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ABSTRACT
Nearest neighbor (NN) search in high-dimensional spaces is
inherently computationally expensive due to the curse of di-
mensionality. As a well-known solution to approximate NN
search, locality-sensitive hashing (LSH) is able to answer
c-approximate NN (c-ANN) queries in sublinear time with
constant probability. Existing LSH methods focus mainly
on building hash bucket based indexing such that the can-
didate points can be retrieved quickly. However, existing
coarse-grained structures fail to offer accurate distance esti-
mation for candidate points, which translates into additional
computational overhead when having to examine unneces-
sary points. This in turn reduces the performance of query
processing. In contrast, we propose a fast and accurate LSH
framework, called PM-LSH, that aims to compute the c-
ANN query on large- scale, high-dimensional datasets. First,
we adopt a simple yet effective PM-tree to index the data
points. Second, we develop a tunable confidence interval
to achieve accurate distance estimation and guarantee high
result quality. Third, we propose an efficient algorithm on
top of the PM-tree to improve the performance of comput-
ing c-ANN queries. Extensive experiments with real-world
data offer evidence that PM-LSH is capable of outperform-
ing existing proposals with respect to both efficiency and
accuracy.
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1. INTRODUCTION
Nearest neighbor (NN) querying in high-dimensional spaces

is classic functionality that is used in a wide variety of im-
portant applications, such as sequence matching [1], recom-
mendation [8], similar-item retrieval [19], and de-duplication
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[24], to name but a few. Let D be a set of points in d-
dimensional space Rd. Given a query point q, an NN query
returns a point o∗ in D such that its Euclidean distance to
q is the minimum among all points in D.

While the exact NN query in low-dimensional space al-
ready has efficient solutions [5, 6], providing an efficient so-
lution for large-scale datasets with high dimensionality re-
mains a challenge, as both the query time and the space cost
may increase exponentially with respect to the dimension-
ality. This phenomenon is called the “curse of dimensional-
ity.” Fortunately, it usually suffices to find an approximate
nearest neighbor (ANN). For a given approximation ratio c
(c > 1) and a query point q, a c-ANN query returns a point
o whose distance to q is at most cr∗, where r∗ is the distance
between q and its exact NN o∗.

A widely-adopted locality-sensitive hashing (LSH) method
enables computing c-ANN queries in sublinear time with
constant probability. Generally, LSH maps the points in
the dataset to buckets in hash tables by using a set of
predefined hash functions that are designed to be locality-
sensitive so that close points are hashed to the same bucket
with high probability. A query is answered by examining
the points that are hashed to the same bucket as the query
point, or to similar buckets. Based on their main ideas, we
classify the mainstream LSH methods into three categories:
1) Probing Sequence based (PS) approaches [20, 22, 23]; 2)
Radius Enlarging based (RE) approaches [11,17,33]; and 3)
Metric Indexing based (MI) approaches [31]. PS approaches
use a carefully derived probing sequence to examine multi-
ple hash buckets that are likely to contain the nearest neigh-
bor of a query. RE approaches process a sequence of range
queries by enlarging the query range repeatedly until a qual-
ified point is found. In MI approaches, the points are trans-
formed into a low-dimensional space, called the projected
space. The coordinates of a point in the projected space are
the point’s hash values. MI approaches then use a metric
index to organize the points such that the distance between
two points in the projected space can be used to approxi-
mate the distance between them in the original space.

When evaluating the performance of LSH methods, many
pertinent performance metrics for c-ANN search exist, in-
cluding efficiency, accuracy, memory consumption, and pre-
processing overhead. Among these, both efficiency and ac-
curacy are important metrics since a desirable algorithm
should return results as soon as possible with a quality that
is as high as possible, while the memory consumption and
preprocessing overhead must be tolerable in the setting of
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a commodity machine. The performance of LSH depends
on two aspects: 1) the estimation of distances between the
query point and candidate points; and 2) the probing or-
der of buckets/points. It is proven [31] that the ratio of the
projected distance over the original distance between any
two points follows a χ2 distribution. Therefore, if we are
able to estimate the distance between two points accurately,
we are able to find high quality candidates. In addition, a
well-designed index structure is required to quickly locate
high-quality candidates.

However, the existing LSH methods suffer from either in-
accurate distance estimation or unnecessary point probing
overhead. For instance, SRS [31] is the state-of-the-art al-
gorithm that uses an R-tree to index the points in the pro-
jected space. By searching the R-tree, SRS is able to it-
eratively return the next nearest point to q. The problem
is that finding the next exact NN in an R-tree generally
causes additional computational overhead, while the next
NN is not necessarily the best next candidate in the original
space. Next, Multi-Probe [22] iteratively identifies the next
hash bucket to be examined that has the least distance to q.
However, most of the points in the identified buckets have
to be probed due to poor estimation of the distance between
q and the candidate point. Finally, QALSH [17] shares the
same issue as Multi-Probe, and it uses a large number of
hash functions that may incur high space consumption.

In this paper, we propose a fast and accurate LSH frame-
work, called PM-LSH, for computing c-ANN queries on large-
scale, high-dimensional datasets. The framework consists of
three components, namely data partitioning, distance esti-
mation, and point probing. First, we adopt the simple yet
effective PM-tree [30] to index the points in the projected
space. Second, in order to improve the distance estima-
tion accuracy, we exploit the strong relationship between
the original and projected distance of any two points, and
we develop a tunable confidence interval on the projected
distance w.r.t. a given original distance. Third, we propose
an efficient algorithm to search the PM-tree with a sequence
of range queries with increasingly large radius. PM-LSH is
able to achieve both high efficiency and high accuracy when
compared with the existing LSH methods.

The major contributions are summarized as follows:

• We present a unified interpretation of the existing main-
stream LSH methods and thoroughly analyze the com-
petitors in relation to our method.
• We propose a fast and accurate method called PM-

LSH for large-scale, high-dimensional datasets. First,
we use the PM-tree to index the points in the pro-
jected space. Second, we develop a tunable confidence
interval for distance estimation. Third, we propose an
efficient algorithm to search the PM-tree for comput-
ing c-ANN queries.
• We conduct an extensive performance study using real

datasets that covers the state-of-the-art algorithms,
which indicates that PM-LSH is efficient as well as
accurate in terms of both the overall ratio and recall.

The rest of the paper is organized as follows. Section 2
presents the problem setting and preliminaries. Section 3
introduces a unified LSH framework and contrasts it w.r.t.
the main competitors. Section 4 explains the construction
and query algorithms of the PM-LSH, and Section 5 estab-
lishes its performance guarantees. Section 6 covers experi-

Table 1: Summary of Notations

Notation Definition

D Dataset of points in Rd
n = |D| Dataset cardinality

d Dimension
o A point in D
o′ A point o in the projected space
c Approximation ratio

h(o), h∗(o) Hash functions

mental studies that offer insight into the performance of the
proposed PM-LSH and the main competitors. Section 7 re-
views related work. Finally, Section 8 concludes the paper.

