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ABSTRACT Bio-inspired self-repairing hardware is a reconfigurable system characterized by high
fault-tolerant ability. To further increase the placement performance and reduce the fault-tolerant cost, a
dynamical evolution approach to multi-objective dynamic placement is developed. A primary challenge
for our study is computational complexity. Based on group theory, the computing task was divided on the
dimensions of time and space to increase the utilization of online computing resources. By introducing the
multi-step placement transformation, a discrete dynamical system model was built and the multi-objective
dynamic placement was converted into a stability problem of constrained systems. In order to satisfy the
dynamical requirements, an artificial particle system model was built and its evolution laws were verified
by dynamic analysis. By simulating the evolution laws, a dynamical evolution algorithm was proposed,
which could avoid large-scale iterative calculation used in the conventional optimization search algorithms.
Experiments have shown that the dynamical evolution method could offer high placement performance with
low fault-tolerant cost. Besides, it also has the advantage of high design flexibility since there is no initial
placement constraint.

INDEX TERMS Bio-inspired self-repairing hardware, dynamical evolution, placement performance, fault-
tolerant cost.

I. INTRODUCTION

W ITH the development of integrated circuit technology,
the demand for fault-tolerant electronic systems with

high performance and low cost is increasing steadily. Recent
studies are focusing on the use of reconfigurable system to
satisfy requirements [1]. Nevertheless, a primary concern
of reconfigurable system is computational complexity [2].
Dynamic reconfiguration is a highly computationally intense
task and in some cases, the computational complexity in-
creases with the size of programmable resources by expo-
nential growth [3]. In order to avoid the combination explo-
sion problem, researchers mimicked the behavioral pattern
of multicellular organisms and developed bio-inspired self-
repairing hardware to solve complex computational tasks by
local rules without any central control [4], [5]. As a recon-
figurable, fault-tolerant system, bio-inspired self-repairing

hardware is characterized by decentered architecture, dis-
tributed computing, and dynamic partial reconfiguration [6].
It uses multiple processing elements to increase the com-
puting power and relocate configuration information seg-
ments (or function blocks) instead of generating the entire
bitstreams to reduce the calculation amount.

In bio-inspired self-repairing hardware, function blocks
can be migrated from fault regions and relocated to other
regions by dynamic placement. During this process, there
are two noteworthy parameters, including the reconfigurable
hardware cost needed in fault tolerance (hereafter called
Fault-tolerant Cost) and the functional circuit performance
after dynamic placement (hereafter called Placement Per-
formance) [7]–[10]. Currently, linear removal methods (e.g.,
Embryonics [11]) and neighbor replacement methods (e.g.,
Self-Repairing Digital System [12]) have high Placement
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FIGURE 1: A comparison between a biological cell and an electronic cell. (a) A biological cell mainly consists of membrane,
nucleus, ribosome, and cytoplasm. (b) An electronic cell mainly consists of an input/output unit, a configuration memory, a
processing element, and a group of programmable logic.

Performance and high Fault-tolerant Cost; while global re-
placement methods (e.g., eDNA [13]) have low Placement
Performance and low Fault-tolerant Cost. So far, however,
there is still a lack of effective dynamic placement methods
in bio-inspired self-repairing hardware that can achieve high
Placement Performance and low Fault-tolerant Cost.

The goal of this paper is to develop a multi-objective
dynamic placement approach to high Placement Performance
and low Fault-tolerant Cost. In order to achieve this online
computational task, the calculation amount should be re-
duced, and existing processing elements should be made full
use of. By introducing the multi-step placement transforma-
tion to replace single-step transformation, bio-inspired self-
repairing hardware was converted into a discrete dynamical
system, and the computing resource is improved on the
time dimension. Based on Lyapunov’s stability theory [14],
the multi-objective dynamic placement was described as a
stability problem of constrained systems, and the calculation
amount was reduced by avoiding extra information process-
ing (e.g., routing information or timing information) that is
often used in offline placement model. Based on the principle
of dynamics, a self-repairing system was developed where
all the processing elements were needed to take part, thus
the computing resource is increased on the space dimension.
Moreover, by simulating an artificial particle system that
could satisfy dynamical requirements, a corresponding evo-
lution algorithm was proposed, which could avoid large-scale
iterative calculations used in the conventional optimization
search algorithms. The following parts are organized as fol-
lows: section II presents the basic principle and related work,
section III makes a model for the multi-objective dynamic
placement; section IV develops a self-repairing dynamical
system; section V exhibits experimental results; and section
VI concludes the paper.

FIGURE 2: State transition of eCells.

