sign values and their
related abnormalities. The framework depends on a set of
wireless sensors that collect a patient’s vital signs and send
them to the cloud; these data are classified using machine
learning techniques to predict the patient’s upcoming anoma-
lies. This study only depended on the collection of some vital
signs to provide the prognosis of a patient. This is not enough,
because to diagnose a disease, all of the patient’s medical
history must be considered.

Regarding diabetes, there are many CDSS studies.
Georga et al. [77] discussedmobile self-management support
interventions in diabetes care. They asserted that most
systems are educational, and the data are entered manually.
Donsa et al. [14] studied how CDSSs and machine learning
can improve the individualization of patients’ diabetes
treatments. Hanauer et al. [15] proposed a computerized
reminder system for blood glucose monitoring, and argued
that using cellphone text messaging provided a portable,
acceptable, and inexpensive method for managing diabetes.
The evaluation of these CDSSs is based on the following
metrics.

1. Knowledge base format: determines the format of the
CDSS knowledge base and the utilized standard, such
as HL7 Arden Syntax, Asbru, EON, GLIF3, GUIDE,
and PROforma.

2. Has application?: indicates if the proposed study
implemented an application or not.

3. Handles uncertainty?: indicates if the system handles
the vague nature of diabetes by using some fuzzy
technologies, such as fuzzy inference engines or fuzzy
ontologies.

4. Cloud-based?: indicates if the application is connected
to a cloud environment to process the large amounts of

patient data, and if it has access to machine learning
modules.

5. Semantic interoperability?: indicates the semantic
interoperability techniques between CDSS and EHR
systems, such as HL7 vMR.

6. Has temporal dimension?: indicates if the proposal
handles the temporal nature of chronic disease.

7. Diabetes type: indicates the covered diabetes type. The
codes used are T1 for type 1 DM, T2 for type 2 DM,
and G for gestational DM.

8. Data sources: indicates the sources of data used to
make personalized decisions (i.e., connection with an
EHR, social media, and IoT sensors) to define if
the CDSS depends on the patient’s whole profile or
depends on real-time input.

9. Attached machine learning module?: indicates if the
CDSS includes machine learning capabilities that
continuously infer knowledge from collected big data
to keep the knowledge base up to date.

10. Knowledge based on CPGs?: indicates if the CDSS
knowledge base relies on CPGs, because CDSSs
must support evidence-based medicine by building the
knowledge base from standard CPGs.

11. Data encoding: indicates if the system standard-
izes the data by encoding them with standard
medical terminologies to support integration and
interoperability.

12. Uses semantic (fuzzy) ontology?: indicates if the study
utilized a semantic (fuzzy) ontology in data or knowl-
edge representation and inference.

Table 3 presents a summary of the evaluation of the most
relevant and suitable studies. These 12 metrics are inter-
related and must be handled together to build an intelli-
gent and interoperable CDSS. However, it is clear from
Table 3 that there is no complete study that adequately
handles all of the evaluation metrics. As a result, all of
these systems need improvement to achieve the required
level of intelligence, applicability, interoperability, accuracy,
and acceptability by the community. Moreover, these results
confirm the results of the other surveys of DM mobile
apps in the most famous stores, including Google Play,
the App Store, and the Windows Phone Store. For example,
Brzan et al. [56] asserted that only nine out of 65 reviewed
apps (13.8%) could be versatile and useful enough for
successful self-management of diabetes. In addition, most
applications provide naïve support for both patient and
healthcare provider [163].
Different types of diabetes require different ways of

managing them; as a result, the majority of people with
diabetes still use paper-basedmethods for tracking their blood
glucose level [65]. Regarding ML capabilities, only four out
of 20 CDSS studies (20%) have attached ML capabilities.
Wang et al.[166] proposed an antihyperglycemic medication
recommendation system based on a shared decision-making
(SDM) process for type 2 DM. They employed a multi-label
classification model that uses class-imbalanced EHR data.
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TABLE 3. Some diabetes mobile CDSS studies evaluated according to a set of measures.

The system aims to provide a recommended list of available
antihyperglycemic medications. They utilized 2542 cases,
each with 77 features and eight output labels. They achieved
0.0941% for hamming loss, 0.7611% for accuracy, 0.9664%
for recall, and 0.8269% for F1 score. Busssadee et al. [171]
used both logistic regression and random forest ML tech-
niques based on the Pima IndianDiabetes Dataset for diabetes
risk assessment. Kaur and Chana [172] performed real-time
monitoring of user health data for diabetes diagnosis. They
utilized principal component analysis (PCA), a k-nearest
neighbor classifier, and a naive Bayes classifier to prepare
and classify the data. They achieved a classification accu-
racy of 92.59%. Fatima et al. [173] proposed a system to
monitor health conditions, emotions, and patients’ interests
from their tweets, their trajectories, and email analysis using
natural language processing techniques, an ontology, andML
algorithms.

3) MH AND BIG DATA
Medical data are a mixture of structured and unstructured
data, which are difficult for computer systems to process [27].
The EHR collects the patients’ complete historical data; in
addition, connecting MH apps with the IoT and a WBAN
causes continuous sensing and capture of readings from
wireless sensors for many of the patient’s vital signs [151].

FIGURE 7. Progress of the literature in big data MH research.

Moreover, other sources, such as social media, have to be
considered. This issue is referred to as big data. Fig. 7 is the
progress of big data research in the MH domain. As illus-
trated, this problem gained the attention of research in the
literature because of its critical role in the EHR ecosystem.

The flood of big data from a large collection of patients
can be described with the Five V’s: volume (i.e., measured
in petabytes, exabytes, zettabytes, and yottabytes), velocity
(i.e., speed in creating, capturing, extracting, processing,
and storing data); variety (e.g., types include text, image,
genomic, transcriptomic, proteomic, metabolomic, social
media, medical record, and sensor readings), veracity
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(i.e., uncertainty, incompleteness, and imprecision of data),
and value [120]. Rodríguez-Mazahua et al. [121] reviewed
big data tools, challenges, and trends. Big data cannot be
processed, analyzed, or stored by mobile devices with limited
storage, memory, processing power, and battery power. Social
media and social networks like Facebook have great poten-
tial to enhance healthcare [119]; these data can be analyzed
implicitly by running data science algorithms (machine
learning, predictive analytics, descriptive techniques, etc.) on
the aggregated data to discover hidden patterns; or users could
be explicitly asked to collect specific data [122].

