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Abstract Supervised classification based on Contrast
Patterns (CP) is a trending topic in the pattern recogni-
tion literature, partly because it contains an important
family of both understandable and accurate classifiers.
In this paper, we survey 105 articles and provide an
in-depth review of CP-based supervised classification
and its applications. Based on our review, we present
a taxonomy of the existing application domains of
CP-based supervised classification, and a scientomet-
ric study. We also discuss potential future research
opportunities.
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1 Introduction

Artificial intelligence (e.g., machine learning and
deep learning) approaches are increasingly popular
in the literature [3, 140, 164, 166, 207]. Examples
of machine learning and deep learning approaches
include random forests, gradient boosting, convolu-
tional neural networks, and pattern recognition. Super-
vised classification is one of the most popular pattern
recognition approaches [32, 119], which has been
widely studied and applied to many domains, such as
bioinformatics [13, 84, 203], human activity recogni-
tion [94, 120, 146, 190], rare event forecasting [34,
78, 162], information retrieval [18, 30, 171, 191],
face recognition [9, 134, 135], fingerprint identifica-
tion [79, 143], Internet of Things [8, 202], and more
recently COVID-19 (also referred to as novel Coron-
avirus, 2019-nCOV and SARS-CoV-2) [138, 182].

Contrast pattern-based classification continues to
attract interest from the research and practitioner com-
munities since its introduction in 1963, as evidenced
by the number of supervised classifiers proposed over
the past decade. However, for many practical prob-
lems, obtaining a high-classification result is insuffi-
cient, because experts should also understand the clas-
sification model [46, 119, 127]. In many application
domains, the lack of comprehensibility in the classifi-
cation model(s) can result in resistance or reluctance
to use certain classifiers, and in other cases, it becomes
mandatory to use an understandable model. For exam-
ple, when credit is denied to a customer, the U.S.’s
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Equal Credit Opportunity Act requires financial insti-
tutions to provide reasons for rejecting the application,
and vague reasons for denial are illegal [119, 133].
Similarly, if the classifier is used to provide evidence
in a court of law, it would be generally required to
explain how the evidence was obtained.

Contrast pattern-based classification has been
shown to achieve both accurate classification results
and understandable models in many practical contexts,
such as gene expression profiles [50], characteriza-
tion for subtypes of leukemia [108], gene transfer
and microarray concordance analysis [132], classifi-
cation of spatial and image data [98], structural alerts
for computational toxicology [16], criminal behavior
[120], and prediction of heart diseases [93].

A supervised classifier based on contrast patterns
uses a collection of contrast patterns to create a model
that classifies a query object in a predefined class [47,
200]. A pattern is an expression defined in a cer-
tain language that describes a collection of objects
[46, 47, 123–125, 127]. Usually, a pattern is repre-
sented by a conjunction of relational statements (a.k.a
items), each with the form: [fi # vj ], where vj is a
value in the domain of feature fi , and # is a relational
operator from the set {∈, /∈, =, �=, ≤, >} [47, 127,
200]. For example, [seizures per day ∈ [5, 15]] ∧
[Number of f atigues > 5] ∧ [Headaches ≤
10]∧[cognitive impairment = “Mild”] is a pattern
describing a collection of people suffering from brain
cancer metastases [142]. Let p be a pattern, and C =
{C1, C2, C3, ..., Cn} a set of classes such that C1∪C2∪
C3∪...∪Cn = U , C̄i = C�

i ; then, support (p, Ci , C̄i )

is the fraction resulting from dividing the number of
objects belonging to Ci described by p by the total
number of objects belonging to Ci [46, 47, 49, 127,
200].

We describe the function support using three
parameters to be consistent with the notation that we
introduced in Section 2.2.2 for describing the pattern’s
quality measures. Now, a contrast pattern (CP) for a
class Ci is a pattern p where the support of p for Ci

is significantly higher than any support of p for every
class other than Ci [46, 47, 49, 127, 200].

Interest in classification based on contrast patterns
(CPs) remains strong, as evidenced by the publication
trend shown in Fig. 11 [24–26, 46, 51, 70, 72, 74,

1Data for the figure were extracted from Scopus, Elsevier’s
abstract and citation database that indexes peer-reviewed arti-
cles published in scholarly books, journals, and conferences.

75, 127]. From this figure, one can observe that there
was an average of 700 published articles and 600 cita-
tions per year between 2009 and 2019. Therefore, in
this paper, we seek to provide an in-depth overview of
CP-based supervised classification that includes both
theoretical approaches and real-world applications.
Specifically, we review different approaches for min-
ing CPs, methods for filtering CPs, and classification
strategies based on CPs. We also focus on the uti-
lization of CP-based supervised classification to solve
real-world problems. In addition, we present a scien-
tometric study from several papers indexed on Scopus,
which are focused on pattern-based classification.

We also remark that while there are a number of
similar literature review and survey articles [1, 47, 62,
73, 101], and books [48, 158], there are a number of
differences as explained below:

– We review different types of contrast patterns
such as frequent items, association rules, emerg-
ing patterns, and decision rules, and identify their
advantages and drawbacks from both theoretical
and practical perspectives.

– We provide an in-depth scientometric study tak-
ing into account the pattern types in pattern-based
classification.

– We also focus on contrast patterns based on deci-
sion trees. This is a recent trending topic, where
there is a lack of literature review or survey article
at the time of this study.

A comparative summary of existing contrast pat-
tern reviews and surveys is presented in Table 1.

We will now explain the layout for this paper.
Section 2 reviews each stage of the CP-based super-
vised classification, namely: mining, filtering, and
classification. Also, in this section, we present our
taxonomy and the scientometric study. In Section 3,
we present the review of CP-based classification for
real-world applications. In Section 4, we present the
main trends and challenges associated with CP-based
supervised classification. Finally, Section 5 presents
our conclusion.

2 Supervised Classification Based on Contrast
Patterns

In this section, we will provide an in-depth review of
algorithms included in each stage to build a super-
vised classifier based on CPs [96, 127]. The stages
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Fig. 1 Statistics on contrast pattern-based classification published papers between January and December 2019, indexed on SCOPUS.
From this figure, one can observe that there is significant interest in classification based on contrast patterns

are Mining (Section 2.1), Filtering (Section 2.2), and
Classification (Section 2.3). We also provide a tax-
onomy based on the analysis of our review, where
all algorithms are grouped into different categories
(Section 2.4) and a scientometric study about super-
vised classification based on CPs (Section 2.5).

2.1 Mining Contrast Patterns

A key requirement for supervised classification based
on CPs is to have a good collection of patterns.
Therefore, several CP mining algorithms have been
proposed with the aim of extracting a collection of
high-quality patterns [46, 47, 127]. However, mining
CPs remains challenging and it has been proven to
be NP-hard [187] due to the exponential number of
candidate patterns [61, 81, 86, 172, 197].

The algorithms for mining CPs perform an
exploratory analysis using a search-space, which is
defined by a set of inductive constraints provided
by the user. CP mining algorithms can be broadly
categorized into exhaustive-search-based algorithms
(Section 2.1.1) and decision tree-based algorithms
(Section 2.1.2). An exhaustive-search-based algorithm
performs an exhaustive search of a combination of val-
ues for a set of features appearing to be significant in
a class regarding the remaining classes, and a decision
tree-based algorithm extracts CPs from a collection of
decision trees.

2.1.1 Exhaustive-search-based algorithms for mining
contrast patterns

It is common for exhaustive-search-based algorithms
to transform all numerical features into nominal

features by using an initial discretization (a.k.a a pri-
ori discretization). In this way, the domain of the
numerical features is partitioned into a finite num-
ber of disjoint intervals (bins). Let us consider an
example where the feature Weight contains values
(expressed in kg) from 1 to 150 in the training dataset.
One possibility is to discretize this feature into three
bins, namely: [−∞, 50), [50, 100), and [100, +∞].
The square brackets “[” and “]” denote closed ends of
intervals, and the round brackets “(” and “)” denote
open ends. We also remark that the first bin starts
with −∞ and the last bin ends with +∞. This is
to avoid errors during the classification stage, where
query objects can have values outside the initial range
of those values contained in the training dataset. For
example, if the last bin is defined as [100, 150], then
a query object having 200 as a value in the feature
Weight cannot be classified using that feature.

Since exhaustive-search-based algorithms trans-
form all numerical features into nominal features, all
resulting CPs have only items with the symbol = as
the relational operator; hence, using items in the form
[f eature = value]. Usually, these mining algorithms
use the method proposed by [60] as initial discretiza-
tion because it has shown better performance than
other methods [60].

While initial discretization allows us to use effi-
cient algorithms for mining CPs, it may not be prac-
tical due to information loss and the limited inter-
pretability of transformed data [70, 97].

The first classifier based on CPs is KORA-3, pro-
posed by [17]. KORA-3 defines a CP for a two-class
problem, as a combination of three values from three
features appearing at least a minimum threshold of
objects in one class, and not appearing in the other
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class. A CP covers an object if the object has the same
value(s) that the CP has in their respective items. The
main drawback of KORA-3 is that it only works with
two-class problems and only generates CPs containing
three Boolean items. This limits one in finding new
and better CPs. A pattern p1 is better than another pat-
tern p2 if both patterns are extracted from the same
training dataset and p1 allows discriminating more
objects than p2. One way to measure the discrimina-
tive power among CPs is to use the support of [49]
(see Section 1) as a quality measure for patterns.

In 1993, Apriori was introduced [2] and gradually
became one of the most prominent pattern-based algo-
rithms. The Apriori algorithm was proposed to extract
frequent item sets from a market basket dataset. An
item set (a.k.a itemset) is labeled as frequent item-
set when its support exceeds a minimum threshold
[2]. The algorithm finds patterns without taking into
account the classes. However, we can use it to find CPs
by restricting the search space to objects belonging to
the same class.

Apriori uses a level-wise search to extract patterns,
where l-patterns are used to find (l+1)-patterns. Apri-
ori extracts, at the first stage, all possible patterns
containing only one item. After, it extracts patterns
containing more than one item. At each iteration, a
pruning procedure is conducted to remove patterns
that do not meet the minimum support threshold. One
drawback of Apriori is that it needs to scan the dataset
at every iteration. Hence, many variants have been
proposed to improve the efficiency using hashing,
sampling, and distributed techniques. However, these
variants do not obtain better classification results than
recent pattern-based proposals [91]. Another draw-
back of Apriori is that it is difficult to find the best
minimum support threshold for each specific dataset.

In 1998, KORA-3 was extended to KORA-� [184],
where this extension allows finding patterns contain-
ing more than three items and handling multiple-class
problems with mixed and incomplete data. The exten-
sion alos uses an exhaustive search procedure for
extracting patterns, which make it more difficult to be
applied in several practical domains.

Later, in 1998, Max-Miner was proposed [15] as an
algorithm for mining long patterns. Max-Miner avoids
the limitation due to the exponential complexity of the
Apriori algorithm for extracting patterns. Specifically,
Max-Miner extracts only maximal patterns containing
maximal frequent itemsets. An itemset is labeled as

maximal frequent (a.k.a frequent closed) if it has no
superset that is frequent because any frequent itemset
is a subset of a maximal frequent itemset. Max-Miner
removes the bottom-up traversal of the search space
proposed by [2], and it uses a heuristic strategy for
quickly extracting long-frequent item sets. After that,
Max-Miner uses a procedure for pruning the extracted
patterns to find new frequent itemsets. The authors
also showed that Max-Miner achieves improved per-
formance, in comparison to Apriori. Nevertheless,
Max-Miner has a computational complexity higher
than other recent proposals based on patterns.