2. PRELIMINARIES
We present the problem definition and basic idea of LSH.

Frequently used notation is summarized in Table 1.

2.1 Problem Definition
We study the c-ANN and (c, k)-ANN queries. Let D be

a set of points in d-dimensional space Rd with cardinality
|D| = n. Let ||o1, o2|| denote the Euclidean distance between
points o1, o2 ∈ D.

Definition 1. c-ANN Query. Assume a query point q
and an approximation ratio c > 1, and let o∗ be the exact
nearest neighbor of q in D. A c-approximate nearest neigh-
bor query returns a point o ∈ D such that ||q, o|| ≤ c·||q, o∗||.

We generalize the c-ANN query to the (c, k)-ANN query
that returns k approximate nearest points.

Definition 2. (c, k)-ANN Query. Assume we have a
query point q, an approximation ratio c > 1, and a positive
integer k. Let o∗i be the i-th exact nearest neighbor of q in
D. A (c, k)-approximate nearest neighbor query returns a
sequence of k points 〈o1, o2, . . . , ok〉 such that for each oi,
we have ||q, oi|| ≤ c · ||q, o∗i ||, i ∈ [1, k].

Example 1. As shown in Fig. 1(a), query q has o2 and
o14 with distance

√
2 as its exact NNs. For a 2-ANN query,

any point whose distance to q is within 2
√

2 can be considered
as a result, i.e., any object in the set {o2, o14, o12, o13, o6, o7}.

2.2 Basic Locality Sensitive Hashing
We first introduce the LSH scheme, and then explain how

to answer the (r, c)-ball cover ((r, c)-BC) and c-ANN queries
using the basic LSH [3,9].
Hash Family. Given a distance r, an approximation ra-
tio c > 1, probability values p1 and p2, where p1 > p2, a
family H = {h : Rd → U} is called (r, cr, p1, p2)-locality sen-
sitive, if for any o1, o2 ∈ Rd, it satisfies both of the following
conditions:

1. If ||o1, o2|| ≤ r then Pr[h(o1) = h(o2)] ≥ p1

2. If ||o1, o2|| ≥ cr then Pr[h(o1) = h(o2)] ≤ p2

A well-adopted hash function is formally defined as follows:

h(o) = b~a · ~o+ b

w
c, (1)

where ~o is the vector representation of a point o ∈ Rd, ~a is
a d-dimensional vector where each dimension is drawn inde-
pendently from a p-stable distribution [9], b is a real number

644



1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

o1

o5 o2

o3

o4
o9

o6 o7

o8

o10

o11

o12

o13

o14

o15

q

(a) Original Space

2 4 6 8 10 200

2

4

6

8

20

o1

o5 o2

o3

o4

o9 o6

o7

o8

o10

o11

o12

o13

o14

o15

q

12 14 16 18

18

16

14

12

10

22

(b) Projected Space

ID (x,y) h*(o) ID (x,y) h*(o)

q (5,5) (9.5,11.5) o8
(10,6) (15.4,14.2)

o1
(0,1) (0.9,3.7) o9

(2,3) (4.7,7.5)

o2
(6,6) (11.4,13.4) o10

(9,8) (16.2,17.4)

o3
(9,2) (10.8,7.2) o11

(6,10) (15.0,20.2)

o4
(10,5) (14.5,12.5) o12

(4,7) (10.3,14.7)

o5
(2,6) (7.4,12.6) o13

(3,4) (6.6,9.4)

o6
(4,3) (6.7,7.9) o14

(4,6) (9.4,13.0)

o7
(6,3) (8.7,8.3) o15

(7,2) (8.8,6.8)

(c) Points and Hash Values

Figure 1: Running Example with h1(o) = b ~a1·~o
4
c, h2(o) = b ~a2·~o+2

4
c and ~a1 = [1.0, 0.9], ~a2 = [0.2, 1.7]

uniformly drawn from [0, w), and w is a user-specified con-
stant. The 2-stable distribution is the normal distribution.

Formally, let τ = ||o1, o2||, and let f(·) denote the normal
probability distribution function (pdf). We then have:

p(τ) = Pr[h(o1) = h(o2)] =

∫ w

0

1

τ
· f(

t

τ
) · (1− t

w
) dt (2)

The intuition behind Eq. 2 is that, given a fixed w, the col-
lision probability of two hash values h(o1) and h(o2) grows
as the distance ||o1, o2|| decreases. Therefore, h(·) in Eq. 1
is (r, cr, p1, p2)-sensitive with p1 = p(r) and p2 = p(cr).
(r, c)-BC Query. Before we consider how to answer the

c-ANN query, we define an (r, c)-ball cover query that can
be directly answered by (r, cr, p1, p2)-sensitive hash family.

Definition 3. (r, c)-BC Query. Given a query point q,
a distance threshold r, and an approximation ratio c > 1.
Let B(q, r) denote a ball centered at q with radius r. An
(r, c)-ball cover query returns the following result:

1. If B(q, r) covers at least one point in D, it returns a
point in B(q, cr);

2. If B(q, cr) covers no points in D, it returns nothing.

E2LSH [3] is a seminal solution that forms L hash tables
and randomly chooses m hash functions for each hash table.
By concatenating the m hash functions, a compound hash
function G(o) = (h1(o), . . . , hm(o)) is formed in each hash
table, and each point o ∈ D is stored in a hash bucket based
on G(o). Given a query point q, E2LSH computes G(q) and
enumerates the points in the corresponding hash bucket. In
all L hash tables, it examines at most 3L points and returns
a point o if ||q, o|| ≤ cr. By setting m = log1/p2

n and

L = 1/pk1 , the (r, c)-BC query can be answered correctly
with at least constant probability.
From (r, c)-BC to c-ANN. It is easy to see that the ball
cover query can be considered as a decision version of the
approximate NN query. By processing a sequence of (r, c)-
BC queries with r = 1, c, c2, . . . , x, once a point is returned,
we take it as a result of the ANN query. Interestingly, as
proven by [18], the ANN query can be answered with an
approximation ratio c2, i.e., c2-ANN.

Example 2. In the example in Fig. 1, we choose m = 2
hash functions h1(o) = b ~a1·~o

4
c, h2(o) = b ~a2·~o+2

4
c with ~a1 =

[1.0, 0.9], ~a2 = [0.2, 1.7], b1 = 0, b2 = 2, and w = 4. For
simplicity, we only construct L = 1 hash table. Figs. 1(b)
and 1(c) show the coordinates of the objects in the projected
space. To answer a (1, 2)-BC query with r = 1 and c = 2, we
first compute G(q) = (h1(q), h2(q)) = (2, 2). Then we search
the hash bucket (2, 2) that is indicated by a red rectangle, and
the (1, 2)-BC query returns o7. As o14 is the exact NN with
||q, o14|| =

√
2 and ||q, o7|| =

√
5 < 4×

√
2, we have that o7

is a result of the 4-ANN query of q.

3. A UNIFIED INTERPRETATION OF LSH
We proceed to introduce the main competitors to our al-

gorithm and give a unified interpretation.