The volume of worldwide healthcare data was equal
to 500 petabytes in 2012, and it is expected to be
25,000 petabytes in 2020 [199]. These data are collected from
different sources in the form of structured, semi-structured,
and unstructured formats. In addition, these data must be kept
for a long time in the patient’s EHR historical records in
order to perform complex analyses. The question that many
physicians ask is, ‘‘What am I going to do with all that
data?’’ [149]. Big data analytics technologies have to be inte-
grated with MH applications to continuously discover hidden
information. Cloud computing provides a convenient, cost-
effective, real-time, and scalable computing environment for
storing, (pre)processing, and analyzing big data [67], [151].
After handling security and privacy issues, cloud computing
can provide three layers of service. At the fist level, infrastruc-
ture as a service (IaaS), such as Amazon’s Elastic Compute
Cloud (EC2) and Simple Storage Service (S3), as well as
Google Cloud Storage, makes it easy to store big data in the
cloud. Many other providers, such as AT&T, IBM,Microsoft,
Qubole, VMWare, salesforce.com, and Rackspace, provide
this infrastructure. At the second level, platform as a service
(PaaS) offers a combination of storage and computing
services, including Microsoft Azure, Google’s Compute
Engine, Google Fusion, Google App Engine, and Google
Cloud Dataflow, and VMWare’s Cloud Foundry. At the third
level, software as a service (SaaS) provides analytical appli-
cations to deal with big data. The providers at this level of
service include salesforce.com, AppDynamics, BloomReach,
and Rocket Fuel.

Cloud computing provides real-time big data sharing,
access, and analytics for MH apps from anywhere and
at any time. Relational databases are not capable of
handling volumes of data that are too big, too fast, and
too diverse [120]. Relational databases require predefined
schemas; they are based on the atomicity, consistency,
isolation, and durability (ACID) transaction-management
attributes, which are too strict for many apps. As a result, big
data storage based on NoSQL databases, Hadoop computing,
and cloud-computing models seem to provide an alternative
solution for enhanced insight and decision-making [31].
NoSQL and NewSQL data stores provide high throughput
for voluminous and heterogeneous data in a distributed
environment because they are schema-less and based on
basic availability, soft state, and eventual consistency (BASE)
transaction management [32], [121]. Open source NoSQL

database formats include document-based (e.g., MongoDB13

and CouchDB),14 column-based (e.g., Google Bigtable,
Cassandra, SimpleDB, DynamoDB, and Hbase),15 key
value–based (e.g., Memcached,16 Redis,17 Riak,18 and
Voldemort),19 and graph-based (e.g., Neo4J20 and
HyperGraphDB). Grolinger et al. [123] surveyed the existing
NoSQL databases and concentrated on the data models,
querying, scalability, partitioning, replication, consistency,
concurrency control, and security issues. However, data are
not useful in and of themselves. Big data discovery enables
scientists to uncover hidden patterns and correlations from
the analysis of a large volume of diverse data. MapReduce
is the standard big data processing framework [164]. The
Hadoop21 project is an open source realization of MapRe-
duce. Wang et al. [33] discussed some big data applications
in healthcare, including large datasets for EHRs, CDSSs, and
WBANs. Unfortunately, there are no perfect data manage-
ment solutions using the cloud to manage big data [70].

Big data solutions are based on heterogeneous data
sources [164]. Zillner and Neururer [127] proposed a road
map for developing big data healthcare apps, and they
asserted the critical roles of semantic enrichment, sharing,
and integration of data. Improving the quality and inter-
operability (i.e., technical, syntactic, and semantic) in a
big data environment can be achieved by data coding
and standardization using standard data models, XML, and
ontologies [124], [127]. Sánchez-de-Madariaga et al. [126]
compared relational and NoSQL database approaches to
store, recover, query, and maintain a standardized EHR
based on the ISO/EN 13606 standard; they asserted that
document-based NoSQL databases perform better than rela-
tional ones when database size is extremely high. Ontologies
can bridge the semantic gap between different data sources,
and provide a unified interface over all of these heteroge-
neous data. In addition, ontology rules and DL reasoners
semantically analyze these data and discover hidden and
complex information. Big data analytics tools (e.g., Apache
Spark, ApacheMahout, and Storm) and techniques (e.g., data
mining, machine learning, and statistics) can very much
benefit from this unified, consistent, and integrated big data.
Marcheschi [125] evaluated the existing e-Health standards
(i.e., DICOM, HL7 vMR, and HL7 FHIR) for big data inter-
operability, and asserted that the success of big data analytics
is tightly connected with handling interoperability between
heterogeneous data sources. Rathore et al.[128] proposed a
real-time CDSS for emergency response. The system is
based on a WBAN with connected wireless sensors on

13http://www.mongodb.org/
14http://couchdb.apache.org/
15http://hbase.apache.org/
16http://memcached.org/
17http://redis.io/
18http://basho.com/riak/
19http://www.project-voldemort.com/voldemort/
20http://neo4j.com/
21http://hadoop.apache.org/
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TABLE 4. Some diabetes big data studies.

patients’ bodies. The heterogeneous sensor data from all the
patients are collected, stored in the cloud, and processed in
a Hadoop ecosystem. The authors concentrated only on the
format and structure of the collected data from the sensors,
and did not consider integration with the rest of the patient
profile in an EHR. As a result, CDSS decisions may be
affected.

Having access to well-curated and high-quality data has
the great benefit of improving the efficiency and effective-
ness of a CDSS in personalization of predictions, earlier
diagnoses, and better treatments [118]. A report from the
McKinsey Global Institute [122] estimated that if the United
States used big data creatively and effectively in healthcare,
then the potential value from that data could be more than
US$300 billion every year, two-thirds of which would come
from reducing expenditures by about 8%. Big data analytics
decisions can outperform the domain experts [120]; smart
devices can make as accurate, or more accurate, decisions
than medical experts. As a result, the McKinsey report stated,
‘‘In the hospital of the future, big data is one of your doctors’’;
however, there remain challenges to overcome [121].

Regarding the relationship between DM and mobile big
data, some studies did not handle the complete picture of
big data. Hence, we tried to compare these studies under the
following set of metrics.

1. Storage location:determines where big data are stored,
either in a local server or in the cloud.

2. Storage format: determines the format of the data,
either relational or NoSQL format.

3. Diabetes type: determines the types of diabetes the
study handled (T1, T2, or G).

4. Sources: determines the sources of big data, such as
social media, Semantic Web Rule Language (SWRL)
sensors, etc.

5. Interoperability with EHR: determines how the study
solves the interoperability challenge between big data
sources and EHR systems.

6. Analytics capability: determines the capabilities of
the study, including machine learning, predictive
modeling, data mining, statistics, etc.

7. Analytics tools: determines the tools used to perform
data analysis tasks.

The majority of diabetes studies concentrated on big data
analysis in isolation from an EHR environment. For example,
Chennamsetty et al. [184] proposed a big data predictive
analytics technique for EHR data based on Hadoop and Hive.
Medical data were collected from different resources into
a Hive data warehouse, and Hadoop MapReduce analyzed
these collected data. Moreira et al. [180] proposed RBFNet-
work, which was an ANN-based study to predict gestational
DM. This study concentrated only on the analytical side.
These studies utilized regular data sets used in mining a
regular database. Table 4 shows the most suitable studies.