II. BASIC PRINCIPLE AND RELATED WORK
Bio-inspired self-repairing hardware is a distributed, recon-
figurable, fault-tolerant system, supporting a flexible imple-
mentation of function circuits on an artificial multicellular
array [15]. As the basic structural and functional unit in
analogy to the biological cell, every electronic cell (eCell)
is composed of four parts (Fig.1):

1) an input/output unit, working as the cell membrane,
supports the communication with other eCells;

2) a configuration memory contains a copy of the genome,
in analogy to the nucleus;

3) a processing element, acting as the ribosome, is respon-
sible for interpreting the genome;

4) a group of Programmable Logic (PL), working as
the cytoplasm, is used for implementing the intended
function block [16].

The working process of eCells can be modelled by a Finite
State Machine (FSM) with four basic states, including:
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FIGURE 3: Current dynamic placement methods: (a) Linear removal method, (b) Neighbor replacement method, (c) Global
replacement method.

1) working, the PL is fault-free and associated with a
function block;

2) spare, the PL is fault-free and associated with no
function block;

3) faulty, the PL is faulty and associated with a function
block;

4) dead, the PL is faulty and associated with no function
block.

The eCell state transition is shown in Fig.2. Cellular differ-
entiation and dedifferentiation are a pair of reversible tran-
sitions, achieved by extracting the specific gene within the
genome and implementing the corresponding block on the PL
[17]. Nevertheless, the self-test and apoptosis are generally
irreversible and unidirectional transitions. The self-test is
performed on the spare and working eCells by monitoring
behaviors, analyzing outputs, and identifying faults. If a fault
is detected in a spare eCell, it will be immediately induced to
apoptosis by stopping the functionality and isolating the PL
from the array. If a fault occurs in a working eCell, it will
turn into a faulty one at first, and then a dead one when its
associated function block is removed.

The arrangement of function blocks is called a placement.
The initial placement is made up of working eCell and spare
eCells. Working eCells are used to implement the given func-
tion circuits and spare ones are for fault tolerance. However,
with the increase of faults, the system will lose efficacy and
have no ability to implement the function circuits. The place-
ment at this moment is called the terminal placement. In the
whole life between the initial and the terminal placements,
bio-inspired self-repairing hardware works as a cellular au-
tomaton that repeatedly experiences two phases: dynamic
placement and placement interval. The dynamic placement
starts when a faulty eCell is identified and halts when all the

faulty eCells are turned into dead ones. During this phase, all
the PLs are deactivated. ECells automatically change their
states or renew function blocks according to the environment
information and the placement keeps changing by local rules
without any central control [6]. By contrast, the placement
interval is in a stable state without any faulty eCell. The
PLs of working eCells are activated and function circuits can
work normally.

In the early research, the linear removal method was a
major dynamic placement approach. In Embryonics [11],
eCells were connected sequentially in a linear chain. Initially,
all the spare eCells were arranged at one end of the chain.
If one working eCell was found faulty, its function block,
together with its following eCells’, would synchronously
move by one eCell. Meanwhile, the function block of the last
working eCell would be passed to the next spare one if it
exists (Fig.3 (a)). The similar method could be generalized
to a two-dimensional rectangular array, where the column
(or row) containing the faulty eCell would transfer function
blocks to the nearest right column, which would repeat the
same action, and so on until a spare column was reached [18].
Since a column of spare eCells was used to mask one faulty
eCell, 2D Embryonics had high Fault-tolerant Cost.

Thereafter, further improvements are mainly based on
replacement rules, which are conducted by deactivating the
faulty eCell and activating another spare one rather than a
spare column for replacement. Inspired by the endocrine cel-
lular communication, Yang et al. developed a self-repairing
digital system where spare eCells were evenly embedded into
working eCells in the initial placement (Fig.3 (b)) [12]. One
faulty eCell can be replaced by any of its spare neighbors.
Nevertheless, Fault-tolerant Cost was still large since every
spare eCell provided fault tolerance in a small region.
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TABLE 1: A comparison between current dynamic placement methods

Main Performance Parameters Computing Resource Utilization

Placement Performance Fault-tolerant Cost Transformation Step Processing Elements Used

Linear Removal High High One Many
Neighbor Replacement High High One Few

Global Replacement Low Low One Few
Hybrid Replacement Medium Medium One Few

Conclusion
There is a lack of effective methods

to achieve high Placement Performance
and low Fault-tolerant Cost.

The computing resource utilization is low

By contrast, based on efficient on-chip communication
architecture (e.g., crossbar [19], [20], shared bus [21], and
network on chip [22]), global replacement method was pro-
posed and Fault-tolerant Cost was greatly reduced. For ex-
ample, in eDNA [13], public channels were used for fault
information broadcast. When a fault was detected, a spare
eCell with the highest priority would be activated and the
cellular differentiation would be conducted for replacement
(Fig.3 (c)). Nevertheless, since some function blocks would
be transmitted far away from their original positions, the
function circuit timing performance (e.g., timing skew and
transmission stability) declined and the routing complexity
and total wire length increased, leading to low Placement
Performance.