3.1 Main Competitors
Probing Sequence Based (PS) Approaches. The rep-

resentative PS methods include Multi-Probe [22, 23] and
GQR [20] that use a carefully derived probing sequence to
examine multiple hash buckets that are likely to contain the
nearest neighbors of a query point. Unlike the basic LSH
that builds L hash tables and checks only one hash bucket
in each hash table, PS probes multiple nearby buckets in
order to achieve higher recall with fewer hash tables. Given
a query point q, PS adopts a “generate-to-probe” paradigm
that iteratively generates the next hash bucket to be exam-
ined with the least distance to q in the remaining buckets.
Note that although GQR is claimed to work for L2H [34]
with binary code, we introduce it in order to better explain
the intuition of PS.
Radius Enlarging Based (RE) Approaches. This cat-

egory mainly includes the LSB-Tree [33], C2LSH [11], and
QALSH [17]. These do not build multiple hash tables based
on different radii. Generally, RE builds a hash table like the
basic LSH and processes a sequence of (r, c)-BC queries by
enlarging r = 1, c, c2, . . . , x when a c-ANN query is issued.
Suppose ri = ci and r0 = 1. It has been shown [11] that

hri(·) = bh(·)
ri
c is (ri, cri, p1, p2)-sensitive. Instead of build-

ing multiple hash tables with corresponding hash functions
hri(·) to handle (ri, cri)-BC queries, RE adopts the smart
idea of “virtual rehashing” to avoid unnecessary space. For
the (1, c)-BC query, RE probes the hash bucket h(q). For
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Figure 2: Unified LSH Framework

the remaining (ri, cri)-BC queries, RE probes rmi hash buck-
ets near h(q) in the original hash table in the i-th iteration.
Note that among these rmi buckets, rmi−1 buckets were al-
ready examined in the last iteration. Interestingly, it is easy
to see that the rmi hash buckets in the original hash table
actually correspond to the hash bucket hri(q) in the hash
table w.r.t. hri(·).
Metric Indexing Based (MI) Approaches. SRS [31] is
the state-of-the-art algorithm that projects the points from
the original d-dimensional space into a lower m-dimensional
projected space by using m hash functions. It utilizes an
R-tree to index the points based on their hash values in
the projected space. Specifically, SRS uses the Euclidean
distance between two points in the projected space to ap-
proximate their distance in the original space. The intuition
is that the points close to the query point q in the projected
space are also likely close to q in the original space. SRS re-
peatedly calls an incSearch function that utilizes the R-tree
to return the next nearest point to q in the projected space.

3.2 A Way of Probing
We proceed to introduce a unified interpretation of exist-

ing LSH methods as shown in Fig. 2, which consists of three
components, namely data partitioning, distance estimation,
and point probing.

Generally, h(o) in Eq. 1 can be considered as a derivation
of a family of locality sensitive hash functions:

h∗(o) = ~a · ~o (3)

By using h∗(o), the points in the original space are mapped
into a projected space, as shown in Figs. 1(a) and 1(b).
Let o′ = [h∗1(o), . . . , h∗m(o)] denote point o in the projected
space. For any two points o1 and o2, let r = ||o1, o2|| and
r′ = ||o′1, o′2|| denote the distance between o1 and o2 in the
original and in the projected space, respectively. In addition,
we let ρ(o1, o2) denote an m-dimensional vector, where each
dimension is the hash value difference between o1 and o2,
i.e., ρi = h∗i (o1) − h∗i (o2) = o′1[i] − o′2[i]. It is easy to see

that r′ =
√∑m

i=1 ρ
2
i .

According to a property of a 2-stable distribution, for
any d real numbers o[1], . . . , o[d], independent and identi-
cally distributed (i.i.d.) random variablesX1, . . . , Xd (corre-
sponding to ~a) following the 2-stable distribution,

∑
i o[i]·Xi

has the same distribution as the variable (
∑d
i=1 o[i]

2)1/2 ·X,
where X is a random variable with distribution N(0, 1). For
any two points o1 and o2, since ρ = h∗(o1) − h∗(o2) =

~a · (~o1 − ~o2), we know that ρ is a random variable with dis-
tribution r ·X. In other words, ρ has distribution N(0, r2),
i.e., ρ

r
∼ N(0, 1).

Lemma 1. r′2/r2 follows the distribution χ2(m).

Proof. If Y1, . . . , Ym are i.i.d. variables with N(0, 1)
then

∑m
i=1 Y

2
i follows the χ2 distribution with m degrees

of freedom. Given m hash functions h∗1(·), . . . , h∗m(·), for
any o1 and o2, we have ρ1, . . . , ρm. Thus, r′2/r2 follows the
distribution χ2(m).

Data Partitioning. After mapping the points into the
projected space by using hash functions, the existing LSH
methods adopt the “divide-and-conquer” paradigm that par-
titions the projected space into subspaces. When a query
is issued, the regions that are likely to contain the results
are probed, and finally the results of these regions are com-
bined and returned. Generally, there are two kinds of data
partitioning approaches in the existing LSH methods:

(1) Interval based Partitioning. The basic LSH con-
structs hash buckets based on G(o), and each bucket can
be viewed as an m-dimensional hypercube with equal side
lengths w. Most of the LSH methods belong to this class, in-
cluding Multi-Probe, LSB-Tree, C2LSH, and QALSH. Specif-
ically, an LSB-Tree assigns each hypercube a Z-order value
and stores the values in a B-tree. In contrast, QALSH does
not physically build hypercubes, but stores the values of
h∗(o) in a B+-tree. When a query arrives, the length-w
intervals are virtually formed on the B+-tree.

(2) Metric Space Partitioning. SRS uses an R-tree to
index all the points o′ in the projected space such that an
incremental kNN search is supported. For in-memory pro-
cessing, it is also able to use a Cover Tree. In our proposed
PM-LSH, we partition the projected space using a PM-tree
so that efficient range querying can be supported.
Distance Estimation. In order to accurately estimate dis-
tances, two aspects are considered, i.e., the distance estima-
tor and the estimation granularity.

(1) Distance Estimator. As we know that ρ has distri-
bution N(0, r2). For any o1 and o2, ρ(o1, o2) = [ρ1, . . . , ρm].
We estimate the value of r by using r′ as follows.

Lemma 2. r̂ = r′√
m

is an unbiased estimator of r.

Proof. Let r̂ be the estimated value of r. We compute
the expectation of r′ as follows.

E[r′] = E[

√√√√ m∑
i=1

ρ2
i ] =

√√√√ m∑
i=1

E[ρ2
i ] =

√
mr

Therefore, we have E[r̂] = E[r′]/
√
m = r.

Alternatively, we provide a different yet interesting proof
by using the maximum likelihood estimation (MLE) [15].
MLE is a procedure for finding the value of one or more
parameters for a given statistic that maximizes the known

likelihood distribution. As Pr[ρ = ρi] = 1√
2πr

exp(− ρ2i
2r2

),

the probability that the hash value difference ρ(o1, o2) be-
tween o1 and o2 equals [ρ1, . . . , ρm] is computed as follows.