No studies proposed solutions for critical big data chal-
lenges, such as semantic interoperability with EHR systems,
the role of big data in improving CDSS knowledge bases,
the exact relationship between big data collected from
different resources (such as social media and sensors), and
the professional medical data inside healthcare organizations.
In addition, as shown in Table 4, many studies are abstract and
have limited details. As a result, the big data research related
to DM mobile health applications is still in its infancy.

4) MH AND CLOUD COMPUTING
Mobile cloud computing (MCC) is becoming the heart of
healthcare systems [134]. Fig. 8 shows the increasing impor-
tance of MCC research in the MH domain. Wearable and

FIGURE 8. Progress in the literature for cloud computing research in MH.
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mobile devices that automatically collect sensor data, data
entered manually by users, social media data, and EHR data
generate a huge amount of information (i.e., big data). Mobile
devices have little memory and processing power. There-
fore, MH backend systems (EHRs, CDSSs, social media
functions, and sensor processes) can migrate into the cloud
environment [39]. Ahnn and Potkonjak [30] proposed an opti-
mization model for cloud-based health monitoring to opti-
mize energy savings and to minimize execution time through
computation offloading. Makam et al. [53] asserted that a
CDSS in the cloud is feasible and a very reasonable way to
achieve better support inmaking clinical decisions. They tried
to optimize the cost of communications and computations.
This environment can provide a huge storage capacity to
collect historical and real-time sensing data, and can provide
efficient computing, CDSS capabilities, EHR hosting, and
big data analytics capabilities.

Cloud computing (CC) is defined by the National Insti-
tute of Standards and Technology (NIST) as ‘‘a model
for enabling ubiquitous, cost-effective, scalable, convenient,
distributed, on-demand access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage,
applications and services) that can rapidly be provisioned
and released with minimal management effort or service
provider interaction’’ [55]. The MCC Forum defined MCC
as ‘‘an infrastructure where both the data storage and the
data processing happen outside of the mobile device’’ [135].
CC supplies the main ingredients of computing resources,
such as CPUs, storage, network bandwidth, virtual networks,
and virtual machines, as commodities at a low unit cost.
The cloud environment has many advantages, including
availability, information sharing, accessibility, scalability,
measured services, multi-tenancy, interoperability, rapid elas-
ticity, fault tolerance, and load balancing; however, security
and privacy issues are big barriers [31], [54].
Regarding accessibility, MCC can provide nationwide

health information sharing and exchange by providing
global connectivity between different parties [134]. Patients
and physicians can access EHRs and CDSS capabilities
from anywhere and at any time with just mobile devices.
Doukas et al. [34] designed a simple user interface on the
Android OS for patients to upload their medical data to the
cloud. Henian et al. [129] proposed a cloud-based real-time
electrocardiogram (ECG) monitoring and analysis system,
where patients are allowed to upload and access their ECG
records. Many public health management systems, such as
Microsoft Health Vault, Google Health, Dossia, and Mphrx,
are based on MCC.

Yao et al. [59] also proposed a cloud-based medical
service delivery framework to facilitate the exchange of
resources between a large general hospital and its associ-
ated smaller healthcare institutions. Kyriazakos et al. [136]
proposed eWALL, a cloud-based MH platform for creating a
home care environment.

The system depends on a gateway to integrate data from
different sensors, and another gateway integrates collected

data with the cloud environment based on MongoDB; data
transmission between gateways is in JSON format.
Regarding information sharing, the sharing of medical

information is based on the selected cloud deployment model.
Cloud providers have four deployment models: public,
private, hybrid, and community. In addition, inter-cloud
connectivity can be implemented to improve information
sharing [55].
Interoperability is required among different systemswithin

the same healthcare provider, among different healthcare
providers, among an mPHR and cloud providers, and
among different cloud providers [134]. The integration of
the collected heterogeneous data from distributed EHRs,
hospital information systems, wireless sensors, and social
media requires handling the challenge of semantic interoper-
ability [46]. Semantic ontologies and standards provide full
interoperability, where new systems, databases, devices, and
other components can smoothly plug into the ecosystem;
however, few of the existing works, to our knowledge,
concentrate on this point. Interoperability can only be
ensured if homogeneous technologies are used by different
healthcare providers across their legacy systems at the
syntactic and semantic levels, and this is very unlikely.
Bahga and Madisetti [131] discussed the key role of interop-
erability in cloud-based EHR systems.

Rodrigues et al. [60] studied the risks of hosting EHRs
on cloud servers, but they concentrated on the security
and privacy issues. Lupse et al. [57] and Vida et al. [58]
described the environment of two Romanian hospital depart-
ments with two different clinical subsystems that are capable
of exchanging data based on HL7 CDA. Sachdeva and
Bhalla [132] improved the interoperability between EHRs
by using the openEHR standard. Liu and Park [130]
proposed an inter-cloud connection gateway for informa-
tion sharing between two clouds. Doukas and Maglo-
giannis [133] proposed a gateway for smooth information
sharing between healthcare organizations. Inspired by the
interoperability between peripheral devices and operating
systems, Abdulnabi et al. [134] proposed a solution to the
interoperability problem based on the mPHR by providing
interfaces (drivers in peripheral devices) betweenmPHRs and
providers’ EHR systems.

In the cloud, different healthcare providers’ EHRs and
patients’ mobile mPHRs are registered, where a provider can
connect with the mPHR only if it provides interface software
that can understand the format of the incoming data from the
patient’s mPHR and translate it into the format used by the
provider’s internal EHR. This interface was based on the HL7
CDA. As a result, many patients could interact with many
providers, and vice versa.
Regarding service availability, cloud services can be cate-

gorized into three models: SaaS, PaaS, and IaaS. Computing
is provided as a utility, much like electricity, water, gas, etc.,
where you pay for what you use. Each mode provides a set of
services. Botta et al. [67] surveyed the integration possibili-
ties between the IoT and cloud computing; they asserted that
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IoT and cloud computing are two complementary technolo-
gies, as shown in Table 5.

TABLE 5. Complementary aspects of the IoT and CC [67].

Integration of the cloud and the IoT supports the delivery of
other XaaSs, such as sensing as a service (SaaS), sensing and
actuation as a service (SAaaS), sensor as a service (SenaaS),
database as a service (DBaaS), or data as a service (DaaS),
among other services [68]–[70]. SenaaS [164] is a model to
encapsulate both physical and virtual sensors into services
according to the SOA approach; it focuses on providing
sensor management as a service, rather than providing sensor
data as a service. In addition, Sensor-Cloud [164] is an
infrastructure for managing physical sensors by connecting
them to the cloud; it bundles the physical sensors into virtual
sensors where users can combine them to achieve advanced
results.