Later, in 1999, a new family of supervised classi-
fiers based on the concept of Emerging Pattern (EP)
was introduced by [49]. For knowing when a CP is an
EP, the authors use the quality measure Growth Rate,
which is computed using the mean of the highest ratio
between the support of a certain pattern in one class
and the support of the same pattern in the other classes.
The way for extracting patterns is similar to the those
of KORA-� [184] and Max-Miner [15].

In 2000, the frequent pattern (FP)-growth approach
for mining patterns was introduced by [82]. This
was presented as an alternative to the Apriori-based
approach, and uses divide-and-conquer to produce
items by creating a compact tree-structure, FP-Tree.
In the experiments, the authors showed that the FP-
growth method is efficient and scalable for mining
both long and short patterns, and it is about an order
of magnitude faster than the Apriori algorithm. How-
ever, recent methods for mining patterns have proven
to be more accurate than FP-growth [91].

Another algorithm for mining emerging patterns
(JEPProducer) was presented in [107], which can
obtain the border representation of all jumping emerg-
ing patterns. A pattern is labeled as a Jumping Emerg-
ing Pattern (JEP) when it covers objects from only
one class [121, 124]. JEPProducer obtains the hor-
izontal border of each dataset. A horizontal border
is represented as 〈∅, R1〉, which contains all nonzero
support patterns. Then, in order to obtain JEPs, it
executes the BorderDiff (t, T ) function for obtain-
ing the border representing the difference of these
sets represented by the horizontal borders. The func-
tion BoderDiff (t, T ) [49] returns a set of mini-
mal jumping emerging patterns that occur in t but
never in T . For example, for t = {1, 2, 3, 4} and
T = {{2, 3, 5, 6}, {2, 4, 7, 8}, {3, 4, 6, 8}}, we have
BorderDiff (t, T ) = {{1}, {2, 3, 4}}.
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During the same year (2000), an algorithm for
extracting maximal patterns (CLOSET) was proposed
[149]. Similar to the concept of maximal itemset,
a maximal pattern is a pattern whose super-patterns
are not patterns anymore. CLOSET uses the FP-Tree
structure proposed in [82], but CLOSET introduces
a divide-and-conquer method at the data level. The
idea is to divide the dataset into five non-overlap sub-
sets to mine itemsets. The authors proposed a strategy
based on set theory to merge the subsets and extract
those only maximal patterns. The experimental setup
proposed by [149], however, lacks an in-depth com-
parison using tens of datasets, state-of-the-art algo-
rithms, and statistical methods for corroborating the
experimental results.

ECLA [198], an algorithm for mining patterns,
uses a vertical tid-list. The latter is a structure pro-
posed by [181] for linking those objects covered
by a collection of patterns. The authors of [198]
showed that all patterns could be enumerated via
simple tid-list intersections, and proposed a lattice-
theoretic approach to decompose the original search
space into smaller sub-spaces. For doing that, they
introduced two techniques for achieving the decom-
position, namely: prefix-based and maximal-clique-
based partition. Additionally, they proposed three new
search strategies for enumerating the patterns within
each sub-space, namely: bottom-up, top-down, and
hybrid search. CPs are mined using each sub-space.
The bottom-up search is based on a recursive decom-
position of each class into smaller classes induced by
the equivalence relation. The top-down search starts
with the top pattern. If it is a contrast pattern, then it is
extracted. Otherwise, the algorithm checks each sub-
set at the next level for mining patterns. This process
is repeated until all levels are processed. The hybrid
search is based on the intuition that the higher the sup-
port of a pattern, the more likely it is to be part of a
collection of maximal patterns. The authors showed
that the three new search strategies are suitable for
mining patterns more efficiently than the Apriori algo-
rithm [2]. The main drawback is that ECLA is time-
consuming, especially when the dataset contains many
objects [199].

Later, in 2002, a fast algorithm for mining emerging
patterns (TBJEP) was proposed by [11]. TBJEP per-
forms a global search in the training stage, and makes
a previous discretization of all numerical features by
using the method proposed in [60]. The authors used

a tree-based representation of the complete training
dataset with the aim of representing all information
of the features in a multi-value tree structure. TBJEP
makes a depth-first traverse of the tree for mining
patterns.

An algorithm for mining Essential Jumping Emerg-
ing Patterns (EJEPs) was introduced by [56]. Usually,
EJEPs are EPs contain high Growth Rate values [57].
This algorithm extracts a set of EJEPs, which is a sub-
set of JEPs but it does not include noise and redundant
information. The single scan algorithm for mining
EJEPs obtains fewer patterns than other state-of-the-
art mining algorithms. However, it only works with
two-class problems and uses a previous discretization
of all numerical features.

In 2003, BCEP was proposed to mine emerging
patterns [57]. BCEP uses a tree-based representation,
similar to the one proposed by [11], for mining JEPs.
Using the tree-based representation, BCEP sorts all
items by using Growth Rate as a quality measure for
patterns. BCEP takes advantage of its tree-based rep-
resentation by performing a depth-first traversal pro-
cedure for extracting EPs. The tree is pruned to obtain
only EJEPs utilizing a minimum support threshold or
when a JEP is found. Similar to other algorithms dis-
cussed above, BCEP uses an initial discretization (its
key drawback).

In the same year (2003), another algorithm for
mining EPs (iEPMiner) was proposed [58]. iEPMiner
extracts patterns using conditions of the X2 test [168],
which are labeled as Chi-EPs. iEPMiner uses a tree-
based representation, similar to the one used in [11,
57]. Based on this representation, a depth-first pro-
cedure is executed for checking certain conditions at
each node of the tree. If a path of the tree fulfills
these conditions, then it is saved as a candidate pat-
tern. If the value of the X2 test between a node and
its candidate child node is less than 3.84, then the
addition of the new item does not significantly change
the behavior of the candidate EP, because it is inde-
pendent with a 95% confidence level. After finishing
the tree traversal, a condition is checked over all the
extracted patterns with the aim of obtaining only Chi-
EPs. The main drawback of iEPMiner is that it uses
an initial discretization of all numerical features and
relies on the X2 test, where some assumptions need to
be checked in the training dataset before applying it.

In 2004, the EPRC miner was proposed [6] for
mining EPs in class imbalance problems. This type
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of problems arises when there exist significantly
fewer objects belonging to a class (commonly labeled
as minority class) regarding the remaining classes.
EPRC extracts EPs from a training dataset using an
exhaustive-search-based algorithm. For each pattern
of the minority class, new EPs for the minority class
are built by replacing the item value by the feature
value of the corresponding feature having the high-
est Growth Rate value; and keeping all other items
as they are in the original pattern. The main draw-
back of EPRC is that it could build fake patterns since
these new EPs do not necessarily cover objects of the
minority class in the training dataset.

In the same year (2004), DeEPS for mining EPs
using a lazy learning approach was proposed [106].
DeEPS uses the frequency of an object’s subsets of
features and the frequency-change rate of the subsets
among the classes of the training dataset for remov-
ing an object from the model. The authors proposed
using JEPProducer [107], with the aim of obtaining
the border-based representation of a set of JEPs for
each class covering the query object. The resulting set
of EPs is obtained by repeating this procedure for each
query object and then removing duplicate patterns.

A year later in 2005, an algorithm for mining
EPs from data streams (EPDSminer) was presented
[7]. A data stream is a continuous, unbounded, and
not necessarily ordered, real-time sequence of data
items [23]. Usually, exhaustive-search-based algo-
rithms need to use the entire training dataset for min-
ing EPs, but in data stream problems, it is infeasible to
store all the data on disk. Consequently, EPDSminer
uses an exhaustive-search-based algorithm for mining
EPs but using the following strategy for dealing with
data streams. First, data is obtained in blocks of size
N , which are labeled as a two-class problem (c and c̄)

and they are related to a period of time t , (Bt
c and Bt

c̄).
Then, for each block of t , EPs are extracted and stored
for both classes (EP t

c and EP t
c̄ ). After that, for the

next period of time t+1, EPs are extracted (EP t+1
c and

EP t+1
c̄ ) but before storing them, EPs extracted in the

period of time t and t + 1 are ranked using the quality
measure strength [123] with the aim of selecting only
those EPs with high discriminate power. This proce-
dure is repeated for each block coming from the data
stream. The authors showed that EPDSminer allows
for obtaining better classification results than using
the C4.5 decision tree as a base classifier for the tested
sampling and sliding window techniques.

In 2006, an algorithm for fast discovery and the
generalization of strong jumping emerging patterns
(SJEP) was proposed [59]. SJEP allows for handling
some level of noise in the training data. For doing that,
SJEP mines EPs supporting objects for all classes. The
primary conditions are: (i) the pattern should support
significantly more objects for a class than the remain-
ing classes; (ii) the number of objects supported by
the pattern in the remaining classes (considered noisy
objects) should be lower than a predefined thresh-
old. A similar solution was previously introduced in
KORA-3 [184]. A drawback of SJEP is that it gen-
erates many patterns, even in small databases. As a
consequence, the output model is too difficult to be
understand by experts [71].

Also in 2006, a proposal for mining patterns from
one-class problems (OCLEP) was introduced [33].
In the first stage of OCLEP, the original dataset is
transformed by using an initial discretization, result-
ing in D. After that, patterns are extracted using a
bagging method. OCLEP executes m times the func-
tion BoderDiff (t, T ) for t ∈ D and T ⊆ D − {t}
as follows: if D is small, let m = 100 and each T

should be a random subset of D − {t} such as |T | is
in the range of [200, 800]. OCLEP allows achieving
good detection accuracy while keeping the false pos-
itive rate low, in comparison to other state-of-the-art
approaches. Nevertheless, OCLEP does not improve
the results obtained by ocSVM [165]. Limitations of
OCLEP include the need for initial discretization and
depending on the number of subsamples selected (e.g.,
range from 200 to 800), the proposal extracts more
or less the same number of patterns. More recently,
in 2018, the OCLEP+, a modified version of OCLEP,
was presented [51]. The main change does not rely on
the mining stage, but in the classification stage for that
reason, we will explain this difference in Section 2.3.
An important drawback of OCLEP is that the mining
stage proposed [33] is complex to understand, and the
source code is not available.

In 2007, DEP was introduced as an algorithm
for mining EPs in class imbalance problems [5].
DEP creates balanced subsamples containing all the
objects from the minority class and a subset of objects
from the majority class. Then, from each subsam-
ple, the EPs for the minority class are extracted using
an exhaustive-search-based algorithm, which was not
mentioned by the authors. In this way, many EPs for
the minority class are extracted, and consequently,
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they are not overwhelmed by the number of EPs
from the majority class. DEP has the same draw-
back presented by EPRC when a resampling method
is used. DEP could extract non-representative patterns
of the problem since these could be EPs for only the
subsample used instead of all training dataset.