Pr[ρ(o1, o2) = [ρ1, . . . , ρm]]

= f(ρ1, . . . , ρm|µ = 0, σ = r)

=

m∏
i=1

(
1√
2πr

)m exp(−
∑m
i=1 ρ

2
i

2r2
)
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Figure 3: Recall and Overall Ratio of Different Es-
timators

The objective of the maximum likelihood is to find an r
such that the above probability is maximized. As ln f =

− 1
2
m ln(2π) −m ln r −

∑
ρ2i

2r2
and ∂(ln f)

∂r
= −m

r
+

∑
ρ2i
r3

= 0,

we have r̂ =

√∑m
i=1 ρ

2
i

m
= r′√

m
.

To evaluate the performance of our estimator in Lemma 2,
i.e., L2 = r′ (the same as our estimator when m is fixed), we
compare it with other distance estimators: L1, QD [20], and
Rand (assign a random value). We randomly sample a small
dataset that contains 10K points from the Trevi dataset [21]
and choose 100 points as query points. For each query point
q, we first compute its exact 100NNs. Choosing m = 15
hash functions, we compute the distances in the projected
space between q and all the points based on different es-
timators. Then, we choose the top-T points with smallest
estimated distances (T varies from 100 to 2,000). For each
q, we compare its exact 100NNs with the 100NNs from the
T points. Finally, we compute the average recall and over-
all ratio (discussed in Section 6) of these 4 estimators. As
shown in Fig. 3, we can see that our estimator has the best
performance in terms of both the recall and overall ratio.

(2) Estimation Granularity. Distance estimation meth-
ods may use different granularities:

(i) Bucket to Bucket. The hash bucket based indexing
methods, such as Multi-Probe, LSB-tree, and C2LSH, store
points in hash buckets. When a query is issued, we first find
its corresponding bucket and then decide which buckets to
probe. Therefore, the quality of the distance estimation
between buckets is affected by the bucket side length w.

(ii) Point to Bucket. QALSH is an improved version of
C2LSH that stores points by a B+-tree instead of using a
hash table. When a query q arrives, the length-w intervals
are conceptually built on the B+-tree with q as the center.
So the distance estimation can be considered as between
point q and bucket intervals.

(iii) Point to Point. SRS uses the projected Euclidean
distance between two points to estimate their original dis-
tance, which offers a finer precision than the previous two
methods due to the fine granularity. Our PM-LSH also
adopts this method.
Point Probing. Suppose we probe T points. In the hash
bucket based indexing methods, such as Multi-Probe, LSB-
tree, and C2LSH, we directly probe the points in the bucket,
where the time cost isO(T ). The second approach is QALSH
that searches the points in a B+-tree. The time cost is
O(logn+ T ). Unlike the previous two approaches, SRS in-
dexes the points with an R-tree, and iteratively finds the
next NN in the projected space. The time cost is O(logn·T ).
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Figure 4: The Structure of PM-LSH

Our PM-LSH can be considered as a combination of the
second and third approaches in that we build a PM-tree in
the projected space and execute range queries to retrieve
points.

4. THE PM-LSH FRAMEWORK
We proceed to present the details of the PM-LSH frame-

work. As mentioned previously, the RE methods quickly
probe the points stored in the hash buckets by enlarging the
search radius, but suffer from inaccurate distance estima-
tion due to a coarse-grained index structure, which trans-
lates into computational overhead when having to examine
unnecessary points. In contrast, the MI methods index the
points with an R-tree and iteratively return the next near-
est point to q in the projected space. However, finding the
next exact NN in an R-tree is also computationally costly,
and the next NN is not necessarily the best next candidate
in the original space. To achieve the best of both worlds,
PM-LSH combines the ideas of the RE and MI methods,
where we adopt the PM-tree instead of the R-tree to index
the points in the projected space and execute a sequence of
range queries with increasingly large radius such that both
efficiency and accuracy are achieved.

Next, we briefly describe how to construct a PM-tree.
Then, we analyze the cost models of the PM-tree and the
R-tree to understand how the PM-tree performs better than
the R-tree for the relevant range query workload. Finally,
we present the details of the algorithms.

4.1 Building a PM-tree in the Projected Space
In the projected space, each o′i w.r.t. oi ∈ D is an m

dimensional vector. For the paper to be self-contained, we
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Table 2: Computation Cost (CC) of PM-tree and R-tree

Datasets Audio Cifar MNIST Trevi NUS GIST Deep

PM-tree 38,182 35,210 56,670 34,281 201,448 739,720 964,451
R-tree 40,565 54,869 59,043 63,884 252,187 889,974 1,017,604

Reduction 6% 36% 4% 46% 20% 17% 5%

briefly explain how to build a PM-tree on all o′is. Interested
readers may refer to [30] for more details on the PM-tree.
Selecting Pivots. The PM-tree combines pivot mapping
together with M-tree. Methods for selecting an optimal set
of pivots have been studied extensively. For each set of piv-
ots, a PM-tree region is the intersection of the M-tree hyper-
spherical region and hyper-rings caused by the pivots. We
choose a set of pivots with the aim of making the overall
volume of the corresponding PM-tree region the smallest.
PM-tree Structure. The structure of a PM-tree is shown
in Fig. 4. Since the PM-tree is an extension of the M-tree, it
retains all the information of the M-tree. For an inner node
e, it stores the covered radius e.r , a pointer to its covered
sub-tree e.ptr , the center of the covered hyper-sphere e.RO ,
the distance e.PD between e.RO and its parent entry, and
the smallest interval e.HR covering the distances between
the pivots and each of the point stored in leaves. For a
leaf node o, it stores the point data, the ID of the point o,
the distance o.PD between o and its parent entry, and the
minimum and the maximum distances to pivots.
Range Query Processing. To answer a range query, de-
noted as range(q, r), that returns all the points that lo-
cate in B(q, r), the entries in the PM-tree are traversed in
a depth-first fashion. When an inner node is accessed, we
verify its pruning condition by using the triangle inequality.
When a leaf entry is accessed, we insert the corresponding
point into the result set if it is inside B(q, r).

Example 3. As shown in Fig. 4, we choose o1 and o11

as pivots, and partition the space by using the ball partition-
ing, as shown in Fig. 4(a). The inner nodes e1, e2, · · · , e6

contain the points inside a hyper-sphere region, whose center
and radius are saved as the part of an entry. When a range
query range(q, 2) is issued, we check the pruning conditions
when accessing the inner nodes. Here only e4 and e6 are
checked. Finally, we return {o14} as the result.

4.2 Cost Models of the PM-tree vs the R-tree
To compare the performance of the PM-tree and the R-

tree, we adopt a node-based cost model [7] to examine how
the PM-tree performs compared to the R-tree from a theo-
retical point of view.

In this cost model, a concept called distance distribution
of a dataset D is computed as follows.