MCC can also provide predictive analytics for the patient’s
collected data. Sareen et al. [137] proposed an MH frame-
work based on theWBAN andMCC to diagnose and monitor
the Ebola virus; the collected data from sensors were used in
a J48 decision tree algorithm to evaluate the level of infection
in patients.
Regarding DM and MH applications, very little research

is carried out in this field. Although MCC offers many
advantages to manage complex diseases, proposed studies
did not fully utilize the advantages of MCC. For example,
Baskaran et al. [185] proposed anMCC-based tool to manage
type 1 DM. This study collects data from wearable devices
along with EHR medical data, but it did not look at how to
integrate all these types of data, or how the CDSS components
can benefit from these different collected data. We evaluated
available studies under the following metrics.

1. Service type: determines the type of service: IaaS,
PaaS, or SaaS.

2. Data format: determines the supported data format in
the cloud: sensor, social media, image, or medical data.

3. Implemented components in the cloud: determines the
supportedmodules for the whole EHR ecosystem in the
cloud (EHR database, PHR, CDSS, big data analytics,
and big data collection).

4. Diabetes types: determines the type of diabetes (T1, T2,
or G).

5. Handles interoperability?: indicates if the cloud envi-
ronment manages interoperability between imple-
mented components. For example, if the system
collects EHR medical data, social media data, and
sensor data, then how can it integrate all of these types
of data?

6. Mobile-to-cloud interface: how the mobile device
interfaces with the cloud, e.g., using representational
state transfer (REST) or JSON.

7. Cloud type: determines if it is private, community,
public, hybrid, or virtual.

Table 6 provides a summary of the evaluation process in
the available studies. All of the evaluated research supports
access to MCC by smart devices like mobile phones. As seen
in the table, the research into diabetes MH in a cloud envi-
ronment remains in the early stages. For example, all of
the studies concentrate on the CDSS component, not the
whole EHR ecosystem. As a result, no study has focused
on the interoperability problem among EHR medical data,
mobile collected data from sensors, and social media. The
following conclusion was reached by Griebel et al. [54]:
‘‘Few successful implementations yet exist and many papers
just use the term cloud synonymously for using virtual
machines or web-based with no described benefit of the cloud
paradigm.’’

5) MH AND THE WBAN
The IoT comprises uniquely identifiable and interoperable
things/sensors connected to a network wirelessly and auto-
matically via smart sensors based on standards and interoper-
able communications protocols [151]. Li et al. [140] reviewed
the definitions, architecture, technologies, standards, and
applications of the IoT. The WBAN is a health-monitoring
paradigm that consists of a collection of (inter) commu-
nicating devices including (sensors, actuators, communica-
tions, and processing facilities) connected via wireless sensor
network (WSN) and worn on the body, providing an inte-
grated set of personalized services to the patient [138].
Fig. 9 illustrates the popularity of WBAN research in the
MH domain. A sensor is responsible for the data acquisition
process by converting physical phenomena to an electrical
signal, which is then amplified, conditioned, digitized, and
communicated within the WBAN.

FIGURE 9. WBAN research popularity in the MH domain.

Advanced ICT includes smartphone devices; SMS,
General Packet Radio Service (GPRS), andWiFi/Asymmetric
Digital Subscriber Line (ADSL) data transfer technolo-
gies; 3G, 4G, and 5G wireless technologies; lowering of
technology costs; miniaturization of low-power electronics
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TABLE 6. Some diabetes cloud computing studies.

FIGURE 10. Generic mobile patient monitoring architecture [190].

(e.g., sensors); and it increases the emergence of MH tech-
nology [28], [138]. This includes the use of location tracking,
intelligent devices, and body sensors to collect and transmit
fully detailed and accurate vital sign measurements about the
human condition, such as body temperature, blood pressure,
heart rate, and motion, in order to process them in real
time and/or store them in dedicated data repositories. These
data are used for continuous patient monitoring, real-time
diagnosis of chronic diseases, and to provide continuous elder
healthcare [39]. Catarinucci et al. [41] surveyed the advances
in IoT-based healthcare technologies including architectures,
platforms, applications, and trends.

The IoT enables not only human-to-human but also
machine-to-machine (M2M) communications from anywhere,
at any time, and for anyone [151]. Goudos et al. [95]
reviewed all of the recent IoT technologies. Universal
wireless access and accurate collection of high-quality
and voluminous data increase accessibility for healthcare
providers and improve communications reliability among
medical devices, patients, and healthcare professionals.Many
IoT benefits in the healthcare domain were identified by
Farahani et al. [151].
Hayajneh et al. [138] surveyed the state of the art in wire-

less technologies, protocols, and standards in the WBAN,
such as Bluetooth (IEEE 802.15.1), ZigBee (IEEE 802.15.4),

IEEE 802.15.6, and WiFi (IEEE 802.11). The authors
proposed a general framework for the WBAN, and asserted
that the WBAN deserves special consideration.

The sensors’ lower-level data are collected in middleware
(i.e. a patient information sink), such as a smartphone, laptop,
or tablet [104]. Next, these data are sent to the health-
care provider to be integrated with other data sources for
further analysis based on the type of connection, as seen
in Fig. 10 [190]. Currently, Continua Alliance23 is an inter-
esting standardization initiative to improve interoperability
between these remote patient-monitoring devices [191]. Inte-
grating WBANs with local and global MCC has numerous
advantages, and provides effective solutions to the challenges
of large amounts of processed data, mobility of monitored
users, and the network coverage area. They are almost
20 times faster, and 10 times more energy efficient [145].
On the other hand, several unresolved issues may hinder
a successful marriage between these technologies [146];
some of these issues are related to the communications
standards in WBANs, the integration between WBANs and
hybrid clouds, and the authorization of social networks.
Almashaqbeh et al. [145] proposed a cloud-based distributed
real-time remote health monitoring system for tracking the

23http://www.continuaalliance.org
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health status of non-hospitalized patients using a WBAN and
private and public clouds.

The WBAN and wearable devices connected with smart-
phones and EHR systems improves the usability and accuracy
of MH apps and supports the development of highly sophis-
ticated solutions to critical medical problems.

However, every IoT domain and vendor produces its
own IoT platform; and new platforms, which must coop-
erate with existing ones, are continuously added to the
domain [35]. Seamless integration and effective harnessing
of these components in a smart environment raises many
research issues [141]. There are many underlying communi-
cations protocols, data formats, and technologies for sensor
data (e.g., accelerometers, gyroscopes, altimeters) [67]. Due
to a lack of worldwide acceptable standards, interoperability
techniques remain limited. There is a clear necessity for stan-
dard protocols, architectures, and application programming
interfaces (APIs) to facilitate the connections among hetero-
geneous smart objects. In addition, wearable sensor detection
accuracy needs further improvement [29]. Pawar et al. [61]
proposed a wireless communications generic architecture for
mobile patient monitoring systems based on a set of body area
networks (BANs) and a backend system.