In addition, some dynamic placement methods with
medium Fault-tolerant Cost and medium Placement Perfor-
mance were proposed to provide more flexible choices. For
example, Szasz et al. presented a hierarchical system with
an extra cluster layer [23]. One cluster was composed of
a switch matrix and some spare and working eCells. The
replacement was limited to eCells among the same cluster.
Kim et al. [24] proposed a hybrid system with two kinds of
spare eCells, including redundant eCells and stem ones. In
the self-repair, each working eCell had a corresponding re-
dundancy to replace its function instantly. If the redundancy
was used up, a stem eCell was immediately configured to the
redundancy.

In conclusion, current methods are conducted based on
a one-step placement transformation, and only a few pro-
cessing elements are used to execute the calculation task
(Table 1). Linear removal methods and neighbor replacement
methods have high Placement Performance and high Fault-
tolerant Cost; while global replacement methods have low
Placement Performance and low Fault-tolerant Cost. How-
ever, there is a lack of effective methods that can achieve high
Placement Performance and low Fault-tolerant Cost.

III. MULTI-OBJECTIVE DYNAMIC PLACEMENT MODEL
In this section, two indexes are proposed to make quantitative
descriptions of Fault-tolerant Cost and Placement Perfor-
mance. Based on group theory, the computing task is divided
on the dimensions of time and space to increase the utiliza-
tion of online computing resources. By introducing the multi-

step placement transformation, a discrete dynamical system
model is built, and the multi-objective dynamic placement
is converted into a stability problem of constrained systems.
Then the optimal performance that the system can achieve is
analyzed by a constructive proof.

A. QUANTITATIVE INDEX
1) Fault-tolerant Cost index
Let n0 (w), n0 (s) denote the number of working and spare
eCells in the initial placement. Let nT (w), nT (s), nT (f),
nT (d) denote the number of working, spare, faulty, and dead
eCells in the terminal placement. Then we have the following
equations:

n0 (s) = nT (s) + nT (d)
n0 (w) = nT (w) + nT (f)

(1)

Fault-tolerant Resource Utilization (FRU) can be defined
as the fault-tolerant number (the number of dead eCells) in
the terminal placement divided by spare eCell number in the
initial placement, expressed as a percentage:

FRU = nT (d) /n0 (s)× 100% (2)

Fault-tolerant Resource Loss (FRL) can be expressed as
the number of spare eCells unused in the terminal placement
compared with the number of spare eCells initially existing
in the system, expressed as a percentage:

FRL = nT (s) /n0 (s)× 100% (3)

Fault-tolerant Cost can be reduced by increasing the FRU
value or decreasing the FRL value. According to Eq.(1), the
sum of FRU and FRL is equal to 1.

FRU + FRL = 1 (4)

2) Placement Performance index
Let B and E denote the function block set and the eCell set.
The placement can be expressed as a mapping from function
blocks to eCells, denoted by

σ : B → E. (5)

Assume that the initial placement, denoted by σ0, has the
best placement performance. When function blocks are trans-
mitted away from their original positions, the function cir-
cuit timing performance (e.g., timing skew and transmis-
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FIGURE 4: Placement sequences are constructed by record-
ing blocks along (a) a unidirectional path starting from
the origin in a linear chain; (b) a snaking path starting
from the origin in a two-dimensional array. Thus, the place-
ment sequences can be written by {b4, b3, s, b2, b5, s, b1} and
{b9, b8, s, b1, b5, s, · · · , b6}, respectively.

sion stability) declines and the routing complexity and total
wire length increase. For any placement σt, its Placement
Performance Loss (PPL) can be expressed as the maximal
displacement of function blocks

PPL = max
b∈B

d (σ0 (b) , σt (b)) (6)

where d (x, y) is the Manhattan distance that uses the sum
of the absolute differences of Cartesian coordinates between
two points as the metric.

B. TASK DECOMPOSITION
Dynamic placement is a computationally intense task. The
algebra structure of placement transformation inspires us to
develop a task decomposition method to make full use of
online computing resources.

Assume that spare eCells are associated with a special
block, or spare block, denoted by s. The arrangement of
blocks can be represented by a placement sequence, which
is constructed by recording blocks along a continuous path.
As shown in Fig.4, it is a unidirectional path in a linear chain
or a snaking path in a two-dimensional array. For any two
adjacent terms in one placement sequence, their correspond-
ing eCells are still neighbors in the hardware system, but the
reverse is not always true.

Let P(B,E) denote a set of placement sequences based on
the function block setB and eCell setE. For any p ∈ P(B,E),
it satisfies the following three properties:

1) The sequence length is equal to the number of eCells.
2) Let pn denote the nth term of p. For any natural number

n 6 |E| − 1, pn ∈ {s} ∪B.