In the same year (2007), an algorithm for dis-
covering Jumping Emerging Patterns with Negation
(JEPNs) was proposed [175]. A JEP is labeled as
jumping emerging pattern with negation when it con-
tains items with negated values, which were not
extracted from the training dataset, i.e., a negated
value represents the idea that such a value does not
appear in an object. From this, Terlecki and Walczak
argued that a negated pattern is obtained by changing
each positive item of a given pattern to the correspond-
ing negative item and vice versa [177]. The authors
of [175] used JEPProducer [107] for mining JEPs
and JEPNs from many databases. The authors showed
that negative knowledge could be a useful addition to
solutions based on positive patterns. The main draw-
back of using JEPNs is that the output model is more
difficult to understand by an expert.

After, in 2008, the authors of [176] proposed (Top-k
JEPs) an algorithm for discovering emerging patterns.
Top-k JEPs is a modification of the algorithm pro-
posed by [59]. The authors argued that those SJEPs
with high support are the most discriminative patterns;
as a consequence, they proposed a method for only
keeping those k patterns with the highest supports.
For doing that, the authors proposed to use the same
mining strategy proposed by [59] but using new prun-
ing conditions. The two pruning conditions proposed
by Top-k JEPs are the following. First, for pruning,
on each node, it checks if the pattern associated with
the node is not considered D-discernibility minimal.
Let p be the pattern associated to the node, p is D-
discernibility minimal if and only if:

∀z⊂PSsupport (p, C̄i , Ci) < support (z, C̄i , Ci) (1)

In the above equation, support (p, C̄i , Ci) denotes the
support of the pattern p for the negative class. Usually,
in pattern discovery, the pattern’s positive class refers
to the class where that pattern covers more objects
regarding the remaining classes (or negative class), C̄i .
The second condition is by using a minimum support
threshold for pruning. The main idea is to obtain the
best k patterns much faster than SJEP but using the

same tree structure. The authors proposed to dynam-
ically grow the threshold by storing the patterns in a
heap by non-ascending support. Then if the size of
the heap is equal to k, the support threshold is raised
to the support of the first element of the queue plus
one. The main handicap of Top-k JEPs is that it con-
tinues using an initial discretization procedure before
extracting patterns.

Later, during the same year (2008), an algorithm
for mining patterns, labeled by authors as: jumping
emerging pattern with occurrence count, was intro-
duced [97]. The main idea of this proposal is to
remove the initial discretization presented by the algo-
rithms mentioned above for mining patterns. The
authors showed that their proposal allowed to improve
significantly the accuracy of a pattern-based classi-
fier, in a particular image classification task, regarding
another algorithm for mining patterns using the ini-
tial discretization. The main drawback of this proposal
is that the number of extracted patterns increased
significantly for those using initial discretization; in
some cases, the number of patterns increased from
9 to 14,444. This result goes against the position of
creating an understandable model for the experts.

In 2014, a novel approach for mining strong jump-
ing emerging patterns based on BSC-tree (DGCP-
Tree) was proposed [115]. The authors proposed a
new data structure called as: Dynamically Growing
Contrast Pattern Tree (DGCP-Tree), which is inspired
by the BSC-Tree structure proposed by [92] for min-
ing association rules. DGCP-Tree allows storing bit
strings, each one representing the objects covered by
an item. The main advantage of this method is that
it allows mining emerging patterns during tree induc-
tion. For doing that, first, items with a length of value
one are mined for each class. After, they are sorted
by using the Growth Rate as the quality measure for
patterns. Then, a procedure for growing the tree is
executed by copying those right sibling nodes as the
children of the node that is being processed, if they
cover new objects and their support is greater than the
threshold. The authors showed in their experiments
that DGCP-Tree allows improving the computational
time for extracting EPs and they allow improving
the classification results regarding other well-known
algorithms for mining EPs. Although it is true that
DGCP-Tree improves the computational complexity,
its main drawback is the initial discretization of all
numerical features.
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After, in 2015, an algorithm for mining strong
emerging patterns in streamwise features (DFP-
SEPSF) was proposed [4]. An emerging pattern ep

having n items is labeled as Strong Emerging Pattern
(SEP) when it satisfies the following conditions:
(i) support (ep, Ci , C̄i) ≥ (kn)/ | Ci | and (ii)
Growth Rate � 1; where k the average number of
values for an item and Ci is a class. As the length
of an EP is limited by the support constraint then, its
length is at most lmax = log(| D |)/ log(k). Conse-
cuently, the mining process does not extract SEPs with
length greater than lmax . Usually, the training dataset
contains all the feature set available before mining
pattern. However, in some practical scenario, the num-
ber of training examples is fixed while the number of
features grows, which is labeled as streamwise fea-
tures [206]. Exhaustive-search-based algorithms are
not suitable for working in problems with streamwise
features. For that reason, the authors of [4] proposed
to a bottom-up approach to constructing an Unordered
Dynamic Frequent Pattern tree (UDFP-tree) and an
Ordered Dynamic Frequent Pattern tree (ODFP-tree).
As each pattern can be extracted from a FP-tree
structure, the authors suggested applying three steps
sequentially to convert the FP-tree in an UDFP-tree
for managing streamwise features. First, some con-
straints are applied when a feature arrives. If a feature
value is satisfied by one of the constraints, then it is
removed. Otherwise, the feature value is transformed
into several new nodes. In this process, new nodes
are added to external nodes as their parents. Then, an
updating process determines which nodes of the next
feature are added to which external nodes. Finally, pat-
terns are extracted by making a conditional database
for each item in the header table. The conditional
database is a sub-database or a sub-dataset which con-
sists of a set of frequent items occurring with the same
suffix pattern. The conditional database contains sev-
eral paths which are created by the following item’s
node-links. A path is started at a node and ended
up at the root for each node-link. In the experimen-
tal result, the authors of [4] showed that DFP-SEPSF
allows obtaining better classification results than four
other pattern-based algorithms and four other popular
algorithms not based on CPs using 30 databases.

In 2016, WBEPM miner, an algorithm for min-
ing EPs from imbalanced data streams was proposed

by [35]. The authors proposed a new type of pattern
labeled as Balanced Emerging Pattern (BEP), which
has a better adaptability on the imbalanced datasets. A
pattern p is considered as bep if and only if:

support (p, Ci , C̄i) > θ and:

δ ≤ a ∗ ak∗support (p,C̄i,Ci)

support (p, Ci , C̄i)
(2)

In the above equation, k is the balance factor, δ the
minimum contrast coefficient, a is the correlative cor-
rection parameter, θ is the minimum support thresh-
old, and support (p, Ci , C̄i) and support (p, C̄i , Ci)

are the support of the pattern p for the classes Ci

and C̄i , respectively. Similar to DEP, WBEPM cre-
ates several balanced subsamples but using a sliding
window mechanism. EPs are extracted from each sub-
sample by using a variant of the algorithm proposed
by [56] (EJEPS). The experimental results show that
the EPs mined by WBEPM attain better classifica-
tion results than those obtained by EJEPs. Neverthe-
less, the WBEPM miner was proposed for working
with imbalanced data streams, and it is not able to
work with other problems. Also, WBEPM continues
using an exhaustive-search-based algorithms for min-
ing EPs, which needs an initial discretization of all
numerical features.

Also in 2016, the authors of [114] introduced a
single-scan algorithm for mining diverse types of cor-
relation patterns. The authors introduced a new type
of correlation pattern, labeled as pan-correlation pat-
terns, to maximize the sequence of coherent data
movements in one pattern. A Pan-Correlation Pattern
(PCP) consists of a maximized sub-list of variables,
where all the listed variables are associated with a
segment of time points having the same length. The
authors use an initial discretization of data for con-
verting the pan-correlation mining problem into a
sequential pattern mining problem. After that, the
authors use a generalized representation of positive
patterns and the opposite-mirror copy of the origi-
nal sequential data set for mining patterns using an
exhaustive-search-based algorithm, which the authors
did not mention. As was stated in [113], these pat-
terns are meant to work with unsupervised data where
the features are measurements at different instants of
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time (e.g., the measurements of sensors at different
moments in time).

In 2016, an algorithm for mining patterns in data
streams using reconfigurable hardware (SysTreeM-
iner) was proposed by [23]. SysTreeMiner uses a
Landmark Window Model [36] and reconfigurable
hardware [39] for mining several times a top-1 pat-
tern from data streams. This proposal uses an algo-
rithm similar to proposed by [176] (Top-k JEPs) for
obtaining the top-1 pattern at each window of the
data streams. The main advantage of this proposal is
that it simultaneously uses Depth First Search (DFS)
and Breadth First Search (BFS) traversals for analyz-
ing the systolic tree structure, which allows a high
level of parallelism for mining the top-1 pattern from
each sliding windows. In the experimental results, the
authors showed how the hardware architecture allows
extracting all patterns correctly from data streams
with a significant speed-up over other software-based
implementations.

In 2017, an algorithm for mining patterns on data
streams using hashing and a lexicographic order in
hardware (LexOrdMiner) was proposed [25]. Lex-
OrdMiner is a modification of SysTreeMiner, which
includes a hashing procedure and lexicographic order
for dealing with such cases where the number of
items is large and objects, coming from a transac-
tional data source, are short. The architecture pro-
posed by LexOrdMiner performs one order of mag-
nitude faster than other popular software-based base-
line algorithms. Although SysTreeMiner outperforms
LexOrdMiner for classification.

Later, in 2018, the authors of [24] proposed to
extend the SysTreeMiner algorithm. This extension
includes a new algorithm for the sliding window
model and pre-processing stage. The authors showed
how their proposal can improve the mining process
when a device with no resource restrictions is used.
As a consequence, their proposal can handle pattern
with many items. Also, the authors proposed new par-
allel algorithms for mining patterns on data streams.
None of the proposals of [24] compared their results
against the algorithm (EPDSminer) proposed by [7] in
the same context.

After, in the same year in (2018), a modifica-
tion of the Apriori Algorithm (D2P-Apriori). D2P-
Apriori modifies the Apriori algorithm for satis-

fying the high-performance requirement by using
GPUs was proposed [188]. The authors proposed
to use a dynamic bitmap queue data structure to
avoid starting a CUDA kernel for redundant times
and the Graph-join way is designed in parallel
to generate candidates to realize a better perfor-
mance than state-of-the-art serial implementations.
The authors showed how D2P-Apriori improves
other three state-of-the-art serial implementations.
Nevertheless, they did not compare their results
against the algorithms proposed by [24] in the same
context.

In 2019, an algorithm for mining patterns on
data Stream (FCI-Outlier) was introduced [83]. The
authors proposed to apply FCI-Outlier in the outlier
context. For doing this, first, all maximal patterns
are mined using the CLOSET algorithm proposed
by [149]. After that, FCI-Outlier defines three out-
lier factors to measure the abnormal degree of each
object. In their experiment, the authors showed that
FCI-Outlier improves results obtained by other three
state-of-the-art algorithms. Nevertheless, FCI-Outlier
presents more computational cost than others com-
pared algorithms, and it is not clear why the authors
proposed to use CLOSET instead of the improved
version CLOSET+ [185].

In 2019, HashEclat was proposed [199] as a modi-
fication of the Ecla algorithm proposed by [198]. The
main motivation of [199] is that Eclat is inefficient for
computing the intersection sizes of itemsets. As a con-
sequence, the authors of [199] proposed to calculate
the approximate set intersection by using hash func-
tions [178]. The authors selected MinHash proposed
by [21], which can be used to estimate the similar-
ity between two sets quickly. HashEclat adjusts some
input values (like the minimum support threshold) to
accelerate the speed of the mining stage, but it sacri-
fices the number of patterns mined. As a consequence,
it is reflected in their classification results, which are
worse than those achieved by Eclat. The authors used
only seven datasets for testing their proposal, which is
very poor for testing a pattern mining algorithm.