IoT interoperability has been studied by researchers
on many levels, such as devices,24 middleware,25,26 and
services.27 However, the semantic and linked data layers
have received less consideration [67]. The data layer of the
IoT protocol stack uses the compressed extensible markup
language (XML) format, the Efficient XML Interchange
(EXI) protocol, and World Wide Web Consortium (W3C)
standards. EXI encodes XML documents in a binary data
format, which makes them general, minimal, efficient, flex-
ible, and interoperable [95].

However, in medical applications, XML portability and
interoperability are not sufficient. Semantic interoperability
between these devices and between these technologies and
the medical standards is gaining momentum worldwide.

Qi et al. [141] cited the challenges that face the imple-
mentation of personalized healthcare systems based on IoT
technology, including (1) the shortage of cost-effective and
accurate smart medical sensors, (2) unstandardized IoT
system architectures, (3) heterogeneity of connected wear-
able devices, (4) multi-dimensionality of data generated,
and (5) interoperability. The authors divided IoT research
into three related layers (sensors, data processing, and
applications), each with specific challenges. As stated by
Farahani et al. [151], IoT interoperability occurs at different
abstraction layers, such as the following.

1. Network layer: IoT networks are scattered among
various low-power networking protocols, such as Blue-
tooth Low Energy (BLE) and ZigBee, and conventional
networking protocols, such as WiFi.

24http://www.onem2m.org/
25 https://www.fiware.org/
26http://www.gambas-ict.eu/
27http://ict-iotest.eu/iot-est/

2. Messaging layer: a variety of application-level proto-
cols exist, including message queuing telemetry
transport (MQTT), constrained application protocol
(CoAP), and extensible messaging and presence
protocol (XMPP). Each of them has a unique protocol
for processing messages.

3. Data annotation layer: different standards exist for
integration, exchange, and retrieval of EHRs, such as
HL7 and OpenEHR.

Mezghani et al. [139] asserted that the diversity, variety,
distribution, and volume of wearable-device data make
medical data processing and analytics more difficult; they
extended the basic NIST cloud and big data reference archi-
tectures with knowledge as a service (KaaS) mechanisms
based on an ontology to give meaning to heterogeneous
data. They proposed the Wearable Healthcare Ontology
(WH_Ontology), which facilitates heterogeneous data aggre-
gation from wearables in order to make better decisions.
However, the lack of standards in the IoT decreases the
comprehensiveness of IoT products. Li et al. [140] reviewed
the IoT standards and standardization organizations and
asserted that it is the role of a service-oriented architecture to
achieve interoperability among the heterogeneous devices on
four layers. Data are represented in a semantic web environ-
ment in layers that include XML, the Resource Description
Framework (RDF), ontologies (e.g., OWL), and logic. There
are many research papers on semantic technologies and the
IoT, which is called the semantic web of things (SWoT) [95].
Ruta et al. [96] proposed a general framework for the SWoT.
The collected data from sensors must have the same

semantics and be understood correctly by every participating
system, such as the CDSS and the EHR [35]. In January 2016,
the European Commission funded seven projects to deal with
various aspects of interoperability in the IoT. Interoperability
can be handled at each layer of the software stack; however,
semantic interoperability at the highest level using shared and
standard ontologies can solve the problem. Maia et al. [43]
presented EcoHealth, a web middleware platform to connect
physicians and patients using aWBAN. EcoHealth integrates
data from heterogeneous sensors; those data are utilized for
monitoring patients’ conditions. The IEEE 11073 personal
health device working group (PHD WG) provides standard-
ization for transmitting the measured data from different
devices to monitoring systems [73].

An ontology allows the exchange of information such
that meaning is automatically interpreted by the receiver
in the way intended by the sender. In addition, it supports
the interrelation of heterogeneous data to be used and
analyzed in unified ways. Goudos et al. [95] asserted that
the semantic web is a key enabler for IoT technologies.
Jabbar et al. [144] proposed the IoT-based semantic inter-
operability model (IoT-SIM); they semantically annotated a
patient’s data using RDF semantics with Simple Protocol and
RDF Query Language (SPARQL) to retrieve patient records.
Bendadouche et al. [37] studied the integration of IoT data
with semantic modeling and linked data. However, semantic
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TABLE 7. Some diabetes WBAN studies.

interoperability can be handled by an ontology based on
formal description logic, such as SROIQ (D), ALC,
SHOIN (D), etc.; or written in formal language like OWL
2 and RDF; and automatically inferred by reasoners, such as
Pellet, Racer Pro, Hermit, Fact++, etc.

Many of the existing ontologies for the IoT domain
were developed for specific research projects, so they
are prototypes and often incomplete. The W3C Semantic
Sensor Network (SSN) ontology was developed as a joint
project of several organizations. It is considered the stan-
dard ontology for semantic sensor networks and is based on
the Descriptive Ontology for Linguistic and Cognitive Engi-
neering (DOLCE) UltraLite (DUL) ontology. The OpenIoT
ontology is a recent one based on the W3C SSN.28 However,
these ontologies are generic, which require extensions. The
Wireless Semantic Sensor Network (WSSN) ontology [37],
the Sensor Cloud Ontology (SCO) [38], IoT-lite and the
oneM2M base ontology are some important extensions. Any
WBAN application that requires handling of interoperability
must first start with theW3C SSN ontology; then, it should be
extended by adding sensor-level semantics (concepts, proper-
ties, etc.), or extended to represent concepts that formalize
information concerning application areas of interest. For
example, for medical domains, the SSN ontology can be
extended with medical ontologies29 such as SNOMED CT,
LOINC, ICD, and DMTO [36]. Regarding DM, Table 7
presents a comparison among a set of WBAN studies in
the DM domain. The comparison is done according to the
following metrics.

1. Used sensor types: determines the number and types of
sensors that measure biological variables.

2. Gateway: determines the types of gateway (nodes) that
collect data from all sensors.

3. Research question: determines the medical purpose
of the study (i.e., DM diagnosis, treatment, self-
monitoring, or lifestyle, etc.)

28https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
29http://bioportal.bioontology.org/

4. Wireless protocol: determines the wireless communica-
tions protocol used, such as Bluetooth, ZigBee, WiFi,
or IEEE 802.15.6.

5. Networking technology: determines the networking
technology between the mobile device and cloud or
healthcare servers.

6. Category: indicates whether the system demonstrates
multi-patient or single-patient monitoring.

7. Connection with EHR?: indicates if the WBAN data
are integrated with a healthcare backend system
(i.e., an EHR system).

8. Connected to the cloud?: indicates if the study utilizes
the cloud to collect sensed data for further integration
and analysis.

9. Semantic interoperability?: indicates if the research
handles semantic interoperability between real-time
sensed data and other historical medical data.