3) For any function block b ∈ B, there exists one and only
one term pn in p such that b = pn.

A metric can be defined on P(B,E). Given p, q ∈ P(B,E),
their distance can be defined by the maximal displacement of
function block symbols, denoted by:

D (p, q) = max
b∈B

fb (p, q) (7)

where f (x, y) is the distance in a one dimensional sequence.
A bridge can be built between the PPL value and the se-

quence difference. Let p∗ denote the sequence corresponding
to the initial placement (σ0). For any placement σt, assume
that its corresponding sequence is q. Due to the snakelike
mapping order (Fig.4(b)), the PPL value of σt is equal to the
sequence distance in a one-dimensional eCell chain, and no
less than that in a two-dimensional eCell array, denoted by

PPL 6 D (p∗, q) (8)

Let us ignore constraint conditions and jump above im-
plementation details. Then the dynamic placement can be
denoted by a simple form:

q = gp (9)

where p, q ∈ P(B,E) and g is a permutation identifying a
specification of a way to reorder a sequence. For example,
given p = {b0, b1, b2, s} and q = {b2, b1, s, b0}, g can be
written in cyclic form, that is, (143)(2), or more commonly,
(143) to omit the unchanged element, meaning the first,
fourth, and third elements are mapped to each other in a
cyclic fashion, while the second element is fixed.

Let G be the set of permutations acting on the sequence.
We can define a binary operation on G which behaves much
like ordinary multiplication; that is, given a mapG×G→ G
that sends the pair (g1, g2) into g1g2, satisfying the associa-
tive law, the existence of an identity element, and the exis-
tence of an inverse. ThenG is a permutation group. [25]. One
of the basic results on group theory says that any permutation
is a product of disjoint cycles [26]. Such cycles commute
with each other, and the expression of the permutation is
unique up to the order of the cycles. In addition, any cycle
can be expressed as a product of transpositions (2-element
cycle). Given a cycle g = (x1x2 · · ·xk), it is easy to see that

(x1x2 · · ·xk) = (x1xk) (x1xk−1) · · · (x1x2) (10)

The product is not commutative and the transpositions are
performed from right to left, nevertheless, the representation
is not unique. From this analysis follows a conclusion that
any permutation can be achieved by the composition of
transpositions.

C. DYNAMICAL SYSTEM MODEL
Based on dynamical system theory, bio-inspired self-
repairing hardware can be converted into a discrete-time dy-
namical system, denoted by a four-tuple

{
P(B,E), A, Td,M

}
,

including four ingredients: a non-empty state space P(B,E),
a set of initial states A ⊂ P(B,E), a discrete time set
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Td = {0, 1, 2, · · · }, a family of motions M ⊂ G that is
the set of the composition of disjoint transpositions [27].
The evolution of the system state is a sequence of discrete
trajectory through the state space. For any g ∈ M , we have
g0p = p ∈ A and gnp ∈ P(B,E) for all n > 0, n ∈ Td [28].

The aim of multi-objective dynamic placement is to in-
crease the FRU value and to decrease the PPL value. It can
be converted into a stability problem of constrained systems,
with the following properties:

1) p∗ ∈ P(B,E) is Lyapunov stable, that is, all the trajecto-
ries that start out near the point p∗ stay near p∗ forever
[14];

2)
{
P(B,E), A, Td,M

}
evolves under the Degree of free-

dom (DOF) constraints, each of which can be denoted
by an identical equation p [x] ≡ s, meaning the xth

term is equal to s.
The most characteristic feature of this dynamical system

model is the emphasis on the evolution on the dimensions
of time and space. On the space dimension, one permutation
can be decomposed into commutative cycles that can be
implemented on different regions in parallel, thus raising
the utilization of online computing resources. On the time
dimension, one cycle can be further decomposed into non-
commutative transpositions that can be executed sequen-
tially. Since complex dynamical behaviors can be achieved
by iterations of simple evolution laws, the hardware de-
sign can be simplified. By contrast, current methods can be
considered as a one-step transformation limited in a local
region. For example, Embryonics is a one-step cycle, whereas
replacement-based methods are one-step transpositions. With
limited computing power, they can hardly satisfy the multi-
objective dynamic placement requirements.

Then let us analyze the optimal performance that such a
constrained system can achieve.

Theorem 1: Let
{
P(B,E), A, Td,M

}
be a dynamical sys-

tem and assume that p∗ ∈ P(B,E) is Lyapunov stable. Assume
that there exists a point q ∈ P(B,E) such that D (p∗, q) 6 k
for any k DOF constraints, where k 6 |E| − |B|.