In 2019, an algorithm for mining the top-k pat-
terns from large-scale data streams (Floating Top-k)
was proposed [169]. A data stream is labeled as large-
scale data stream when it contains a large number
of distinct objects, and it is generally expensive, or
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even infeasible, to maintain a counter for each dis-
tinct object at some time interval. Mining patterns
from this type of problem is challenging nowadays
due to the reasons mentioned above (a.k.a Windowed
Top-k Frequent Items). For example, one may want
to query, in real time, about the top-10 most fre-
quent hashtags in the past hour. The authors of
[169] proposed to manage all window sizes dynam-
ically within an upper bound W . The authors pro-
posed the function aggregate value for grouping the
items, from any windows w ∈ W , in a probabilis-
tic way, i.e., items are grouped proportional to the
total count of items in that window. For example, sup-
pose that (I1, I2, I3, I2, I3, I1, I2, I4) are items arriv-
ing in increasing time order for |w| = 9, which are
given the random levels (2, 3, 1, 0, 3, 1, 4, 2), respec-
tively. Then, the aggregate values of (I1, I2, I3, I4)

(i.e., maximum levels) would be (2, 4, 3, 2) for w.
Therefore, (2, 4, 3, 2) is an approximate indication of
the frequency of the items and is suitable for obtain-
ing the top-k frequent items. After that, the top-k
frequent items are mined by using a reverse chrono-
logical order and maintain a vector of k tuples that
have the highest levels for each w ∈ W . Floating Top-
k have a O(log(n)) space complexity making it highly
scalable for high-rate data streams with dynamic
items and arbitrary-size windows. The authors showed
how Floating Top-k improves other well-known
algorithms for mining patterns from data streams.
Nevertheless, Floating Top-k was not compared
against the algorithms proposed by [23–25] in this
context.

Recently, in 2019, the authors of [26] proposed an
in-depth analysis of the LexOrdMiner algorithm pro-
posed in [25]. In this analysis, the authors extended the
literature review to include several works about min-
ing frequent itemsets from data streams, which were
not included in [25]. Also, they showed a detailed
explanation of LexOrdMiner, including examples and
new figures. Finally, the authors performed new exper-
iments to demonstrate the viability of LexOrdMiner
by using many databases and comparing it with
other popular hardware-based baseline algorithms for
mining patterns. Nevertheless, the authors did not
compare LexOrdMiner against D2P-Apriori or FCI-
Outlier, which were also proposed for working with
data streams.

As we have stated before, many exhaustive-search-
based algorithms rely on a tree structure (see Algo-
rithm 1 for a general pseudocode as the one in [73,
86]) for mining CPs.

Algorithm 1: General scheme for mining
contrast patterns using a tree structure.
input : D- a training dataset, q- a quality

measure for patterns (usually the
Growth Rate [49] measure is used), t-
a tree traversal strategy, and p- a
pruning strategy.

output: PS- a set of contrast patterns.

R ← Initialize a null root node.
foreach o ∈ D do

Sort the items of o according to q.
Add o to R as nodes in a depth-first way;
foreach existing node in R do

Update the counter of occurrences;
end

end
PS ← The set of contrast patterns mined

using the tree traversal strategy t and the
pruning strategy p.

return PS

Exhaustive-search-based algorithms for mining
patterns is the foundation for stating the pattern-
based classification. They began the idea of obtain-
ing understandable models for experts. Nevertheless,
exhaustive-search-based algorithms present as the
main drawback the initial discretization of all numeric
features. As many authors argued [70, 71, 121, 124,
127], the initial discretization is not a feasible solution
because of information loss, the limited possibility of
transformed data interpretation, and the computational
time required for carrying out this task. It is impor-
tant to highlight that discretizing a numerical feature
without considering the values of other features could
hide important relations in the objects of a class, pro-
ducing undesirable results [70, 71]. For example, the
authors of [71] showed how the exhaustive-search-
based algorithm proposed by [59], which applies an
a priori discretization, is unable to find patterns in
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the wpbc database; taken from UCI Machine Learning
Repository [53].

Another drawback of the exhaustive-search-based
algorithms for mining patterns is that only extract pat-
terns having items of the form [fi = vj ]; in this way,
they are subtracting patterns’ discriminative power by
not using other remaining relational operators, like
{∈, /∈, �=, ≤, >}. As a consequence, for avoiding these
drawbacks, several CP mining algorithms based on
decision trees were introduced.

2.1.2 Decision tree-based algorithms for mining
contrast patterns

Mining CPs from decision trees can be better than
using exhaustive-search-based algorithms for three
reasons. First, the local discretization performed by
decision tree with numeric features has proved bet-
ter results than using a priori global discretization [70,
71]. Second, decision trees contain a small proportion
of candidate features even in longer tree paths, which
significantly reduces the search space of potential pat-
terns and generate a small collection of high-quality
patterns [70, 71, 156]. Third, CP mining algorithms
based on decision trees can handle missing values
by introducing a penalizing factor in the measure for
evaluating candidate splits [71].

As we have stated in Section 2.1.1, mining CPs
using exhaustive-search-based algorithms is a chal-
lenging problem because of the high-computational
cost due to the exponential number of candidate pat-
terns [61, 81, 86, 172, 197]. For example, as was stated
by [187], several exhaustive-search-based algorithms
for mining EPs have a computational cost equal to
O((n ∗ m)2) where n and m are the number of objects
and number of features in the training dataset, respec-
tively. However, notice that those mining algorithms
based on decision trees obtain a small collection of
high-quality CPs, which reduces the computational
cost significantly [70, 71, 127]. In this way, mining
CPs from decision trees takes O(t ∗ m ∗ n log2 (n)),
where n and m are the number of objects and the num-
ber of features, respectively, in the training dataset and
t is the number of decision trees to be built.

In our review, we found that algorithms based on
decision trees for mining CPs follow two main steps.
First, inducing many diverse decision trees, like the

traditional procedure proposed by [157], where a qual-
ity measure for evaluating splits and stop conditions
are used. Second, extracting CPs from each induced
decision tree, where each pattern contains items using
all relational operators stated in Section 1, which com-
ing from a path from the root node to a leaf node; i.e.,
every path from the root to a leaf determines conjunc-
tion of items, which forms a pattern. For more detail,
we provide algorithms 2 and 3.

Algorithm 2: General scheme for mining
contrast patterns from decision trees.
input : D- a database, K- number of decision trees

to be induced, Z- a strategy for creating
diversity.

output: PS- a set of contrast patterns.

PS ← ∅;

while Number of induced decision trees ≤ K do
DT ← Build a decision tree by using the dataset
D and the strategy Z;

PS ← PS ∪ ExtractPatterns(DT.RootNode);
end
return PS

Algorithm 3: ExtractPatterns - Recursive pat-
tern extraction from a decision tree.
input : R- a decision tree node (Initially, the root

node).
output: PS- a set of CPs.

PS ← ∅;

foreach child ∈ R.children do
if child is a leaf node then

Create a pattern p collecting the items from
the root node to the child node;

p.class ← assigning the class with more
objects into the child node;

if p is contrast pattern then
PS ∪ {p};

end
end
else

ExtractPatterns(child);
end

end

return PS

As far as we know, the first contrast pattern min-
ing algorithm based on decision trees was proposed
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by [71], which was labeled as Logical Complex Mine
(LCMine). LCMine is based on decision trees by
using a deterministic procedure. LCMine generates
diveristy by using a set of vectors ranging from �v =
(1, 1, . . . , 1) to �v = (k1, k2, . . . , km), each one of a
different decision tree. In this way, LCMine selects
the best k splits in first levels and the best split in
lower levels of the decision tree. For example, for k =
{5, 4, 3, 2}, LCMine creates (5∗4∗3∗2) = 120 differ-
ent decision trees, from which patterns are extracted.
LCMine allows obtaining better classification results
than other exhaustive-search-based algorithms.

Later, in the same year (2010), an algorithm for
mining EPs (CEPM), which improves LCMine, was
proposed by [67]. CEPM induces several decision
trees, similar to LCMine, but the measure used for
evaluating splitting criteria (Information Gain pro-
posed by [157]) is weighted taking into account each
object of the training dataset. In other words, CEPM
uses a boosting approach for weighing the objects
after each tree induction. The authors of [67] pro-
posed to extract emerging patterns when the candidate
splits are generated if a condition is met. The condi-
tion claims that a pattern can be extracted from any
candidate split that generates nodes with at least μ

objects in one class and at most one object in the
remaining classes. After that, the best k splits are
expanded, updating object weights after each induc-
tion. CEPM extract a collection of high-quality EPs,
which allow attaining better classification than other
popular state-of-the-art classifiers.

During the same year (2010), the algorithm EPRFm
was proposed by [186], which extracts CPs from the
decision trees created with Random Forest [20]. For
inducing decision trees, EPRFm selects a random sub-
set of features at each node in the decision tree as
proposed by [20]. Then, the best feature of the selected
subset is used to build the node. The authors showed
that EPRFm obtains a collection of high-quality pat-
terns, which allows good classification results using a
video database.

After, in 2011, FEPM was introduced [68] as
an algorithm for mining a new kind of pattern,
named Fuzzy Emerging Pattern (FEP). A fuzzy pat-
tern is a pattern containing conjunctions of selectors
[Feature ∈ FuzzySet], where ∈ is the member-
ship of the feature value to FuzzySet. This way, an
object satisfies a given pattern to a certain degree
according to the degree the object feature values

satisfy the item expressed in the pattern. For exam-
ple, [T emperature ∈ hot] ∧ [Humidity ∈ normal]
is a fuzzy pattern describing the weather in a fuzzy
domain. For mining fuzzy patterns, first, this pro-
cedure creates a fuzzification for all features. For
non-numeric features, a collection of singleton fuzzy
sets is created, i.e., for each different value, a fuzzy
set having membership 1 for that value, and 0 for the
remaining values is created. For numeric features, a
traditional fuzzification method is applied. After that,
authors use a fuzzy variant of the ID3 method [155] for
building a set of different fuzzy decision trees, from
where several fuzzy patterns are extracted. Authors
showed in their experiment that fuzzy patterns allow
obtaining better classification results than other popu-
lar state-of-the-art classifiers and SJEP. Nevertheless,
the authors did not compare their proposal against
LCMine. Fuzzy patterns allow describing the output
model in a language closer to experts than those mod-
els described by non-fuzzy patterns; nevertheless, this
approach has been little studied.

In 2015, Delete Best Feature (DBF) for mining
CPs was introduced [70]. DBF removes from the
training samples those features used in the root node
of previously induced trees until no feature remains.
The main idea of DBF is to alleviate the common
problem that very discriminant items are contained
in most of the mined patterns, creating many dupli-
cate patterns. Nevertheless, in those databases with
few features, DBF generates a small set of decision
trees, which sometimes is not enough for extracting
high-quality patterns. Also, in some databases, DBF
produces models that allow obtaining lower classifi-
cation results regarding other popular state-of-the-art
classifiers, like the C4.5 classifier [157].