Table 7 illustrates that wirelessly collected data are treated
separately from the patient’s EHR data. It is clear from
Table 7 that semantic interoperability between sensed data
and EHR medical data has not been studied, which is an
important measure. Hence, this is not acceptable on the
medical side, and causes the resulting apps to produce
shallow, and possibly wrong, assistance because they depend
on real values from not fully accurate devices, and they
ignore the complete patient history. These challenges should
be handled in future research to reach the ultimate goals from
WBANs.

VI. CHALLENGES AND FUTURE DIRECTIONS
In this section, we present the current challenges and
the possible future research directions for developing MH
systems. Proper handling of these challenges can improve
the output of MH applications, improve their capabilities and
intelligence, and enhance patient trust level and acceptance.
Syaifuddin and Anbananthen [165] asserted that the majority
of DM apps are standalone and mainly focus on glucose
levels. Chomutare et al. [163] suggested that DM mobile
apps should support insulin and medication management,
diet, physical activity, complications, weight, blood pressure,
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education, social media, alerts, communications, and patient
monitoring. This section is divided into different categories
of interrelated challenges regarding EHRs, CDSSs, CC, big
data, and WBANs. We believe issues related to security and
privacy, sensor and (wireless) network physical characteris-
tics, and protocols are outside the scope of this paper.

A. MH AND EHR CHALLENGES AND FUTURE DIRECTIONS
Chronic diseases like diabetes cannot be managed without
the patient’s complete medical profile and history. All
required data are in the EHR repositories. As MH supports
patient-centric medicine, the EHR plays a critical role in this
new paradigm. Following are some inferred challenges and
future directions from the survey.

1. The EHR ecosystem has many different intercon-
nected and distributed components, including EHR
data sources, CDSSs, laboratory information systems,
radiology information systems, pharmacy information
systems, etc. These systems must work as a single
unit. Using standards can handle this issue, but there
is no unified standard [25]. Each component may have
unique standards and terminology, with different char-
acteristics and formats [202]. Syntax interoperability
among different standards (e.g., OpenEHR, CEN/ISO
EN13606, ISO/IEEE 11073, HL7, CCD, ASTM, etc.)
is a big challenge. In addition, semantic interoperability
among different medical terminologies and encoding
systems (e.g., SCT, LOINC, UMLS, ICDx, ATC, ICF,
and CPT 4) is a big challenge as well 201]. Centralized
middleware [175] and distributed middleware [176]
can be used as gateways among heterogeneous systems,
but these solutions have limitations.

2. The ability to predict the long-term future of the patient
based on somemachine-learning and data-mining algo-
rithms is a challenge. For example, the Australian
type 2 diabetes risk assessment tool (AUSDRISK)30

assesses the risk of developing type 2 DM over the
subsequent five years. In addition, the QDiabetes
risk model by Hippisley-Cox et al. [17] estimates the
10-year risk of contracting type 2 DM.

3. MH adds another level of complexity by adding
unstructured big data from WBAN sensors and social
media data. The new challenge for semantic inter-
operability is among distributed CDSSs, EHRs, IoT
sensors, and social media 202], [205]. This objective
would provide great advantages for the outcome of
each component in an EHR ecosystem. Hence, there
is a great need for standards, ontologies, and medical
terminologies [201].

4. A PHR can be built for each patient in order to
store collected data. These systems can be stored
on a smart device or in the cloud to collect the
patient’s real-time sensed or manually entered data.

30https://www.diabetessa.com.au/type-2/the-australian-type-2-diabetes-
risk-assessment-tool.html

A phone-based PHR can provide basic functionality
when there is no internet connection. The content of
the PHR can be mapped directly to known EHR data
items, such as vital signs, or can be unknown by the
EHR. Synchronization, sharing, integration, and inter-
operability between this small database and the hospital
global EHR, or between the PHR and CDSSs are
challenges 71], [205].

5. Standards are required to unify the representation of
patient-generated data in a PHR in order to be compat-
ible with the EHR format of the healthcare provider;
the provider must be able to distinguish the clinically
generated data in the EHR from the PHR data; and the
provider must be able to control the flow of PHR data
into the EHR.

6. If PHR data need to be shared with multiple providers
with heterogeneous standards, mapping between all of
these standards will be required. In addition, if PHR
data are not standardized, then a standardized mecha-
nism is required to access and retrieve PHR data.

7. Semantic technologies, including (fuzzy) OWL ontolo-
gies, (fuzzy) SWRL rules, and medical terminologies,
must unify the meaning of data with different formats,
different sources, and different targets [203], [204].

B. MH AND CDSS CHALLENGES AND
FUTURE DIRECTIONS
The new distributed, mobile, heterogeneous, and data-
intensive healthcare environment creates sophisticated CDSS
requirements. CDSSs are overloaded with data and infor-
mation. They must arrive at real-time decisions based on
EHR historical data, PHR real-time data, WBAN-sensed
data, and social media data. In addition, their decisions must
be based on CPGs, big data analytics, data mining, and
domain experts’ up-to-date knowledge. Following are some
of the challenges that need to be addressed to build seman-
tically intelligent, distributed, EHR-pluggable, and accurate
CDSSs. Moreover, these challenges provide clear directions
for improvements in MH apps.

1. To support evidence-based medicine, a CDSS knowl-
edge base depends on up-to-date information extracted
from standard CPGs, machine learning results, and
physicians’ opinions.

2. Evidence-based medicine is a new trend for disease
diagnosis and management. To support this trend,
the CDSS knowledge base’s logic has to be based on
CPGs represented in a computer-interpretable format.
Many standards are available to build sharable and
standard information, such as HL7 Arden Syntax,
GLIF, PROforma, PRODIGY, Asbru, HL7 GELLO,
and GUIDE.

3. The CDSS inference process must depend on a
clearly defined methodology, such as rule-based
reasoning, case-based reasoning, (fuzzy) ontology
semantics, etc. [202]–[204]. Some of these tech-
niques can be combined to produce powerful models.
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Semantically intelligent CDSSs can use ontologies to
infer hidden information with semantic relations by
using description logic axioms, such as drug–drug
interactions and comorbidity [36], [201], [202].

4. CDSS must be a pluggable component in the global
distributed EHR ecosystem. As a result, its knowledge
base must comprise compatible EHR data, big sensed
and social media data, and mined or inferred informa-
tion. The CDSS and/or EHR must have a standard-
ized interface that unifies the communications between
different systems. A semantic ontology can support
this issue; in addition, it supports the creation of a
semantically intelligent CDSS.

5. The SOA-based architecture with pluggable service
interfaces and sharable data and information can
improve interoperability between heterogeneous
system components.

6. CDSSswill provide decisions according to the patient’s
entered data in addition to automatically sensed data
from a WBAN. The user interface needs to be
improved, especially for the elderly and disabled. Auto-
matic data entry from sensors enhances the app-patient
interaction. A very important direction to improve a
user interface is by utilizing human–computer interac-
tion (HCI) and brain–computer interface (BCI) tech-
nologies to support the creation of a dynamic user
interface and the automatic collection of other hard-
to-express data, such as a patient’s mood, feelings,
symptoms, etc.