Proof: We will use an algorithm to construct a q from the
p∗. Let the initial value of q be equal to p∗. In the first step,
check elements in q in sequence and transfer an s to the
sequence tail for k times. In the second step, transfer an s
from the tail of q to the corresponding constraint position.
This step continues until all the DOF constraints are used.
At this moment, q can satisfy the given DOF constraints.
Then we will calculate the distance between q and p∗. For
any b ∈ B, it will move to the left in the first step and to
the right in the second step, and the maximal displacement
is no more than k. Thus D (p∗, q) 6 k and the theorem is
established.

According to Eq.(8), the PPL value is no more than its
corresponding sequence distance. Thus, the optimal PPL
value is no more than k when the fault-tolerant number is
k. Besides, the number of DOF constraints is no more than
the number of spare eCells. Thus, the maximal FRU value
can reach 100%.

IV. DYNAMICAL SYSTEM DESIGN
In order to satisfy the requirements mentioned in the above
section, an artificial particle system model is built and its
evolution laws are verified by dynamic analysis. Relying
on memory read/write control, a self-repairing dynamical
system is developed to mimic the particle system. Based
on the evolution laws, a corresponding dynamical evolution
algorithm is proposed, which could avoid large-scale itera-
tive calculation used in the conventional optimization search
algorithms.

A. ARTIFICIAL PARTICLE SYSTEM
The artificial particle system is made up of particles ‘living’
on lattices [29]. A lattice is a discrete world composed of
interconnected nodes [30]. Consider, for example, a square
lattice with four neighbors at each node such that one node is
associated with each link to the next neighbor. Let us develop
the laws of motion in this artificial world. First, one particle
can either stay on a node or hop from site to site, but at
every tick of a clock, it can move at most one lattice unit
and can never leave the lattice. Then assume that this system
is governed by two forces.

One force is called coupling force. It exists between any
two particles, and its final effect is to maintain the relative
displacement that is determined by the initial configuration.
Let α and β denote two particles. Let the displacement of β
relative to α be ∆rαβ in the initial configuration. Assume that
α stays on the site (rα) in a new configuration. An irrotational
force field will be generated in the lattice and the position
of field source in the new configuration is (rα + ∆rαβ ). The
coupling force on β is 0 at the source, and points to the source
at the other sites.

The other is repulsive force, which comes into action when
particles meet in one site. Repulsive force is assumed to be
far stronger than coupling force in a short range. Under its
action, the situation that two particles stay in one site is
avoided. For example, if one particle collides against another,
it bounces back and the other stays still; if two or more
particles arrive at the same site, only one randomly selected
particle can stay at the current site and the others return to
their original positions.

In general, the structure of the lattice is unchanged, unless
a node is found faulty and becomes a hole. Accordingly, let
us make an analysis for the motion of particles in unchanging
and changing lattices.

1) Dynamic analysis in an unchanging lattice
It can be noted that coupling force is a conservative force,
thus it can be represented by a potential energy function that
satisfies the derivative condition:

Fc = −OU (11)

where U is the potential energy that depends only on the
difference between the initial and current configurations [31].
In this system, particles move along the energy gradient
direction until they collide into another one. The particle
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system has less potential energy when coupling particles
move close to each other. According to Lyapunov’s second
method, this system is stable in the initial configuration
where the potential energy is 0.

2) Dynamic analysis in a changing lattice
Initially, the lattice is prepared so that each site is occupied
by no more than one particle. Assume that a hole occurs at
some moment and there is a particle, denoted by α, staying
on this site. We can assume that α moves to its neighboring
sites by an infinitesimal virtual displacement. For example, it
moves to the left and there is exactly another particle on this
site, denoted by β. Under the action of the repulsive force,
β will continue to move to its neighboring sites until one
particle, denoted by γ, move to a space site. At this moment,
the virtual displacement of γ becomes a real displacement,
then its following particles move in turn until α hops out of
the hole. Thereafter, no particle is allowed to hop into this
hole again.

In conclusion, this artificial particle system can keep stable
in an unchanging lattice and hop out of holes in a changing
lattice, satisfying the stability requirements and DOF con-
straints. Thus it can be used as a reference for the further
design and implementation.

B. SELF-REPAIRING DYNAMICAL SYSTEM
As a discrete space system, the artificial particle system can
be simulated by bio-inspired self-repairing hardware. The
transformation is shown in Table 2, nevertheless, the action
range of coupling force is limited to save routing resources
and simplify system design.

TABLE 2: Transformation from artificial particle system to
bio-inspired self-repairing hardware

Artificial particle system → Bio-inspired self-repairing hardware
System evolution → Dynamic placement

Lattice → Distributed memory
Node → Memory in the fault-free eCell
Hole → Memory in the faulty eCell

Particle → Function block
Force on particle → Memory read

Particle motion → Memory write
Coupling force → Action decision
Repulsive force → Conflict arbitration

The discrete lattice is equivalent in architecture to a dis-
tributed memory system. All the configuration memories
are identical and arranged in a net structure, which can be
denoted by a graph comprising vertexes and edges. One
configuration memory can be considered as a hole if its
corresponding eCell is faulty, and a node if fault-free.