F (x) = Pr[||oi, oj || ≤ x], (4)

where oi, oj ∈ D. In addition, for each dataset used in our
experiments, we compute its “homogeneity of viewpoints”
(HV), which is shown in Table 3. HV evaluates the homo-
geneity of the distance distributions of the data points. Let
Fo(x) denote the distribution of the distances between all
points to point o. Given two points o1 and o2, a higher HV
means that o1 and o2 are more likely to have similar dis-
tance distributions Fo1(x) and Fo2(x). The HV values of all

the datasets are no smaller than 0.9, which enables us to ap-
proximate their distance distributions when estimating the
cost models of the two trees.
Cost Model of the PM-tree. Consider a range query
range(q, rq). Assume that a PM-tree has s pivot points
p1, · · · , ps. An inner node e is accessed iff the follow condi-
tions are satisfied:

||q, e.RO || ≤ e.r + rq

∧si=1{||q, pi|| − rq ≤ e.HR[i].max}
∧si=1{||q, pi||+ rq ≥ e.HR[i].min}

(5)

Therefore, the probability of e being accessed can be com-
puted as follows.

Pr[e] = F (e.r + rq)

·
s∏
i=1

[F (e.HR[i].max+ rq)

− F (e.HR[i].min− rq)]

(6)

Assume that there are N nodes in the PM-tree. The number
of distance computations (computation cost) is estimated
by considering the probability that a node is accessed mul-
tiplied by its number of entries N(e), thus obtaining the
number of distance computations as follows.

CC(range(q, rq)) =

N∑
i=1

N(ei) · Pr[ei] (7)

Cost Model of the R-tree. For each node e of an m-
dimensional R-tree, we denote its minimum bounding rect-
angle as MBR(e) = [l1, u1] × · · · × [lm, um]. Given a range
query range(q, rq), the condition of e being accessed is that
B(q, rq) intersects with MBR(e). Since it is hard to quantify
the probability that a ball intersects with a high-dimensional
rectangle, we substitute an isochoric hyper-cube for the ball.
Specifically, an m-dimensional ball with radius rq can be
substituted by a hyper-cube with the length of sides l =
m

√
2πm/2

mΓ(m/2)
rq [18]. We also denote the data distribution of

dataset D on the i-th dimension as follows.

Gi(x) = Pr[Xi ≤ x], (8)

where Xi is the i-th dimension of a random point in D.
Similarly, we let N be the number of nodes in the R-tree and
let N(ei) be the number of entries in node ei. We obtain
the number of distance computations as follows (details are
omitted for brevity).

CC(range(q, rq)) =

N∑
i=1

N(ei) ·
m∏
i=1

[Gi(ui + l)−Gi(li − l)]

(9)
Comparison of the PM-tree and the R-tree. In order
to compare the computation costs for the two trees, we con-
struct PM-trees and R-trees for the points in all the datasets
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(introduced in Table 3) after transforming them into the
projected space. We choose m = 15 hash functions and
set the maximum number of entries per node to 16. For
each dataset, we choose the same range r to estimate the
cost of computing a range query. The value of r is chosen
to return approximately the nearest 8% of all points, since
these points usually suffice to return a c-ANN result. The
estimated computation costs are computed based on Eqs.
7 and 9, and the results are presented in Table 2. We can
see that using the PM-tree reduces the number of distance
computations by about 5%− 46% for the different datasets.
This observation offers evidence that the PM-tree has better
performance than the R-tree in our setting.

4.3 Tunable Confidence Interval
Based on Lemma 2, we further estimate the confidence

interval of r′ between o1 and o2 for a given r = ||o1, o2||.

Lemma 3. Given two points o1 and o2, we have:

• P1: The probability that r′ < r
√
χ2

1−α(m) is α

• P2: The probability that r′ > r
√
χ2
α(m) is α

Here, χ2
α(m) is the upper quantile of a χ2 distribution with

m degrees of freedom, where∫ +∞

χ2
α(m)

f(x;m)dx = α,

and f(x;m) is the probability density function of a χ2 dis-
tribution with m degrees of freedom.

Proof. From Lemmas 1 and 2, we know r′2

r2
∼ χ2(m).

Constructing a confidence interval I = [u, v] for r′2

r2
requires

that the probability that r′2

r2
falls into I is 1 − 2α for any

given α. A standard approach is to select u and v that

make Pr[ r
′2

r2
< u] = α, i.e., Pr[ r

′2

r2
> u] = 1 − α, and

Pr[ r
′2

r2
> v] = α. Further,

∫ +∞
u

f(x;m)dx = 1 − α and∫ +∞
v

f(x;m)dx = α. According to the definition of upper

quantile, we have u = χ2
1−α(m) and v = χ2

α(m). The confi-
dence interval and its corresponding probability are shown
in Fig. 5.

According to Lemma 3, we establish a strong relationship
between an original distance and the confidence interval of
a projected distance, which can be used to answer (r, c)-BC
and c-ANN queries.

4.4 The (r, c)-BC Query
An (r, c)-BC query can be computed directly by Algo-

rithm 1. Given a query q and m hash functions, we com-
pute the hash value q′ = (h∗1(q), . . . , h∗m(q)) and use the
PM-tree to answer a range query range(q′, tr), where t is a
parameter that guarantees that a point inside B(q, r) in the
original space will fall into B(q′, tr) in the projected space
with a constant probability. Then we collect the result of
the range query into a candidate set C.

According to Lemma 4, to be introduced in Section 5, the
correctness of the (r, c)-BC query can be guaranteed. In
other words, by properly choosing a parameter β, we ex-
amine a sufficient number of βn candidate points, and the
following two situations will hold with a constant probabil-
ity.

• If the total number of points in C exceeds βn, there
must be at least a point from C inside B(q, cr).

• If there is no point in C inside B(q, cr), there exists
no point in D inside B(q, r).

Therefore, we can correctly answer an (r, c)-BC query by
processing a range query using the PM-tree. In Section 5,
we consider how to set the parameters of t and β.

Algorithm 1: (r, c)-BC Query

Input: A query point q and parameters β, n, t, c, r
Output: A point p in B(q, cr) or nothing

1 Compute q′ = (h∗1(q), . . . , h∗m(q));
2 Initialize a candidate set C ← the results of a range

query q′ with radius t · r on the PM-tree;
3 if |C| ≥ βn+ 1 then
4 return p in C that is closest to q;

5 else
6 if |{p | p ∈ C ∧ ||p, q|| ≤ c · r}| ≥ 1 then
7 return p in C that is closest to q;

8 else
9 return ∅;

4.5 The (c, k)-ANN Query
Answering a c-ANN query is more complicated than an-

swering an (r, c)-BC query since we do not know the distance
||q, o∗|| in advance. In order to answer a (c, k)-ANN query
with a constant probability, we must ensure that we access
enough points, i.e., at least βn points. Therefore, we have to
enlarge the search radius in the projected space when fewer
than βn points are found until k points inside B(q, cr) have
been obtained.