7. A CDSS needs to integrate multiple types of infor-
mation in a standardized manner. Knowledge formu-
lated and extracted from social media, CPGs, domain
experts, new research, big data predictive analytics, and
EHR mining must be collected in a distributed knowl-
edge base and consulted in every decision-making
process. Standard knowledge representation and infer-
ence mechanisms are critical to achieving these goals.

8. New methods of service delivery need to be investi-
gated. Systems based on text messages (e.g., SMS)
showed fewer benefits [174].

9. A CDSS needs to provide individualized services or
decisions. It must tailor a custom decision for the
individual patient according to the complete medical
profile collected from heterogeneous sources, such as
distributed EHRs, WBANs, social media, real-time
patient-entered data, and inferred information from an
EHR database.

10. The diabetes domain is characterized by uncertainty,
vagueness, and timeliness. These issues have to be
resolved in future systems. Statistical techniques, fuzzy
systems, and temporal data mining, can play a vital role
in new solutions to these issues.

11. A CDSS needs to provide tailored services based
on specific patient characteristics collected from the
complete profile distributed over the EHR, a PHR, and
social media.

12. A CDSS has to provide assistance at many levels
according to time criticality and the complexity of
decisions, such as in the patient’s smart device for
time-sensitive decisions, in the cloud for data-intensive
and analytics-oriented decisions, and in the EHR
backend system for long-term decisions that require
professional intervention.

13. A CDSS has to provide intelligent methods for inte-
grating data and information about single-disease treat-
ments to handle comorbidities and multi-morbidities
that normally exist in patients with diabetes [150]

14. A CDSS has to provide comprehensive treatments,
including alerts, recommendations, SMS messages,
and plans regarding the patient’s medicines, drug inter-
actions, lifestyle (diet and exercise), and education.

15. Connectivity with healthcare systems like EHR
systems is necessary [48], [49], [56]; this allows
the storage and use of the full patient history from
the EHR profile. This can save time and enhance the
accuracy of application recommendations. However,
current EHR environments are heterogeneous because
of different standards, terminologies, providers, etc.
As a result, to support integration between mobile apps
and distributed EHR environments, the interoperability
problem has to be resolved.

16. Different types of diabetes, including T1, T2, and G,
are different in diagnosis and treatment. As a result,
different CDSSs have to be created for the different
types. We can see from the comparison tables that the
majority of the studies did not differentiate between
these different types.

17. CDSSs must be based on the patient’s complete profile
to provide personalized and more advanced decisions.
Some studies [166]–[172] had high performance, but
they were based on a very small set of features. Such
types of systems are not acceptable for physicians.

C. MH AND BIG DATA CHALLENGES
AND FUTURE DIRECTIONS
Big data related to medicine comes in diverse formats and in
huge volumes, and high velocity makes it a big challenge to
store, process, transmit, share, integrate, secure, interoperate,
encode, standardize, and analyze it all. Both physicians and
CDSSs must make accurate decisions at the right time for
the right patient based on these heterogeneous (historical and
real-time) data. Big data challenges in medicine are similar
to other domains. This section summarizes some of these
challenges and suggests some future directions.

1. Capturing, cleansing, processing, storing, and real-time
analysis of big data related to medicine is a challenge.
Therefore, CC provides an efficient environment to
handle such challenges. However, network bandwidth
is a major bottleneck.

2. Challenges in big data analytics are caused by data
complexity (i.e., complex types, structures, patterns,
and uncertainties) and computational complexity
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(i.e., traditional techniques are not suitable). The data
are usually multi-source, huge in volume, redundant,
uncertain, incomplete, noisy, and dynamic. As a result,
new techniques should be presented to support real-
time, semantic, and temporal analysis.

3. Big data analytics delivers five values to healthcare:
right living, right care, right provider, right value,
and right innovation [164]. Sophisticated, intelligent
machine-learning algorithms can provide a CDSS with
actionable information and can improve its capa-
bilities. They can convert a CDSS from a reactive
role to a proactive and predictive system that can
predict the near- and long-term future of patients with
diabetes. These systems can reduce losses, prevent
complications, and improve quality of life. However,
processing and analyzing sensor-collected and EHR
data for the whole community over a long period is a
challenge, even by using a patch-processing paradigm
like the Hadoop ecosystem with all its modules.
They include the Hadoop Distributed File System
(HDFS), MapReduce, NoSQL databases (e.g., Apache
Hbase), processing (e.g., Pig, Chukwa, Oozie), anal-
ysis (e.g., Apache Storm, Apache Spark, Apache Drill,
SpagoBI, D3, andmassive online analysis [MOA]), and
integration (e.g., Apache’s Sqoop and Flume) [121].

4. IoT, medical, and social data have different character-
istics. To uniformly deal with such heterogeneous data
types, inclusion of a new semantic layer can play an
important role.

5. Semantic interoperability must be treated at different
levels, including among different networking layers;
among different devices (such as sensors, mobile
devices, and servers); and among different data
formats, such as structured relational databases,
semi-structured data (such as CSV, JSON, and XML),
and unstructured data such as social media.

6. A large portion of medical data is unstructured in
nature. Semantic enrichment of unstructured data using
standard ontologies can improve data representation,
integration, interoperability, meaning, and the quality
of the applied data mining algorithms [124].

7. The collected big data from multiple resources
(e.g., relational databases, NoSQL databases, RDF
files, CSV files, images, text files, binary files, XML
documents) has valuable hidden information. Besides
big data analytics, advanced semantics like big, real-
time, spatial and temporal data mining techniques need
to be applied to these data to extract information. The
results continuously refresh the CDSS knowledge base
to keep it up to date. In addition, the data’s size, biases,
and complexity require more scalable and more effi-
cient algorithms using many optimization techniques,
such as parallel processing and partitioning.

8. IoT technologies are not yet properly standardized.
In an interconnected and distributed EHR system,
a malfunctioning sensor may prove fatal to the patient.

This issue requires reducing the complexity of
connected systems and standardizing applications.

9. The majority of EHR systems utilize structured data in
the form of traditional relational databases. However,
mostmedical data aremainly in an unstructured format.
The manipulation of unstructured and semi-structured
data as structured data risks losing semantic integrity.
In addition, a relational database is considered a one-
size-fits-all solution for data persistence and retrieval.
In the big data era, this paradigm becomes insuf-
ficient. NoSQL and NewSQL database formats and
their combined computing models, such as Hadoop
and MapReduce, can improve EHR system scala-
bility and integration with other sources, such as
social media and sensors. However, the open source
NoSQL databases with the BASE transaction manage-
ment model and open-source Hadoop are not preferred
in data-sensitive environments. Relational database
management systems and NoSQL DB systems must
work together in the same environment. There are
many issues in such integration (like data integrity,
heterogeneity, and interoperability) that require further
analysis and research.