Particle with memory effects can be simulated by function
block comprising three bit fields. The first field is an identi-
fier. Next is a configuration data field used for implementing
the intended functionality on the PL unit. The last part is

FIGURE 5: Evolution stage transition.

a coupling information field, which consists of the initial
displacement data of its coupling function blocks.

The force on particle and particle motion correspond to
memory read and write. The read permission can only ac-
cess the identifier, whereas the write permission deals with
the entire information of function block. Since the parti-
cle system only supports the motion between neighboring
sites, each eCell can write memories among its four ad-
jacent eCells and itself. Besides, the memory read scope
is restricted to a square region with a width of 5 to save
routing resources. That is, assume that the eCell is located
at (xc, yc), it has memory read permission of eCells located
at {(x, y) | |x− xc| 6 2, |y − yc| 6 2}. Then the coupling
pairs are restricted in the neighboring blocks in the initial
configuration.

Coupling force and repulsive force can be achieved by
action decision and conflict arbitration. According to the
memory read results, the potential energy values at different
sites are calculated, and a memory write request will be sent
to the site with the minimum value. If two or more write
requests are received, only one can be accepted by arbitration
for data transmission, and the rejected ones have to wait for
the next cycle.

C. DYNAMICAL EVOLUTION ALGORITHM
Bio-inspired self-repairing system is a synchronous sys-
tem where the states are updated synchronously at discrete
time levels. In one clock cycle, each function block can
choose one among five possible motions, includes: staying
at the current eCell, or moving one eCell to the left, right,
up, and down side. Let MC,ML,MR,MU,MD denote
these five motions. The necessary condition for the motions
{ML,MR,MU,MD} is that the next eCell is in the spare
state; otherwise, the motion MC is used. In this system, the
dynamic placement can be divided into three stages including
interval, dispersal stage, and convergent stage (Fig.5).

The dispersal stage starts when one working eCell turns
into a faulty one and continues until this eCell is dead. Let
rf denote the position vector of the faulty eCell. Given a
function block b ∈ B, which stays on the site with the
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position vector (rb), it will move in the direction against the
faulty eCell. Let Ω denote all the optional position vectors.
The optimal site can be calculated by:

min
xb∈Ω

(|xb − rf | − |rb − rf |) (12)

For example, assume the position vector of the faulty eCell
is (5, 5). For any function block, if it is located at (2, 5),
it will choose the motion ML; if located at (2, 2), it will
make a random choice between ML and MD. From a
macro perspective, function blocks surrounding the faulty
eCell move towards the peripheral spare eCells in a wave-
like manner.

The convergent stage follows the dispersal stage and ends
when exceeding the maximum number of iterations. Since
every eCell can obtain limited environment information, the
region potential energy, defined as the sum of displacement
of coupling function blocks in a local placement, is used
for calculation. Given a pair of coupling function blocks
b, k ∈ B, let ∆rkb denote the displacement of b relative to
k in the initial placement. Assume the position vectors of
b, k be rb, rk in a new placement. When only k is taken into
consideration, the potential energy of b can be calculated by:

Ukb = d
(
rb, rk + ∆rkb

)
(13)

When considering a set of coupling particles of b in a local
placement, denoted byC, the region potential energy of b can
be calculated by:

UCb (xb) =
∑
k∈C

d
(
xb, rk + ∆rkb

)
(14)

For any function block, it will calculate the region potential
energy on different sites and choose a site with the minimal
cost value:

min
xb∈Ω

(
UCb (xb)

)
(15)

Dynamical evolution algorithm mainly consists of three
steps. The first step is the eCell state transition according
to Fig.2. Next is the evolution stage transition according
to Fig.5. The last is memory read/write control, which is
triggered in the dispersal and convergent stages (Algorithm
1). Thereafter, the system returns to the first step, and the
cycle continues until the system stops.

Based on the principle of dynamics, dynamical evolution
algorithm can make full use of online computing resources
on the dimensions of time and space, and avoid large-scale
iterative calculations used in the conventional optimization
search algorithms. Besides, without the initial placement
constraint, the algorithm can be used in a wider application
range and the design process is more flexible.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the design of simulation experiments is in-
troduced. Based on the experimental results, the FRU and
PPL values are counted, and Fault-tolerant Cost and Place-
ment Performance are analyzed. Then a comparison is made

Algorithm 1: Memory read/write control
For each working or faulty eCell, run these codes
synchronously:
1: Read memory in a local region;
2: Choose a cost function according to the evolution stage;
3: Calculate the cost value;
4: Choose a spare neighbor with the smaller cost value

than itself;
5: Send Request messages to that neighbor;
6: Wait until receiving Response;
7: Transfer data to that memory.