The details of computing a (c, k)-ANN query can be found
in Algorithm 2. Most of the steps are almost the same as
Algorithm 1. The difference is that when both termination
conditions (Line 4 and Line 8) are violated, another range
query with a larger radius is required.
Selecting the Radius r of a Range Query. As execut-
ing multiple range queries is time consuming, it is attractive
to reduce the number of iteration in the while-loop. Intu-
itively, we hope to find a “magic” rmin such that the process
terminates quickly. An ideal rmin must yield a number of
points inside B(q′, trmin) that exceeds βn+ k such that Al-
gorithm 2 is able to terminate after processing the range
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query B(q′, trmin). In addition, to avoid returning a large
number of unnecessary points, which also is costly, the num-
ber of points inside B(q′, trmin/c) should be less than βn+k.
Otherwise, the range query B(q′, trmin/c) with smaller ra-
dius is able to return enough points.

As the rmin can be selected from a relatively large range,
we design a selection scheme as follows. Suppose that we
have obtained the distance distribution F (x) of all datasets.
Due to a good HV value, the distance distribution of a query
point can be estimated by the dataset. Then we can find a
suitable r that satisfies n ·F (r) = βn+k, which implies that
βn+k points locate in B(q, r) on average. However, to avoid
the case where the number of points in B(q, r) exceeds βn+
k, we choose an rmin slightly smaller than r. As the choice
of rmin is not unique and the selection range is relatively
large, and since the performance is not strongly dependent
on it, the effect of the estimation is expected to be small.

Example 4. Setting βn = 4, we need to retrieve at least 5
points for a (2, 1)-ANN query. Initially, we set rmin = r′ =
2. As explained in Example 3, o14 is returned. As the num-
ber of returned points is below 5, we set r′ = 4. In this round,
only the subtree of e5 can be discarded, and we check the
points in e3, e4, and e6 and obtain {o2, o5, o7, o12, o13, o14}.
The number of returned points is 6, and the process termi-
nates. Finally, we return the (2, 1)-ANN result o14.

Algorithm 2: (c, k)-ANN Query

Input: A query point q, and parameters rmin, β, n,
t, c, k

Output: A point p
1 Initialize a candidate set C ← ∅ and r ← rmin;
2 Compute q′ = (h∗1(q), . . . , h∗m(q));
3 while true do
4 if |{p | p ∈ C ∧ ||p, q|| ≤ c · r}| ≥ k then
5 return top-k points that are closest to q in C;

6 Initialize a range query q′ with radius t · r on the
PM-tree;

7 while |C| < βn+ k do
8 Find a node in B(q′, t · r) on the PM-tree;

C ← C ∪ {the points in the node};
9 if |C| ≥ βn+ k then

10 return top-k points that are closest to q in C;

11 r ← c · r;

5. THEORETICAL ANALYSIS

5.1 Quality Guarantee
In Algorithms 1 and 2, we execute a range query on the

PM-tree with a radius tr in the projected space. Therefore,
we have to compare the projected distances of candidate
points to q with tr. Specifically, two types of points need to
be discussed, true positives (the points inside B(q, r)) and
false positives (the points outside B(q, cr)).

Lemma 4. Given a query q, by setting probabilities α1

and α2, and t that satisfy the following Eq. 10:

{
t2 = χ2

α1
(m)

t2 = c2χ2
1−α2

(m)
(10)

We have:

• E1: If a point o exists inside B(q, r), its projected dis-
tance to q is smaller than tr.

• E2: There are fewer than βn (β > α2) points outside
B(q, cr) whose projected distances to q are smaller than
tr.

The probability that E1 occurs is at least 1 − α1, and the
probability that E2 occurs is at least 1− α2

β
.

Proof. Given a point o ∈ B(q, r), let ro = ||o, q|| ≤ r
and r′o = ||o′, q′|| be the original and projected distances to
q, respectively. By setting t =

√
χ2
α1

(m), according to the

Lemma 3, we have Pr[r′o > ro
√
χ2
α1

(m)] = Pr[r′o > tro] =
α1. Since ro ≤ r, Pr[r′o > tr] is at most α1. Therefore, we
know that Pr[E1] = Pr[r′o ≤ tr] > 1 − α1. Likewise, given
a point o /∈ B(q, cr), let ro = ||o, q|| > cr and r′o = ||o′, q′||
be the original and projected distances to q, respectively.

By setting t = c
√
χ2

1−α2
(m), according to the Lemma 3, we

have Pr[r′o < ro
√
χ2

1−α2
(m)] = Pr[r′o < t ro

c
] = α2. Since

ro
c
> r, Pr[r′o < tr] is at most α2. Therefore, by using

Markov’s inequality, we have Pr[E2] > 1− α2
β

.

Note that if E1 and E2 hold at the same time, then Al-
gorithm 1 is correct for solving the (r, c)-BC query.

Lemma 5. Algorithm 1 answers an (r, c)-BC query with
at least a constant probability.

Proof. Let m = O(1). If α1 is a constant, α2 is also
a constant due to Eq. 10. By setting β = 2α2, the lower
bound probabilities of E1 and E2, i.e., 1 − α1 and 1 − α2

β
,

will also be constant. Therefore, we can guarantee that E1
and E2 hold at the same time with at least a constant prob-
ability. Thus, if we access at least βn + 1 points with pro-
jected distances smaller than tR to q, due to E2, there are
at most βn points outside B(q, cr), and we thus obtain at
least one point inside B(q, cr). On the other hand, if we
access no more than βn+ 1 points with projected distances
smaller than tR to q, the correctness of E2 is not guaran-
teed. Therefore, it is safe to return either nothing or the
points whose distances to q are at most cr for an (r, c)-BC
query.

As a typical setting in the LSH methods, we choose pa-
rameters that satisfy Pr[E1] = 1 − 1/e and Pr[E2] = 1/2
(Of course, we can choose other parameters to achieve a
more accurate result). Therefore, we have α1 = 1/e and
t =

√
χ2
α1

(m). Based on Eq. 10, both α2 and β can be
determined easily.

Theorem 1. Algorithm 2 returns a c2-ANN with proba-
bility at least 1/2− 1/e.

Proof. Due to Lemma 5, we find that E1 and E2 can
hold at same time with probability at least 1/2− 1/e under
such parameters. Now we show that when E1 and E2 hold,
the output of Algorithm 2 is c2-approximate. We denote the
set of points whose projected distances to q are smaller than
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Figure 6: Performance of PM-LSH when Varying s and m

Table 3: Datasets

Dataset n (×103) d HV RC LID
Audio 54 192 0.9273 2.97 5.6
Deep 1,000 256 0.9393 1.96 12.1
NUS 269 500 0.9995 1.67 24.5

MNIST 60 784 0.9531 2.38 6.5
GIST 983 960 0.9670 1.94 18.9
Cifar 50 1,024 0.9457 1.97 9.0
Trevi 100 4,096 0.9432 2.95 9.2

tr as C(r). When enlarging r = 1, c, c2, · · · , there must exist
a radius ropt that makes |C(ropt)| ≥ 1+βn and |C(ropt/c)| <
1 + βn hold. Then, if r∗ = ||o∗, q|| ≤ ropt/c, its projected
distance to q is smaller than tropt/c according to E1, we
must have found it in C(ropt) due to C(ropt) ⊃ C(ropt/c),
Algorithm 2 returns the exact NN; if r = ||o∗, q|| > ropt/c,
according to E2, there is at least a point in C(ropt) whose
distance to q is at most cropt. Therefore, we return a point
whose distance to q is smaller than c2r∗.