In the same paper mentioned above, the authors
proposed another algorithm for mining CPs, which
was labeled as Delete Best Property (DBP) [70]. DBP
relaxes the limitation presented in DBF by delet-
ing the whole feature while avoiding the repetition
of a very discriminative item in many resultant pat-
terns. In short, DBP forbids the items appearing in
every root node to appear in remaining induced trees.
The main drawback of DBP is that in databases
with numerical features, it produces a second best
item almost identical to the best one, but with a
slightly different cut point. As a consequence, a col-
lection of similar patterns is obtained by using this
procedure.
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For solving the drawback presented by DBF and
DBP, the authors of [70] proposed a new algorithm
for mining CPs which the authors named as Delete
Best Property by Level (DBPL). The idea is similar
to DBP, but it forbids a given item to appear in the
future trees only in the tree level that it appeared in
the previously generated trees. In this way, an item
is forbidden at a level only if it has been previously
forbidden at the child level, avoiding items in child
nodes to be forbidden too fast. DBPL allows improv-
ing the results obtained by using DBF and DBP,
but it does not improve other proposals of the same
authors.

In 2015, the authors of [70] proposed RFm, an algo-
rithm similar to the one proposed by [186] for mining
EPs using the Random Forest algorithm proposed by
[20]. The main difference is that RFm selects a ran-
dom subset of features with size log2 |Features| at
each node in the decision tree. Then, the best fea-
ture of the selected subset is used to build the node.
Although in the original papers, proposed by [20] and
[186], each forest is built based on a bagged version
of the training set, the authors of [70] did not con-
sider this procedure for avoiding hidden dependencies
in their result. In [70], RFm obtained a collection of
high-quality patterns, which allows better classifica-
tion results than those patterns obtained by DBF, DBP,
and DBPL. Nevertheless, RFm was not compared with
EPRFm.

Another proposal of [70] is to use the decision tree-
based bagging algorithm (Bagging) [19] for extracting
CPs. This procedure creates diversity by building each
decision tree with a bootstrap replicate of the training
set. Bootstrap replicates are built by randomly sam-
pling the training set with replacement, usually the
66.6% of the training dataset until an equal number of
instances as the training set is obtained. Based on this
procedure, the extracted CPs allow one to obtain bet-
ter classification results than DBF, DBP, and DBPL.
However, it does not improve the results obtained by
using RFm.

Furthermore, the authors of [70] proposed to use
the Random Subspaces algorithm [12] for extracting
CPs. This procedure is similar to Random Forest, but it
selects a random feature subset to build each decision
tree. Authors claim that for extracting CPs using this
procedure, the best size for the feature subset should
be |Features|

2 . This procedure for mining CPs allows
obtaining better classification results than DBF, DBP,

and DBPL but it did not improve the results attained
by Bagging and RFm.

The last proposal of [70] is to extract CPs from
Random Split, a procedure for building decision trees
proposed by [43]. Random Split is similar to other pro-
posal mentioned above, but it selects one of the best
20 candidates splits at each node of the decision tree.
This proposal for extracting CPs allows obtaining bet-
ter classification results than DBF, DBP, and DBPL
but it did not improve the results attained by Random
Subspaces, Bagging, and RFm.

In 2016, SMOTE-TL+LCMine was proposed [124]
as an algorithm for mining CPs in class imbal-
ance problems. The authors conducted an in-depth
study of the impact of resampling methods for cp-
based classifiers in imbalanced databases. From this
study, the authors proposed to use the resampling
method SMOTE-TL, at the data level, before apply-
ing LCMine for extracting CPs. The authors showed
in their experiments that LCMine is affected by imbal-
anced databases. Also, the authors showed how not
all resampling methods allow improving the results of
LCMine when they are applied before extracting CPs.

In 2017, Hellinger Random Forest (HRFm) was
introduced [127] as an algorithm for mining contrast
pattern in class imbalance problems. The authors pro-
posed to modify the RFm [70] for building decision
trees using the Hellinger distance [37] as the measure
for evaluating splitting criteria instead of the tradi-
tional Information Gain measure [157]. The authors
claim that the Hellinger distance is unaffected by the
class imbalance problem because it rewards those can-
didate splits that maximize the TPR (True Positive
Rate) while minimizing the FPR (False Positive Rate).
Authors argued that using this proposal, CPs of the
minority class do not become overwhelmed by CPs
from the majority class. HRFm extracts contrast pat-
tern that allows attaining better classification results
than several popular state-of-the-art classifiers, based
and not based on patterns, which are designed for class
imbalance problems. The main drawback of HRFm is
that only work with two-class problems due to the lim-
itation of the selected version of Hellinger distance,
which only evaluates candidate splits for two-class
problems.

In 2017, EvAEP, an evolutionary fuzzy system
for mining EPs was proposed by [75]. EvAEP
relies on the hybridization between a fuzzy sys-
tem and a learning process based on evolutionary
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computation. EvAEP uses an evolutionary algorithm
with a codification “chromosome = Rule” where only
the antecedent part of the rule is represented for
obtaining items similar to those formed by patterns.
For numerical features, EvAEP uses a fuzzy represen-
tation with fuzzy sets composed by linguistic labels
defined with uniform triangle forms. EvAEP relies on
a mono-objective approach with an iterative rule learn-
ing, obtaining for each class the best individuals in
an iterative process. In this way, EvAEP extracts EPs
until a non-emerging pattern is obtained. EvAEP stops
if all objects for the class are covered by the patterns
extracted previously or a pattern with null support
is obtained. The main drawback of EvAEP is that
it is well-known that evolutionary-based approaches
present a high computational complexity [145].

In 2017, the authors of [74] proposed EvAEFP-
Spark, which is a modification of EvAEFP for work-
ing with big data problems. EvAEFP-Spark only
uses the MapReduce paradigm [41] for alleviating
the computational complexity presented by EvAEFP.
EvAEFP-Spark uses the advantage of the MapReduce
approach where the population on a given genera-
tion is sent to the partitions, and for each individual,
a partial confusion matrix is calculated. After that,
EvAEFP-Spark summarizes all individual’s confusion
matrices to get the final confusion matrix. Although
the results obtained by EvAEFP-Spark improves those
obtained by EvAEFP for big data problems, this pro-
posal seems straightforward.

In 2018, MOEA-EFEP, a multi-objective evolu-
tionary algorithm for extracting fuzzy emerging pat-
terns was proposed [72]. MOEA-EFEP uses a similar
approach to presented by EvAEFP, where a “chromo-
some=rule” approach including both the antecedent
and consequent of the rule to extract knowledge for
all the classes in a single execution is used. In a sim-
ilar way to EvAEFP, MOEA-EFEP uses fuzzy logic
for the representation of numerical features by means
of linguistic labels. The main differences of MOEA-
EFEP against EvAEFP is that it uses the consequent
of rules for extracting items. Also, MOEA-EFEP uses
three filtering methods to keep only high-quality pat-
terns, minimal EPs, maximal EPs, and EPs with confi-
dence higher than 60% (these filtering methods will be
explained in Section 2.2). The authors showed in their
experiment that MOEA-EFEP improves EvAEFP and
FEPM using many databases. It is important to high-

light that the authors did not comment on how their
proposal converts the fuzzy rule into fuzzy emerging
patterns.

In some practical cases, it is incorrect to evaluate
the classifier by taking into account only the number of
cases which are correctly classified because of the cost
of misclassification for each class is different. This type
of problem is known as cost-sensitive problems where
a cost matrix governs cost-sensitive problems, and as a
consequence, this type of problem cannot be compared
against non-cost-sensitive problems [95]. For example,
in a two-class problem using the cost-sensitive approach,
the classification of a query object is optimal for the
class Ci if and only if the misclassification cost is less
than the misclassification cost of classifying the same
object in the other class C̄i .

Based on this approach, in 2019, an algorithm for
discovering cost-sensitive patterns in class imbalance
problems was introduced by [130]. A Cost-Sensitive
Pattern (CSP) is a type of pattern whose support, in
each class, is multiplied by the corresponding cost in
the class coming from a cost matrix. In this way, a CSP
has a cost associated with each class, and it should be
interpreted as the misclassification cost for each class.
The authors proposed to extract a collection of CSPs
by using a variant of RFm proposed by [70] but using
a new measure for evaluating splitting criteria, which
takes into account the different cost associated to each
problem’s class. In the experiments, the authors have
shown how their proposal allows obtaining lower mis-
classification cost than other well-known classifiers
(based and not based on CPs) combined with Meta-
cost [45]. The main handicap of mining CSPs is that
it relies on a cost matrix, which commonly should be
provided by experts in the application domain.

In some datasets, the classes cannot be easily sep-
arated using CPs with univariate items. Based on this
fact, recently, [27] proposed an algorithm for min-
ing multivariate CPs based on multivariate decision
trees. A Multivariate Contrast Pattern (MCP) is a pat-
tern represented by conjunctions of items, where items
can be either univariate items (stated in Section 1)
or multivariate items. A multivariate item allows lin-
ear combinations of numerical features of the form∑

wifi ≤ vj or
∑

wifi > vj , where wi ∈ �, ∀i ∈
{1, ..., k}. For mining MCPs, the authors modified the
HRFm algorithm proposed by [127] for working with
multi-class problems and for inducing multivariate
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decision trees using oblique splits [85], which refers
the oblique hyperplane used, or multivariate splits [22]
coming from the use of multiple features in the split. In
this way, their proposal extracts a collection of MCPs
that allows obtaining better classification results than
HRFm and other popular state-of-the-art classifiers
not based on patterns. Nevertheless, the authors did
not show any comparison with the proposal of [70] for
mining fuzzy CPs, which seems to be a suitable com-
parison because both approaches can generate patterns
containing not traditional items.

From our review of the algorithms for mining CPs
based on decision trees, we see that those proposals
based on decision trees extract a small collection of
high-quality CPs that allows obtaining better classi-
fication results than those obtained with exhaustive-
search-based algorithms. We also notice that those
CP mining algorithms based on resampling methods,
as well as boosting and bagging algorithms, modify
the original dataset; as a result, the extracted patterns
could be fictitious or they may not cover any object
of the original dataset. Consequently, these patterns
could not be useful for explaining the results in terms
of the original problem’s classes.

Furthermore, from this section, we can see that the
algorithms for mining fuzzy CPs and mining MCPs
provide a different way for solving the limitation
of the traditional form for inducing decision trees,
which only builds splits involving a single feature.
Consequently, an interesting window to explore is

to develop algorithms for mining fuzzy multivariate
patterns.

Finally, in Fig. 2, we show the relationships among
the types of patterns most used throughout our review,
which were stated in this section. Note that for a
dataset, a set of patterns can be extracted from which
only a subset is considered CPs. From CPs, a set of
minimal and maximal CPs are identified, and after
that, there exist different types of CPs such as FEPs,
MCPs, and CSPs.

2.2 Filtering Contrast Patterns

Commonly, algorithms for mining CPs extract a large
set of patterns from a training dataset. Therefore, an
important task is to select those patterns with high dis-
criminative ability for supervised classification [56,
57, 69, 70, 121, 124, 127, 187]. To carry out this task,
many patterns filtering algorithms have been proposed
on in the literature. Based on our review, we split this
section into two: Section 2.2.1 algorithms based on set
theory and Section 2.2.2 algorithms based on quality
measures for patterns.

2.2.1 Based on set theory

Many authors [56, 57, 69, 187] propose to eliminate
duplicate and specific patterns, as well as removing
redundant items from patterns, to obtain a collection
of patterns having a high discriminative ability.