For each spare eCell, run these codes synchronously:

1: Wait until receiving Request messages;
2: Choose a Request randomly;
3: Make a Response to that Request;
4: Write the received data to memory.

between the linear removal method, global removal method,
and dynamical evolution method.

A. SIMULATION EXPERIMENTS
The performance of dynamical evolution approach will be
tested by simulation experiments under different cases (e.g.,
array size, spare eCell number, initial placement, and fault
position). Based on Python 3.7.0, every eCell can be defined
as an object comprising data members (e.g., address and
function block) and methods (e.g., state transition method,
evolution stage transition method, and memory read/write
control method). Relying on a global clock, methods in
different eCells can be executed concurrently. During the
placement interval, one randomly selected working eCell can
be turned into a faulty one to simulate fault injection. Then
the self-repairing dynamical system restarts the dynamical
evolution. If the system returns to the placement interval after
the convergent stage, the maximal displacement of function
blocks will be counted, and meanwhile, another fault will be
inserted. Otherwise, the algorithm halts and the fault number
is counted.

According to the array size and spare eCell proportion, our
experiments can be classified into ten groups, and each group
consists of 100 experiments with different initial placements.
Among these groups, five are based on a 10× 10 eCell array
and another five on a 20× 20 array. Let us denote the former
five groups by S (n) and denote the latter five byL (n), where
n is the number of spare eCells in the initial placement. The
experiment conditions of different groups are shown in Table
3. There are 1000 experiments in total, and the results will
be analyzed to evaluate Fault-tolerant Cost and Placement
Performance.

B. FAULT-TOLERANT COST ANALYSIS
Fault-tolerant Cost can be evaluated by the FRU value
(Eq.(2)). Every experiment corresponds to one FRU value,
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TABLE 3: The experiment conditions of different groups

Array
Size

Spare eCell
Number a

Working eCell
Number a

Spare eCell
Proportion a

Experiment
Number

S(5) 10× 10 5 95 5% 100
S(10) 10× 10 10 90 10% 100
S(20) 10× 10 20 80 20% 100
S(30) 10× 10 30 70 30% 100
S(40) 10× 10 40 60 40% 100
L(20) 20× 20 20 380 5% 100
L(40) 20× 20 40 360 10% 100
L(80) 20× 20 80 320 20% 100
L(120) 20× 20 120 280 30% 100
L(160) 20× 20 160 240 40% 100
a This data comes from the initial placement.

FIGURE 6: A stacked bar graph to compare FRU between
different groups. The FRU values of each group are classified
into four categories: 0 − 25%, 25 − 50%, 50 − 75%, and
75− 100%, represented by different colors.

thus there are 100 values in one group. As is shown in
Fig.6, a stacked bar graph is made to exhibit all the data by
dividing FRU values in four categories: 0− 25%, 25− 50%,
50 − 75%, and 75 − 100%. For example, there are 96 FRU
values exceeding 75% and 4 values varying from 50% to 75%
in the group S(10). Since the system may lose efficacy before
an expected life when all the movements are blocked by dead
eCells, FRU varies randomly and no group can achieve the
100% FRU value for all the experiments.

The average fault-tolerant number and the average FRU
value are counted in Table.4. The average fault-tolerant
number goes in the opposite direction from the average
FRU value. When comparing groups with the same array
size, the average FRU shows a small decrease at first, and
then declines dramatically with the increase of spare eCell
number. When comparing groups with the same spare eCell
proportion, there is no significant difference between groups
with the proportion equal to 5% and 10%. Nevertheless, with
the increase of spare eCell proportion, the FRU difference
gradually increases.

TABLE 4: A comparison of fault-tolerant number and FRU
value

Spare eCell
Number a

ECell
Number

Spare eCell
Proportion a

Fault-tolerant
Number b FRU b

S(5) 5 100 5% 4.83 96.6%
S(10) 10 100 10% 9.51 95.1%
S(20) 20 100 20% 18.81 94%
S(30) 30 100 30% 25.2 84%
S(40) 40 100 40% 28.1 70.25%
L(20) 20 400 5% 19.64 98.2%
L(40) 40 400 10% 37.91 94.8%
L(80) 80 400 20% 66.79 83.5%
L(120) 120 400 30% 81.4 67.8%
L(160) 160 400 40% 77.79 48.6%
a This data comes from the initial placement.
b This data is an average value.

It implies that the dynamical evolution algorithm has
greater advantage in Fault-tolerant Cost when the proportion
of spare eCells is small. With the increase of spare eCell
proportion, the fault-tolerant ability increases slowly; while
the FRU value declines dramatically.