5.2 Algorithm Analysis
In PM-LSH, if we choose a large m, it will be costly to

process a sequence of range queries in the projected space.
So we consider m as a constant and fix its value at 15 in all
experiments.

Theorem 2. PM-LSH has space cost O(n) and time cost
O(logn+ βn), where β is much smaller than 1.

Proof. The space consumption is due mainly to the PM-
tree, which has n items. Each item consumesm+O(1) space,
so the overall space consumption is O(n) as m = O(1). The
query time cost comes from two parts: 1) finding candidate
points in the PM-tree; and 2) verifying the real distances of
candidate points to q. The former has cost O(logn) and the
latter has cost O(βn) when d is considered as a constant.
Therefore, the total query time is O(logn+ βn).

6. EXPERIMENTS

6.1 Experimental Settings
All the algorithms are implemented in C++ compiled with

the O3 optimization. All experiments are run on a Linux
machine with an Intel 3.4GHz CPU and 32GB memory.
Datasets and Query Sets. We use seven real datasets:
Audio, Deep, NUS, MNIST, GIST, Cifar, Trevi, which are
used widely in existing work [11, 17, 20, 21, 31] on LSH. Ta-
ble 3 reports the dimensionality and key statistics of the

datasets: Homogeneity of Viewpoints (HV [7]), Relative Con-
trast (RC [16]), and Local Intrinsic Dimensionality (LID
[2]). HV evaluates the homogeneity of the distance distri-
butions of the data points. A higher HV means that the
points are more likely to have similar distance distributions.
RC computes the ratio of the mean distance over the NN
distance for the data points. LID computes the local in-
trinsic dimensionality. A small RC value and a large LID
value imply that it is challenging to compute NN results for
the dataset. As queries, we randomly select 200 points from
each dataset and repeat each experiment 20 times. We vary
the value of k in {1, 10, 20, . . . , 100} and set the default value
to 50. We vary the value of c in {1.1, 1.2, . . . , 2.0} and set
the default value to 1.5.
Competing Algorithms. We compare PM-LSH with the

competitors mentioned in Section 3, i.e., 1 Multi-Probe,

2 QALSH, and 3 SRS. In addition to these competitors,
in order to study the advantages of the PM-tree over the R-
tree, we index the points in the projected space with an R-
tree instead of a PM-tree to see how PM-LSH then performs.
We call this method 4 R-LSH. Moreover, we consider a lin-

ear scan algorithm called 5 LScan that randomly selects a
portion of points (default 70%) and returns the top-k points
with the smallest distances to the query.
Parameter Settings. We choose m = 15 hash functions
for all the algorithms except QALSH and Multi-Probe. For
PM-LSH, we set the number of pivots s = 5 and α1 = 1/e, so
α2 = 0.1405 and β = 0.2809 are obtained according to Eq.
10, and rmin is determined according to description in the
previous section. For QALSH, the false-positive percentage
β = 100/n, and the error probability δ = 1/e. For SRS, the
threshold of its early-termination condition p′τ = 0.8107, and
the maximum percentage of points accessed in the projected
space is T = 0.4010 when c = 1.5.
Evaluation Metrics. We adopt three metrics to compare
the performance of the algorithms: query time (ms), over-
all ratio, and recall, where the query time evaluates the
algorithm efficiency, and the overall ratio and recall eval-
uate result quality. For a query q, we denote the result
of a (c, k)-ANN query by R = {o1, o2, · · · , ok}. Let R∗ =
{o∗1, o∗2, · · · , o∗k} be the exact kNNs. The overall ratio and
recall are computed as follows.

OverallRatio =
1

k

k∑
i=1

||q, oi||
||q, o∗i ||

(11)

Recall =
|R ∩R∗|
|R∗| (12)
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Table 4: Performance Overview

PM-LSH SRS QALSH
Multi-
Probe

R-LSH LScan

Audio

Query Time (ms) 13.5 15.3 22.5 15.3 14.2 19.6

Overall Ratio 1.0014 1.0025 1.0043 1.0242 1.0019 1.0073

Recall 0.9662 0.9126 0.9003 0.8669 0.9633 0.6839

MNIST

Query Time (ms) 12.3 18.4 24.7 19.1 16.2 60.3

Overall Ratio 1.0076 1.0101 1.0085 1.0103 1.0095 1.0276

Recall 0.8857 0.8514 0.8655 0.8502 0.8705 0.7073

NUS

Query Time (ms) 125.7 142.1 133.2 125.9 129.6 176.8

Overall Ratio 1.0009 1.0015 1.0027 1.0025 1.0011 1.0053

Recall 0.9257 0.9247 0.8677 0.8782 0.9214 0.7057

Trevi

Query Time (ms) 37.2 47.9 145.5 239.3 63.9 57.68

Overall Ratio 1.0004 1.0015 1.0029 1.0057 1.0044 1.0084

Recall 0.9961 0.9342 0.8240 0.8534 0.9568 0.7103

Cifar

Query Time (ms) 11.6 16.1 38.3 26.8 35.6 58.2

Overall Ratio 1.0009 1.0025 1.0057 1.0038 1.0056 1.0125

Recall 0.9746 0.9624 0.7917 0.8011 0.9610 0.7081

GIST

Query Time (ms) 398.7 452.5 627.7 782.9 425.3 1528.3

Overall Ratio 1.0047 1.0049 1.0037 1.0053 1.0059 1.0076

Recall 0.8436 0.8145 0.8534 0.8122 0.8098 0.7023

Deep

Query Time (ms) 227.8 252.9 458.2 401.4 457.5 507.5

Overall Ratio 1.0037 1.0077 1.0124 1.0112 1.0152 1.0145

Recall 0.8816 0.8894 0.646 0.8118 0.8801 0.6938

6.2 Performance Evaluation
To evaluate the performance of PM-LSH, we first conduct

an evaluation to determine parameter settings. Then, we
compare the performances of all the algorithms with default
parameter settings on all the datasets. Finally, we compare
the algorithms by studying the changes of the overall ratio
and recall under different the query times.
Parameter Study on PM-LSH. We discuss two param-
eters that may affect the performance of PM-LSH, i.e., the
number of pivots s and the number of hash functions m.
Here, we only show results from the Trevi dataset. It is
easy to see that s only affects the query time. The overall
ratio and recall will not change when we vary the value of
s. As we can see from the Fig. 6(a), when s changes, the
query time remains steady, which indicates that PM-LSH is
largely unaffected by different settings for s. When using a
larger number of pivots, we have a higher chance to prune
subtrees in the PM-tree. However, the cost of checking on
the pruning condition also increases. In conclusion, we set
s = 5.