Fig. 2 A graph for
representing the
relationships among
different types of patterns
and their coverage for a set
of hypothetical data
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A basic strategy for obtaining patterns having fewer
items is to remove redundant items. The main idea is
to compare items for finding generalizations of them
and, as a result, obtaining short patters. An item I1

is more general than another item I2 if all objects
fulfilling I1 also fulfill I2, but not all objects fulfilling
I2 fulfill I1; in other words, I2 is redundant with I1.
If two items in a pattern are redundant, the most gen-
eral item is eliminated. An example of a pattern having
redundant items is: [Age > 37] ∧ [Age > 40], which
is simplified to [Age > 40]; since persons older than
40 are also older than 37.

Another filtering strategy is to remove duplicate
patterns. Since patterns are extracted from several
decision trees by using the same training dataset or
using resampling approaches, many patterns contain-
ing the same items and covering the same objects
(a.k.a duplicate patterns) can be extracted. In order
to reduce the size of the outcome, only one pattern is
selected from those containing the same items while
covering the same objects.

A strategy widely used is to remove specific pat-
terns (a.k.a removing maximal patterns). A maximal
pattern is a pattern whose super-patterns are no longer
CPs. Usually, maximal patterns contain several items,
as a consequence, they are very specific and cover
only a few objects. Let P1 and P2 two patterns from
the same class, P1 is more specific than P2 if P1 con-
tains all the items in P2 and at least one more. For
example, let P1 = [Age ≤ 37] ∧ [Color = White] ∧
[Cuban = T rue] and P2 = [Age ≤ 37] ∧ [Color =
White] be two patterns from the same class. Since all
the items belonging to P2 also belong to P1 but P1 has
one more item, then P1 is more specific. Therefore, as
P1 is more specific than P2 and, both are patterns from
the same class, then P1 should be removed.

An alternative for removing specific multivariate
CPs was proposed by [27], which generalizes the uni-
variate item relations to multivariate items. Let be I1

and I2 two multivariate items containing the same
relational operator (≤ or >), and the same features
having non-zero coefficients (wi �= 0). Then, a ratio
(r) between the corresponding feature coefficients of
I1 and I2 is computed, and if the difference is less
than an acceptable error ε, then I2 is multiplied by the
ratio r and after, the same filtering strategy mentioned
before for univariate items is applied.

The aforementioned strategy for removing specific
patterns was used by [56] with the aim of obtaining

a collection of minimal patterns. A minimal pattern
is defined as a CP whose sub-patterns are not CP
anymore. This type of patterns is the most general
cp. Minimal patterns are interesting for describing a
model because generally they contain a low number of
items and higher support [56, 57, 69, 187].

It is important to highlight that the algorithms men-
tioned above are the basis for building other filtering
algorithms based on set theory [56, 57]. For exam-
ple, Essential Jumping Emerging Patterns (EJEPs)
or Strong Jumping Emerging Patterns (SJEPs) are
obtained by the intersection of the a set of minimal
EPs and the set of JEPs [57].

The computation cost for all the filtering algorithms
mentioned above is the following: O(n) for remov-
ing redundant items and O(n2) for the remaining
strategies, where n is the number of CPs.

2.2.2 Based on quality measures

Many pattern filtering algorithms are based on a qual-
ity measure for patterns. A Quality Measure (QM)
assigns a higher value to a pattern when it better dis-
criminates objects of a class from objects of other
classes [10, 65, 121, 123]. Consequently, a QM allows
generating a pattern ranking based on the discrimi-
native power of the patterns, which can be used for
selecting the best patterns for a pattern-based classi-
fier [65, 90, 121, 123, 144]. We can say that a quality
measure Q1 has better behavior than another quality
measure Q2 if, at the classification stage, the patterns
selected from the ranking induced by Q1 provide bet-
ter classification result than those coming from the
ranking induced by Q2.

Based on previous studies [66, 76, 77, 123, 136],
quality measures for patterns can be categorized into
two groups:

Objective: They are based on probabilities and
statistics. The aim is to evaluate the ability of a
pattern for discriminating objects in a class from
objects in other classes [136, 137].

Subjective: They are based on a subjective criterion
issued by an expert in the application domain [111,
147].

Objective measures are the most used in algorithms
for filtering CPs because they do not take into account
neither the context of the application domain nor the
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goals and background knowledge of experts [66, 77,
123]. Then, since subjective measures are based on a
specific criterion issued by an expert in the applica-
tion domain, which is not available in any repository,
it is very complicated to develop pattern filtering
methods based on subjective measures. As a conse-
quence, as far as we know, there are no pattern filtering
algorithms based on subjective measures.

An objective quality measure can be defined as a
function q(p, Ci, C̄i) → R, which assigns a higher
value to a pattern p when it better discriminates
objects in a class Ci from objects in the remaining
problem classes C̄i (The classes form a partition of the
universe D = Ci ∪ C̄i , Ci ∩ C̄i = ∅) [66, 123].

There are several studies [65, 66, 121, 123] about
the effect of QMs for CPs in both balanced and imbal-
anced problems. In these studies, the authors evaluated
the behavior of more than 50 QMs and two pattern fil-
tering algorithms (k best and covering) based on these
QMs.

The first algorithm selects the k-best patterns by
class from the ranking produced by applying a given
QM. [65] proposed to select a percentage of all
extracted pattern instead of using a fixed number
because the number of extracted patterns varies a lot
from a dataset to the others; as a consequence, select-
ing a fixed number of patterns could provide a small
collection or, on the contrary, a big collection of pat-
terns. [65] claimed that using k = 10%, without taking
into account the class, is suitable for obtaining good
classification results. Nevertheless, [124] showed that
selecting only 10% of CPs could lead to low accuracy
at the classification stage, especially in class imbal-
ance problems. Consequently, [124] proposed to select
k = 10%, k = 50%, and k = 80% by class. The authors
showed that using k = 50% and k = 80% allows better
classification results than using k = 10%.

The second algorithm selects a subset of the best
patterns covering all the objects of the training sam-
ple. In this algorithm, for each object of the training
sample, the best pattern covering the object is selected
(only if this CP is associated with the same class that
the object has, and this CP has not been previously
selected).

Notice that both filtering algorithms have lower
computational costs O(n) than those based on set
theory. The pseudocodes for both pattern selection
methods are shown in Algorithm 4 and Algorithm 5,
respectively.

Algorithm 4: Algorithm for filtering the k
best patterns.
input : P - a set of patterns, q- a quality measure, s-

a parameter indicating selection by class, k-
a number of patterns

output: R- a set of selected patterns

R ← ∅
if s == true then

foreach c ∈ Classes do
PS ← patterns of c sorted using q
Select the k best patterns from PS and add

them to R;
end

end
else

PS ← P sorted using q
R ← Selecting the k best patterns from PS

end
return R

Algorithm 5: Algorithm for filtering patterns
considering their covering.
input : P - a set of patterns, q- a quality measure,

T - a training sample
output: R- a set of selected patterns

PS ← P sorted using q
R ← ∅
foreach o ∈ T do

Search for the first pattern p in PS that covers o
and it is associated with the same class as o

if p /∈ R then
R ← R ∪ {p}

end
end
return R

The main drawback of both methods (k best
and covering) is that they output a collection of
high-quality patterns taking into account the training
dataset, but that collection could have low quality for
objects in the testing dataset. Hence, the authors of
[66] proposed to evaluate the quality measures for CPs
by using query objects of the testing dataset. For doing
that, in [66] proposed the following measure:

PQ(p, Ci, C̄i ) = support(p, Ci , C̄i ) + 0.01

(support(p, Ci , C̄i ) + Support(p, C̄i , Ci)) + 0.02

(3)

where p is a pattern, Ci is the positive class, and C̄i the
negative class (i.e., all other classes different to Ci ).

In [66] studied the correlation between the quality
of the CPs extracted from the training dataset and the
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quality of those extracted from the testing dataset. The
main findings of this study were: (i) there are not QMs
having an average correlation higher than 0.52, this is
a small value; (ii) the behavior of a quality measure is
highly dependent on the database; and (iii) most of the
QMs have a very similar average correlation.

In [112] proposed two quality measures for assess-
ing sets of CPs, which are assessing the diversity of
a collection of CPs. The first one (IO) measures the
number of items overlapping among the CPs. For IO,
lower values are more desirable:

IO(PS) = 2

k(k + 1)

|PS|∑

i=1

|PS|∑

j=i+1

ovi(pi, pj ) (4)

where PS is a set of contrast patterns and ovi mea-
sures the number of items shared by pi and pj .

The second proposal of [112] measures the number
of objects covered by the set of CPs. For that measure,
lower values are more desirable:

DO(PS) = 2

k(k + 1)

|PS|∑

i=1

|PS|∑

j=i+1

ovo(pi, pj ) (5)

where PS is a set of contrast patterns and ovo mea-
sures the number of objects covered by pi that are also
covered by pj .

The measure IO was developed for CPs extracted
by using an initial discretization of the numeric fea-
tures, which have items of the form [fi = vj ]. Hence,
IO is not suitable for CPs extracted from decision
trees because they do not use an initial discretiza-
tion of the numeric features; and consequently, they
contain relational operator different to =, which are
not straightforward for comparing. For example, it is
not straightforward to decide that two patterns p1 =
[air pressure < 22.5] and p2 = [air pressure <

22.4] are sharing the same item. Although the differ-
ence between their values is very small, it is highly
dependent on the nature of the problem from the CPs
were extracted.

From our review and several early studies [65, 66,
121, 123], we can conclude that there is no consen-
sus about which is the best pattern filtering method
between k-best and covering. Also, we can conclude
that Jaccard [174] is the best QM for ranking patterns
for supervised classification in class imbalance prob-
lems. On the other hand, Lift [77] is the best QM for

ranking patterns for supervised classification in bal-
anced problems. Some authors [123] claim that QMs
can be evaluated in isolation or combined with other
measures by comparing their values with an estimated
quality of CPs. Although, some authors [66] claim that
combining two QMs can lead to better results than
using their components and any other single QM.

From the related works in this section, we can con-
clude that pattern filtering algorithms have proven to
reduce the number of patterns from the original col-
lection, helping to obtain an understandable model.
Nevertheless, the number of patterns selected by using
these algorithms is not small enough (e.g., 10 patterns)
to be both simple to understand and highly accurate
for classification.

2.3 Supervised Classifiers Based on Contrast Patterns

After mining and filtering CPs, the next stage is clas-
sification. Algorithms for classification based on CPs
are responsible for searching the best strategy for com-
bining the information provided by a collection of
CPs and so building accurate models based on CPs.
Usually, the computational cost for pattern-based clas-
sifiers is O(n), where n is the number of CPs covering
a query object. Algorithm 6 shows a general scheme
of supervised classification based on CPs; where, from
now and on, we will call scoring function to the σ

function and, votes integration, to the φ function.