C. PLACEMENT PERFORMANCE ANALYSIS
Placement Performance can be evaluated by the PPL value
(Eq.(6)). Compared to FRU, PPL has larger data size since
it is counted at the end of each dynamic placement cycle
rather than each experiment. All the PPL values are divided
into different data sets, and one data set consists of PPL
values that belong to the same group and the same dynamic
placement cycle. The maximal PPL value in each data set is
exhibited in a heat map (Fig.7). These values are no more
than 8 in the S(n) groups and no more than 23 in the
L(n) ones. PPL shows a gradually increasing trend with
the increase of dynamic placement cycles and finally tends
to be stable. Nevertheless, there is no significant difference
along the vertical axis (spare eCell proportion) in Fig.7.
Then a further analysis is made at the 15th, 35th, 75th, and
105th cycles. All the data sets related to these cycles in the
L(n) groups are chosen to make a boxplot (Fig.8). In the
15th cycle, the box medians increase in order of spare eCell
proportion. The other cycles have similar properties.

It can be found that small spare eCell proportion has
better Placement Performance than large one. Besides, the
PPL value is usually less than its corresponding dynamic
placement cycle, implying that dynamical evolution algo-
rithm can achieve the optimal performance that is described
by Theorem 1.

D. METHOD COMPARISON
Let us make a comparison between the linear removal
method, global removal method, and dynamical evolution
method. All the methods are repeated 100 times based on the
same simulation environment, where the array size is set to
10 × 10 with 10 spare eCells in the initial placement. In the
linear removal method, there is an additional constraint on
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(a) (b)

FIGURE 7: A heat map of the maximal PPL values. Figure (a) is a comparison between S(5), S(10), S(20), S(30), and S(40).
Figure (b) is a comparison between L(20), L(40), L(80), L(120), and L(160). Each colored block represents the maximal PPL
value in the corresponding data set. The value with dark color is greater than that with light one.

FIGURE 8: A boxplot of data sets at the 15th, 35th, 75th, and
105th dynamic placement cycles. There are 5 short horizontal
line in a box, representing the lower extreme, lower quartile,
median, upper quartile, and upper extreme of one data set.
For example, in the data set of the L(160) at the 15th cycle,
the five numbers are 4, 6, 7, 8, and 10, respectively.

the initial placement, that is, spare eCells should be initially
arranged on the rightmost column. In the global removal
method, the priority of spare eCells is specified in random
order and the initial placement is generated in the same way
as that in the dynamical evolution method. In each experi-
ment, a randomly-selected working eCell will be marked as
a faulty one in the placement interval until the system loses
fault-tolerant ability. The remaining spare eCell number and
the maximal displacement of function blocks in the terminal
placement will be counted. Then the FRL value and the PPL
value will be calculated by Eq.(3) and (6).

There are 100 experiments in one method and every exper-
iment corresponds to one FRL value and one PPL value. All
the experiment results are plotted on a bubble chart, where
the PPL value increases from left to right and the FRL value
increases from bottom to top. As is shown in Fig.9, three

FIGURE 9: A comparison between the linear removal
method, global removal method, and dynamical evolution
method. The area of one bubble represents the amount of data
at the corresponding position.

methods are isolated from each other without overlapping
points. In the linear removal method, there is only one point
on the upper-left corner. In the global replacement method,
there are 11 points located along a horizontal line on the
lower-right corner. In the dynamical evolution method, there
are points in various sizes located in a small region on the
lower-left corner. As far as FRL is concerned, the average
FRL value of global replacement method (FRL = 0) and
dynamical evolution method (FRL = 4.9%) is far less than
that of linear removal method (FRL = 90%). Nevertheless,
the average PPL value of linear removal method (PPL = 1)
and dynamical evolution method (PPL = 2.65) is far less
than that of global replacement method (PPL = 12).

In conclusion, compared with the global replacement
method and linear removal method, dynamical evolution
method can offer high Placement Performance with low
Fault-tolerant Cost. Besides, it also has the advantage of
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high design flexibility since there is no initial placement
constraint. It should be noted that the proportion of spare
eCells is a major parameter in applications. Small spare eCell
proportion can lead to better Placement Performance and less
Fault-tolerant Cost.

VI. CONCLUSION
The goal of this paper was to develop a dynamical evolution
approach to high Placement Performance and low Fault-
tolerant Cost for bio-inspired self-repairing hardware. The
study on algebraic structure of the placement transformation
has inspired a task decomposition method to raise the utiliza-
tion of computing resources. By converting bio-inspired self-
repairing hardware into a discrete-time dynamical system,
the multi-objective dynamic placement has been described
as a stability problem of constrained systems. Based on an
artificial particle system model, a self-repairing dynamical
system has been developed and a dynamical evolution al-
gorithm has been proposed. Experiments have shown that
the dynamical evolution method can offer high Placement
Performance with low Fault-tolerant Cost. Further research
is required to explore the dynamic routing approaches and
to verify the dynamical evolution approach on a bio-inspired
hardware platform.
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