As shown in Fig. 6, when the value of m increases, we
obtain a higher overall ratio and recall, but the query time
also increases. The higher quality occurs because a larger
m can lead to more accurate distance estimation. However,
the average cost to retrieve a point from the PM-tree also
increases. Taking both efficiency and accuracy into consid-
eration, we set m = 15.

When comparing PM-LSH with R-LSH, we observe in all
the experiments that PM-LSH outperforms R-LSH on all
metrics, which confirms the expected superiority of the PM-
tree over the R-tree.
Performance Overview. To compare all the algorithms
with default parameter settings, we report the query time
(ms), overall ratio, and recall on all datasets in Table 4. PM-
LSH is more efficient than the competitors on all datasets,
and its overall ratio and recall are also better than those of
its competitors. Moreover, we find that either query time,
overall ratio, or recall depend only slightly on the dataset di-

mensionality. For instance, Audio, MNIST, and Cifar have
nearly the same cardinalities, but different dimensionality,
i.e., 192, 784, and 1024. However, the query times of PM-
LSH on them are close. In Table 3, we can see that the
dataset NUS and GIST have large LID values and small
RC values, so they are considered as challenging datasets.
As shown in Table 4, they have larger query times than the
other datasets.
Effect of k. In this set of experiments, we study the per-
formance when varying the value of k in {1, 10, 20, · · · , 100}.
Due to the space limitation, we only report the performance
on three datasets, i.e., Deep, Cifar, and Trevi. The results
are shown in Figs. 7-9. In the Cifar and Trevi datasets, we
can see that PM-LSH achieves the best performance on all
the aspects. SRS is the second-best algorithm. When using
the Deep dataset, PM-LSH has the smallest query time and
overall ratio, and its recall is close to that of SRS.

As k increases, all algorithms achieve a higher overall ratio
and a smaller recall, but the query time is relatively steady.
In fact, the algorithms return the best k objects from a
candidate set whose size exceeds βn+k. Therefore, a larger
k has little affect on the query time but obviously has an
adverse effect on the result quality.

When considered across different datasets with different
cardinality n and dimension d, PM-LSH exhibits a consis-
tent high accuracy. This is because PM-LSH is unaffected
by the dimensionality of the datasets and because its cost
is sublinear in the cardinality of the datasets. In contrast,
Multi-Probe is affected significantly by the dimensionality
of datasets. The hash number of QALSH is O(n logn), so
its query time increases super-linearly with the dataset car-
dinality. Similarly, when the dataset cardinality increases,
SRS incurs a higher query cost to find an NN in the pro-
jected space.

To sum up, PM-LSH has the smallest query time among
all competitors. In addition, the accuracy is high. Only
SRS is able to achieve a competitive recall in some cases
but takes longer query time than PM-LSH.
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Recall-Time and OverallRatio-Time Curves. In this
set of experiments, we evaluate the relationship between the
recall or overall ratio and the query time for (c, k)-ANN
queries on all the datasets when varying c to obtain different
query times. The results are shown in Fig. 10 and Fig. 11.
As the tradeoff between the query quality and the query time
is the key tradeoff, the LSH methods focus on returning a
relatively good result with a much smaller time than those of
exact NN algorithms. The results show that all algorithms
return more accurate results when more query time is used.
They also show that PM-LSH achieves superior efficiency
and accuracy when compared to SRS, QALSH, and Multi-
Probe. This can be explained as follows. First, PM-LSH
has a better distance estimator than QALSH and Multi-
Probe, so PM-LSH outperforms them with the same number
of retrieved points. Second, PM-LSH needs lower time to
obtain the same number of retrieved points since only one
or two range queries are required. In contrast, SRS needs T
rounds of incremental NN search.

7. RELATED WORK

7.1 Additional LSH Methods
Locality-Sensitive Hashing (LSH) is a prominent approach

to speeding up the processing of approximate nearest neigh-
bor querying [4, 9, 10, 12, 22]. LSH was originally proposed
by Indyk et al. [18] for the use in Hamming space, and it has
since attracted substantial attention due to its excellent per-
formance. Datar et al. [9] propose an LSH function based on
p-stable distributions in Euclidean space, which has become
a mainstream method that yields low computation cost, a
simple geometric interpretation, and a good quality guar-
antee. Since then, many LSH methods build on this work
to choose hash functions [11, 14, 17, 22, 31, 33]. In addition
to the competitors introduced in Section 3, other proposals
also deserve mention. Based on a rigorous theoretical anal-
ysis, Panigrahy et al. [25] propose an entropy-based LSH,
and Satuluri et al. [29] propose a BayesLSH. The former
tries to reduce the number of hash tables by using multiple
perturbed queries, and the latter aims to reduce the query
time by estimating the similarity between data and query
objects based on Bayes rule. However, both yield limited
performance improvements as the assumptions made on the
underlying dataset are hard to satisfy and verify. Another
interesting proposal is LazyLSH [35], which supports queries
in multiple lp spaces by using one index, thus effectively re-
ducing the space overhead. Another line of hashing-based

methods is learning to hash (L2H) [34], which is orthogonal
to our work. LSH uses predefined hash functions without
considering the underlying dataset, while L2H learns tai-
lored data dependent hash functions. Many learning algo-
rithms have been proposed, such as iterative quantization
(ITQ) [13], and generate-to-probe QD ranking (GQR) [20].

7.2 Applications of LSH
Several novel applications of LSH have been put forward

in recent years. As processing similarity search on streaming
data from Twitter is challenging due to an extremely heavy
workload, two studies [26,32] utilize LSH and its variants to
support the querying of high throughput streaming data. In
addition, a study [1] proposes an LSH scheme that matches
two prominent bibliographic databases at paper level by de-
tecting exact matches without false positive. Likewise, a
study [27] explores the use of MinHash LSH to index and
search Web data. Finally, a study [28] considers an ap-
plication that identifies potential earthquakes by searching
similar time series segments based on the high waveform
similarity between reoccurring earthquakes.

8. CONCLUSION
We present a fast and accurate framework, called PM-

LSH, for computing (c, k)-ANN queries with theoretical guar-
antee on the result quality. First, we adopt the PM-tree to
index the data points to be queried in a projected space. Sec-
ond, in order to improve the distance estimation accuracy in
the projected space, we develop a tunable confidence inter-
val on the projected distance w.r.t. a given original distance.
Finally, we propose an efficient algorithm to search the PM-
tree range queries. The experimental study using 7 widely
used datasets shows that PM-LSH outperforms five competi-
tors in terms of both query efficiency and result accuracy.
Specifically, PM-LSH improves the query time by an aver-
age 30% when compared to the closest competitor (SRS).
When all the competitors are given the approximately same
query time, PM-LSH improves the recall by about 10% when
compared to the closest competitor (SRS).
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