Algorithm 6: General scheme of supervised
classification based on CPs.
input : PS- a set of CPs, C- a set of classes, o- a

query object, σ - a scoring function, φ - a
function for integrating the votes per class.

output: Ci - a class belonging to C.

foreach Ci ∈ C do
R[c] = σ(o, PS,Ci , C), where σ is a function

such as
∑

p ∈PS,
p covers o

support (p,Ci , C̄i);

end

Ci = φ(R,C), where φ is a function such as
argmax

Ci∈C

(R[Ci]);

return Ci

One of the first algorithms proposed for classi-
fication is based on a scoring function known as
Classification by Aggregating. This function was
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adopted by many cp-based classifiers, such as KORA-
3 [17], KORA-� [184], EPRFm [186], LCMine [71],
CEMP [67], and CAEP (Classification by Aggre-
gating Emerging Patterns) proposed by [52]. This
function uses the support quality measure [2, 49] for
classifying a query object into the class having the
highest sum of support. This sum is computed using
all patterns covering the object to be classified. Let p

be a pattern, and D be a dataset; then, the support of
p is the fraction resulting from dividing the number
of objects in D described by p by the total number
of objects in D [49]. The mathematical form of this
function appears in (6).

σ(o, PS, Ci, C) =
∑

p ∈ PS,
p covers o

support (p, Ci , C̄i) (6)

where support (p, Ci , C̄i) is the support in the class
Ci of the CP p covering the query object o, and PS is
the set of CPs for all the classes in C.

The main drawback of using a scoring function
based only on the support for classification is that
the support is a QM affected by the class imbalance
problem [124]. As a consequence, classifiers based
solely on support could bias their classification results
toward the majority class.

In 2000, the authors of [201] proposed Information-
Based Classification by Aggregating Emerging Pat-
terns (iCAEP), a classification strategy based on
EPs for dealing with large-volume high-dimensional
datasets. iCAEP relies on two QMs for patterns to
classify a query object using a collection of high-
quality patterns. To do this, first, EPs are ranked in
descending order according to their number of items
(Length stated in [33]). For patterns having the same
number of items, the Growth Rate [49] is used as a
second ordering criterion. Then, for each class, iCAEP
iteratively selects (according to the ranking) patterns,
until all the features of the dataset appear in at least
one item of the selected patterns. Finally, according to
each subset of EPs, the query object is classified into
the class having the highest sum of supports.

In 2003, the authors of [57] proposed BCEP, a clas-
sifier based on EPs and the Bayes theorem. A scoring
function based on Bayes theorem assigns a class Ci to
a query object o if it maximises (7):

P(Ci |o) = P(o, Ci)

P (o)
= P(Ci)P (o|Ci)

P (o)
(7)

where P(a|b) denotes the conditional probability of
a given b and probabilities are estimated from the
training dataset.

Since it is very difficult in practice to calculate
the probability P(o, Ci), some approximations can
be used. In this way, BCEP incorporates the use of
a set of emerging patterns EP to derive a product
approximation of P(o, Ci) using the chain rule of
probability:

P(ep1, ep2 . . . , epn = P(ep1)P (ep2|ep1) . . . P (epn|ep1, . . . , epn−1)

where epi ∈ EP . Using this scoring function based
on Bayes theorem, the authors showed that BCEP
improves the results of the classification obtained by
CAEP.

In 2006, a one-class classifier based on length
statistics of EPs (OCLEP) was proposed [33]. In this
type of classifiers, an object can be classified as outlier
(masquerader) or normal. To classify an object o, first,
OCLEP applies the function BoderDiff (o, T ), as we
stated in Section 2.1.1, to get a set P of minimal JEPs
for o against T . If the dataset D is small, then T =
D and avgLen(o) = avgLen(BorderDiff (o, D)).
Otherwise, they proposed to use 20 random sam-
ples (T1, . . . , T20) of D, and then avgLen(o) =
i=20∑

i=1

avgLen(BorderDiff(o,Ti))/20; where, given a non-

empty set P of patterns, let the average length be:

avgLen(o) =
∑

i |Pi| ∗ i
∑

i |Pi | (8)

where |Pi | is the count of EPs with length i covering
the query object o. Notice that the length of a pattern
is computed as the number of items contained in that
pattern.

After that, a cut-off threshold should be computed.
Let a and b be the minimum and maximum of the aver-
age lengths. Then, any number x satisfying a ≤ x ≤ b

can be used as a cut-off threshold during the classifi-
cation stage. Finally, if avgLen(o) < x then, OCLEP
classifies o as an outlier (masquerader); otherwise, o is
classified into the normal class, which is the only class
used in the training stage. Notice that a cut-off close to
a will lead to a low false positive rate while a cut-off
close to b will lead to a high false positive rate. As a
consequence, the authors recommend selecting a cut-
off point close to a. The main drawback of OCLEP is
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the number of input values for classifying an object.
The authors recommended using specific values in
their experiment, but the classification results are not
consistent when the input values are changed. Also,
OCLEP does not improve significantly the classi-
fication results obtained by ocSVM [165]. Another
handicap of OCLEP is its computational time at the
classification stage. Since for classifying each query
object, OCLEP needs to extract EPs that differenti-
ate that query object from objects previously classified
into the normal class [51].

Later, in 2006, the authors of [55] proposed to
use the bagging approach using EP-based classifiers.
For doing that, the authors proposed a scoring func-
tion favoring the support instead the growth rate for a
subset of EPs. This function is defined as:

σ(o, PS, Ci, C) =
∑

p ∈ PS,
p covers o

support(p, Ci , C̄i )

support(p, Ci, C̄i ) + support(p, C̄i , Ci )

(9)

where o is a query object, PS is a set of EPs, Ci is the
positive class and C̄i the negative class (or the comple-
ment of Ci ). In short, this scoring function computes,
for a set of EPs, the impact of classifying a query object
o by using the EP’s support in class Ci divided by the
support across all classes in C. The authors showed
that their proposal, using (9) jointly to ensembles of
EP-based classifiers, improves CAEP and other popular
state-of-the-art classifiers not based on EPs.

In 2011, a Fuzzy Emerging Pattern-based Classifier
(FEPC) was introduced [68]. The authors modified
the quality measure support for making it suitable for
fuzzy problems. In this way, an object supports every
fuzzy pattern to some degree according to its mem-
bership to the fuzzy items of the pattern. Then, the
individual fuzzy support of an object o for a given
fuzzy pattern F is defined as the minimum member-
ship (μ) of all its feature values in their respective
fuzzy sets:

f sup(o, F ) = min
f ∈ F

{μf (o)}. (10)

Then, the support of a fuzzy pattern F in a class
Ci is the sum of the individual fuzzy support for all
objects in Ci :

FSup(F, Ci) =
∑

o ∈Ci

f sup(o, F ). (11)

Based on (10) and (11), the authors defined a Fuzzy
Emerging Pattern (FEP) as a fuzzy pattern F with
T rust (F ) > 0.5:

T rust (F ) = maxCi FSup(F, Ci)
∑

Ci
FSup(F, Ci)

. (12)

Finally, for classification, the authors proposed a
graph structure where all patterns are organized into
a graph. Each extracted FEP is represented as a node
and there exists a arch from node P1 to node P2 if
the pattern contained in P1 is more specific than the
pattern contained in P2. Similar to the classification
strategy proposed in CAEP, FEPC assigns to a query
object o the class with the highest total vote. For com-
puting the votes per class of the query object o, FEPC
evaluates the patterns with no ancestors. If an eval-
uated pattern matches o (with fuzzy support above a
certain threshold) the vote to its class is increased with
its T rust , while all its descendants are discarded. Oth-
erwise, all immediate descendants are evaluated in the
same way. The process ends when every node has been
evaluated or discarded.

Usually, algorithms for mining patterns in class
imbalance problems extract several patterns having
high support for the majority class and only a few
emerging patterns, having low support, for the minor-
ity class [116–118, 124, 127]. This makes that some
pattern-based classifiers, which are based only on the
sum of supports, such as LCMine, CAEP, Apriori,
and iCAEP, become biased toward the majority class
[127]. For solving this problem, at the classification
stage, in [127] proposed PBC4cip. PBC4cip weights
the sum of supports in each class taking into account
the imbalance of the classes in the training dataset.
The main idea is that, at the classification stage, those
patterns having low support for the minority class
do not become overwhelmed by those patterns hav-
ing high support for the majority class. In this way,
PBC4cip weights the sum of support for those pat-
terns covering an object to be classified, by value wc

that takes into account the patterns in the class, their
support, and the class imbalance, according to the
following expression:

wCi =
(

1 − |Ci |
|D|

)

/
∑

p ∈ PCi

support (p, Ci , C̄i) (13)
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where |Ci | represents the number of objects belonging
to the class Ci , |D| is the number of objects in the
training dataset, PCi is the set of EPs mined for the
class Ci , and support (p, Ci , C̄i ) is the support of the
pattern p into the class Ci .

Notice, that the term (1 − |Ci |/|D|), proposed by
PBC4cip, allows rewarding the sum of supports com-
puted for the minority class, which usually is low,
since the smaller the value of |Ci |, the higher the
value of this term. On the contrary, this term punishes
the sum of supports computed for the majority class,
which usually is high, since the higher the value of
|Ci |, the lower the value of this term. Additionally, the
term

∑
p ∈ PCi

support (p, Ci , C̄i) is used for normal-
izing the sum of supports in each class regarding the
support of all patterns of the same class. In this way,
the weight, defined by PBC4cip, aims to overcome the
bias of the classifier to the majority class, by assigning
a higher weight for the minority class.

In 2018, OCLEP+ was proposed [51] as an exten-
sion of the OCLEP. The main difference is how
OCLEP+ uses the lengths of EPs and how the length
is computed. OCLEP+ is based on the minimal length
of JEPs instead of using the average length of JEPs.
The authors claim that the EPs differentiating objects
of different classes are often short, whereas the EPs
differentiating objects of a common class are often
long. As a consequence, the authors proposed to use
minimal length of JEPs during the classification stage.
In their experimental results using a few databases,
the authors showed that OCLEP+ improves OCLEP
and ocSVM using different kernels. The main draw-
back of OCLEP+ is the tuning-up of the input values
because they have an impact on the classification
results. The authors showed how some input values
could improve the classification results from 59.65 to
80.61 of accuracy.

Recently, in 2019, a modification of CAEP for class
imbalance problems by using Cost-Sensitive Patterns
(CSPs) was proposed by [130]. CACSP computes the
sum of cost per class of all patterns covering a query
object, and then, that class where the misclassification
cost reaches the minimum cost will be the class of the
query object. In case of ties, the classifier assigns the
minority class to the query object. The authors decided
to assign the minority class to the query object in the
case of ties because those objects belonging to the
minority class have higher misclassification cost. The
scoring function used in CACSP is defined as:

σ(o, PS,Ci , C) =
∑

p ∈PS,
p covers o

support (p,Ci , C̄i) ∗ m(Ci)

(14)

where support (p, Ci , C̄i) is the support in the class
Ci of the CP p covering the query object o, PS is
the set of CPs for all the classes, and m(Ci) is the
misclassification cost associated to the class Ci .

In 2019, the authors showed that their proposal
obtains lower misclassification cost [45] than two
other well-known classifiers based on CPs and ten
popular classifiers not based on CPs using 95 imbal-
anced datasets and five cost matrices.

From all papers reviewed in this section, we can
conclude that there are many proposals for the super-
vised classification based on CPs (see Table 2). How-
ever, several of these proposals used a scoring function
for combining the information provided by a collec-
tion of patterns; as a consequence, some problems,
like the class imbalance problem, can negatively affect
the classification results of these proposals based on
scoring functions. On the other hand, classification
based on fuzzy patterns seems to be promising for
obtaining good classification results, but it has been
little studied.