10. Regarding social media, all types of data need to be
handled, including text, video, audio, and images. Intel-
ligent analysis of such a huge amount of data can
uncover valuable knowledge about the patient’s future.

D. MH AND MOBILE CLOUD COMPUTING
CHALLENGES AND FUTURE DIRECTIONS
Incorporating MCC technology in mobile health computing
has many advantages, such as allowing real-time, remote
sharing, and access to data from anywhere at any time.
Moreover, the MCC provides processing, storage, and anal-
ysis of dynamic and large-volume data at reduced costs
and with minimum risk. MCC also improves diabetes
self-management, and facilitates communications between
healthcare providers and patients. However, there is a lack
of research into the adoption of MCC for the treatment of
diabetes [185]. Following are some related challenges for
MCC in the MH environment, which provide directions for
future improvements.

1. Creating a cloud-based health informatics platform
(i.e., an EHR ecosystem) is a big challenge, especially
for comprehensive diabetes management, because
diabetes is a complex disease and has many comor-
bidities and complications. Such an EHR system
will have many advanced interrelated medical and
nonmedical components. Therefore, issues related to
portability, interoperability, and reliability need deeper
investigation.

2. Integration of sensors with the human body produces
massive amounts of data, which cannot be stored
and processed by standalone conventional healthcare
systems due to limited storage and processing abili-
ties. However, integration of such big data with MCC
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for processing, storage, preprocessing, summarizing,
combination, and inference require more efficient tech-
niques to filter and decrease the size of all of such
sensed data before utilizing them in real intelligent
systems.

3. MH systems can be used inside a small clinic, scaled
up to a complete hospital, scaled up to a smart city,
or scaled up to a whole country with different hospitals
for different specialties. Therefore, scalability issues
related to the cloud environment need to be handled.

4. Although not covered in detail in this survey,
addressing the following issues is critical. First, secu-
rity and privacy in MH spans the whole lifecycle
of system development, from sensors, to (wireless)
networks, to smart devices, to the cloud environ-
ment, to the healthcare organization’s backend systems.
Secondly, the legal, social, and regulatory governance
issues regarding the physical location of patient data
must be discussed. For example, in South Korea,
medical data cannot be stored outside hospitals [186].

5. Designing a cloud-based system, or migration from a
non-cloud to a cloud-based system, requires an accu-
rate designing and planning methodology to determine
the required functionality, the ins and outs of medical
data, the suitable cloud services, and the integration of
legacy EHRs with new big data infrastructures, among
other issues.

E. MH AND WBAN CHALLENGES AND
FUTURE DIRECTIONS
The challenges for WBANs in diabetes treatment are similar
to those in other domains. Patients with diabetes often need
monitoring of several features that form a network of wireless
sensors. Following are some challenges in this area.

1. New generations ofmobile applications need to support
the automatic and wireless transfer of sensed data to
the cloud without any intervention from the patient and
with complete and accurate meaning [149].

2. Interoperability between sensors, medical devices, and
display equipment will be required for the deployment
of comprehensiveMH solutions. Standards play critical
roles in the exchange, integration, sharing, and retrieval
of medical data.

3. Different network technologies offer different QoS
classifications. Therefore, effective mapping between
different networks should be considered.

4. The accuracy of biological sensors is still not satisfac-
tory. Therefore, many research challenges related to
bio-physiological signal-processing accuracy are still
open issues.

5. Future trends toward using sensors in MH scenarios
should be based on energy scavenging systems with
ultra-low power consumption.

6. TheMH environment is characterized by highmobility.
The design of a suitable WSN architecture to be used
for a particular mobile patient-monitoring system is

a challenge because it must consider mobility of the
patient, the data rate, network coverage, power require-
ments, and whether patients will carry their own infor-
mation sinks. A homogeneous WSN has the advantage
of reducing energy consumption, but has limitations
with a high density of users connected to one sink.
On the other hand, the heterogeneous WSN architec-
ture provides an advantage in wide-area coverage, but
power consumption is a limitation, because bridge
devices are required.

7. Development of an open MH architecture that allows
patients to easily integrate heterogeneous service
providers with different hardware and software compo-
nents, as well as heterogeneous sources of data with
different formats and standards, is a challenge and
needs to be addressed.

8. The M2M communications standards between
invasive/non-invasive devices have not reached a stable
state yet, and each standard is suitable for specific
applications. For example, IEEE 802.15.6 is a stan-
dard designed specifically for the WBAN; however,
it appears to provide lower performance in some cases,
compared with other technologies [192]. Existing stan-
dards, such as those for Bluetooth, IEEE 802.15.6,
ZigBee,WiFi, radio frequency ID, and ANT, each offer
a different QoS regarding reliability, latency, security,
and power consumption, but not one of them provides
the optimum QoS. In addition, there are many data
routing challenges in WBANs [190].

9. Physical layer protocols must be implemented to
minimize power consumption without compromising
reliability. These protocols must be convenient for
interference-agile places.

10. The QoS requirements must be achieved without
performance degradation andwith complexity improve-
ment. The memory limitations require efficient retrans-
mission, and error detection techniques.

11. The IEEE 802.15.6 protocol did not build up the
whole media access control (MAC) protocol, only the
fundamental requirements to ensure interoperability
among IEEE 802.15.6 devices. Thus, MAC protocols
do not provide effective network throughput and lead
to performance degradation under varying amounts
of network traffic. Hence, WBANs have precise
QoS necessities that must be achieved by a MAC
proposal.

Finally, for MH technology to reach its objectives, it must
be treated as a pluggable component in a comprehensive
EHR ecosystem consisting of integrated, dependent, and
interacting technologies of distributed EHR data sources,
CDSSs, the IoT, cloud computing, (big) data analytics,
WBANs, and sensing technologies. This design is antic-
ipated to lead to a dramatic increase in the adaptability,
integrity, autonomy, efficiency, interoperability, functionality,
reliability, safety, and usability of MH systems in the medical
domain.
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VII. CONCLUSION
In this paper, we reviewed the current state of the art related
to MH technologies in general, and concentrated on the
DM domain in particular. The study reviewed MH from
various points of view, including relationships between MH
and EHRs, semantic interoperability, the CDSS, the WBAN,
the IoT, cloud computing, and big data analytics. For each
dimension, the study surveyed the current literature and
future research topics, especially in the medical domain.

To achieve this objective, we extensively studied 60 papers
related to diabetes mellitus. According to the results,
MH applications still have plenty of room for improve-
ment in order to take full advantage of unique mobile plat-
form features and to truly fulfill their potential. The study
concluded with a set of challenges that could possibly drive
future research and define future directions for the scientific
and medically important aspects of this domain.
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