The OCLEP classifier has shown good classifica-
tion results in a few databases. The main drawback
is that OCLEP relies on the length quality mea-
sure and, in some context, the patterns mined from
exhaustive-search-based algorithms have many more
items than those patterns coming from decision tree-
based algorithms. However, OCLEP has only been
tested using patterns mined from exhaustive-search-
based algorithms; then its classification results could
change when using patterns mined from other mining
algorithms, which do not use an initial discretization.

Furthermore, it is important to highlight that the
classification stage needs a collection of high-quality
patterns for obtaining good classification results, but
usually, it does not happen because the before stages
(mining and filtering) cannot provide this collection of
high-quality patterns.

From all reviewed paper in Section 2, we have col-
lected their titles and abstracts to generate a word
cloud to capture the most studied topics. To build the
word cloud presented in Fig. 3, we first removed the
stop words most commonly used in the English lan-
guage such as “the”, “of”, and “and”; then we have
lemmatized each word. The size of each word into
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Fig. 3 Word cloud
generated using the title and
abstract from all reviewed
papers

the word cloud is proportional to its frequency of
occurrence in all the papers involved in this study.

From Fig. 3, we can see that several papers con-
tinue using the specific terms of each field, such as
itemsets, frequent, and association rules instead of the
contrast pattern term proposed by [46] for clustering
these terms. On the other hand, from this image, we
can see that there are more papers related to the min-
ing stage than the classification and filtering stages.
Furthermore, we can notice that there are more papers
talking about mining frequent itemsets and associa-
tion rules than mining fuzzy patterns. In the same vein,
there are more papers proposing mining algorithms
than those introducing filtering and classification
algorithms.

Finally, in order to provide a useful and summa-
rized information, we provide in the next section a tax-
onomy according to all reviewed papers of supervised
classification based on CPs.

2.4 Taxonomy

In the reviewed papers, we identified common strate-
gies that allow grouping the algorithms into different
taxonomies. A taxonomy is a compact way of sum-
marizing the similarities and differences among many
algorithms. The taxonomies that we propose include
the following:

T1 Mining strategy:

(a) Exhaustive search: The algorithms in this
category work only with discrete features.
They iterate over many combinations of fea-
ture values trying to improve some quality
measure. An advantage of these algorithms
is that they can extract patterns in problems
without classes which is useful for explain-
ing data in unsupervised problems.

(b) Decision trees: These algorithms mine pat-
terns from decision trees which are built
trying to maximize the separability among
the classes. When the classes cannot be
separated easily using linear combinations
of features, the algorithms in this cate-
gory extract many low-quality patterns. An
advantage of these algorithms is that they
usually extract fewer patterns than those
found using the exhaustive-search-based
algorithms; besides, they do not require dis-
cretizing the numerical features.

T2 Type of pattern:

(a) Contrast Pattern: A contrast pattern is a pat-
tern that supports significantly more objects
in one class than in any other class. The
most crucial advantage of contrast pat-
terns is that they achieve high accuracy of



A Review of Supervised Classification based on Contrast Patterns: Applications, Trends, and Challenges

classification while providing an easy-to-
understand classification model. A limita-
tion of these patterns is that the quality and
amount of patterns extracted highly depends
on the way that we measure the “significant”
differences of support.

(b) Chi-Emerging Pattern: A contrast pattern
where the “significant” difference of support
is evaluated by the X2 test [168] which must
be greater than a threshold. There are stud-
ies [65, 66, 76, 77, 121, 123] showing that
there are several quality measures better than
X2 for evaluating the patterns for supervised
classification.

(c) Emerging Pattern: This is a type of contrast
pattern where the “significant” difference of
support is evaluated by the quality measure
Growth Rate which must be greater than
a threshold. There are studies [65, 66, 76,
77, 121, 123] showing that there are several
quality measures better than Growth Rate
for evaluating the patterns for supervised
classification.

(d) Strong Jumping Emerging Pattern: This is
a type of emerging pattern where the num-
ber of objects supported by the pattern in
the classes of low support (considered noisy
objects) should be lower than a predefined
threshold. Computing this threshold is chal-
lenging; besides, there are papers [69, 70]
showing that the classification is better when
using diverse patterns; i.e., patterns toler-
ating both low and high amount of noisy
objects.

(e) Jumping Emerging Pattern: This is a partic-
ular case of strong jumping emerging pat-
tern where the pattern supports objects of
only one class. When the classes are hard-
to-separate, the mining algorithms might
extract jumping emerging patterns with
many items which are hard-to-understand by
users. These long patterns might be too spe-
cific (supports a few objects); hence, overfit-
ting the classifiers.

(f) Jumping Emerging Pattern with Negation:
This is a particular case of jumping emerg-
ing pattern where the patterns contain items
having negated values; i.e., values that do not

appear in any object. The problem with these
patterns is that it is hard to determine which
items to negate and how many patterns must
be negated to achieve high accuracy of clas-
sification.

(g) Essential Jumping Emerging Pattern: A
jumping emerging pattern is considered
essential when its value of Growth Rate
is higher than some threshold. Finding the
correct threshold for each dataset could be
challenging.

(h) Balanced Emerging pattern: This is an
emerging pattern designed to deal with class
imbalance problems. This type of emerg-
ing pattern must be compliant with some
thresholds associated to the imbalanced of
the classes.

(i) Cost-sensitive Pattern: This is a contrast pat-
tern whose support per class is weighted
according to some cost matrix. The accu-
racy of classifying with these patterns highly
depends on the quality of the end user’s cost
matrix.

(j) Fuzzy Emerging Pattern: A fuzzy emerg-
ing pattern supports every object with some
degree of membership to each class of
the problem. An advantage of such a pat-
tern is that it is expressed in a language
closer to the human’s natural language. The
quality of a fuzzy pattern highly depends
on the quality of the features’ fuzzifying
algorithms.

(k) Multivariate Contrast Pattern: This is a con-
trast pattern which items can be either uni-
variate items (stated in Section 1) or multi-
variate items. These patterns allow for better
performance of classification, but they are
more difficult to understand.

T3 Filtering method:

(a) Based on set theory: These algorithms
select a subset of patterns based on opera-
tions among the sets of objects that the pat-
terns cover. These algorithms might be slow
if the amount of objects is large. An advan-
tage of these algorithms is that they return
a subset of patterns having low redundancy
among them.



O. Loyola-González et al.

(b) Based on quality measures: These algo-
rithms rank the patterns according to some
quality measures and then apply a greedy
strategy to select a subset of patterns. These
algorithms are faster than those based on
set theory, but they might return a set
of patterns having high redundancy among
them.

Table 3 classifies the reviewed papers according to
the proposed taxonomies. While in [46] extensively
reviews the algorithms with mining strategies based
on exhaustive search, we reviewed some of those

algorithms which were milestones. Additionally, we
reviewed the algorithms that mine contrast patterns
from decision trees.

From our study, we highlight the following:

– The algorithms that mine patterns from deci-
sion trees are more accurate than those based on
exhaustive search.

– The algorithms based on fuzzy contrast patterns
or multivariate contrast patterns achieve higher
accuracies.

– There is a need for creating more algorithms that
mine contrast patterns from Big Data.

Table 2 Summary of the algorithms based on contrast patterns classified according to five taxonomies

Ref. Mining strategy Type of pattern Filtering method

[17] Exhaustive search Jumping Emerging Pattern –

[184] Exhaustive search Jumping Emerging Pattern –

[49] Exhaustive search Emerging Pattern –

[107] Exhaustive search Minimal Jumping Emerging Pattern –

[11] Exhaustive search Emerging Pattern –

[56] Exhaustive search Essential Jumping Emerging Pattern –

[57] Exhaustive search Essential Jumping Emerging Pattern –

[58] Exhaustive search Chi-Emerging Pattern –

[6] Exhaustive search Balanced Emerging Pattern –

[106] Exhaustive search Emerging Pattern Based on set theory

[7] Exhaustive search Emerging Pattern Based on quality measure

[59] Exhaustive search Strong Jumping Emerging Patterns –

[5] Exhaustive search Emerging Patterns –

[175] Exhaustive search Jumping Emerging Pattern with Negation –

[176] Exhaustive search Jumping Emerging Pattern with Negation Based on quality measure

[97] Exhaustive search Jumping Emerging Pattern –

[115] Exhaustive search Strong Jumping Emerging Pattern –

[4] Exhaustive search Strong Jumping Emerging Pattern –

[35] Exhaustive search Balanced Emerging Pattern –

[71] Decision trees Contrast Patterns Based on set theory

[67] Decision trees Contrast Patterns Based on set theory

[186] Decision trees Contrast Patterns –

[68] Decision trees Fuzzy Emerging Pattern –

[70] Decision trees Contrast Pattern –

[124] Decision trees Contrast Pattern –

[127] Decision trees Contrast Pattern Based on set theory

[75] Exhaustive search Fuzzy Emerging Pattern –

[74] Exhaustive search Fuzzy Emerging Pattern –

[72] Exhaustive search Fuzzy Emerging Pattern Based on quality measure

[130] Decision trees Cost-sensitive Pattern Based on set theory

[27] Decision trees Multivariate Contrast Pattern Based on set theory



A Review of Supervised Classification based on Contrast Patterns: Applications, Trends, and Challenges

2.5 Scientometric Study

Over the years, many journals have been indexed in
databases, and the indexation is determined by well-
defined and quantifiable criteria, such as acceptance
and rejection rates, promptness of publication, and
high frequency of citation by other journals (impact);
among others [153].

Scientometrics is about measuring the progress of
science. It includes quantitative studies of scientific
activities, including publication and so overlaps bib-
liometrics to some extent [87]. Hence, a scientometric
study should be based on reliable databases, like SCO-
PUS2, which index the published papers on different
journals.

As far as we know, there is not any scientomet-
ric study about the classification based on CPs. From
this study, we can determine the impact of the papers
derived from this area for the international research
community. Also, we can identify the top-contributing
institutions and authors, the publications generating
more citations and if they were published in congress
or journal, and the number of generated citations by
paper; among others. From this study, the interna-
tional research community can know, in a summarized
way, relevant information to connect authors, net-
working, and research entities, which are specialized
in cp-based classification.

In our study, data acquisition was designated to
extract information from SCOPUS, a database of peer-
reviewed literature. For this extraction, we use the
Application Programming Interfaces (APIs) provided
by Elsevier Developers3, which allow obtaining up to
6,000 results4 for each query. We have created a query
in SCOPUS for all those papers talking about “Con-
trast Pattern”, “Frequent Item”, “Emerging Pattern”,
or “Association Rule”, and these were published in the
computer science area. For each paper collected using
the query mentioned above, we have extracted several
features such as title, the name of authors, affilia-
tions, number of citations, source of publication, and
keyword indexation; among others.

Figure 4 shows a line graph regarding the num-
ber of published papers in the cp-based classification

2https://www.scopus.com
3http://dev.elsevier.com/sc apis.html
4http://dev.elsevier.com/tecdoc developer faq.html

topic since 1971 to January 2020. From Fig. 4, we
can see how the cp-based classification topic has been
gaining interest in the last years for the international
research community. Also, we can notice that from
1997 this topic began an exponential growth regard-
ing the number of published papers. For the last 10
years, on average, more than 800 papers are published
in both conferences and journals. Furthermore, from
this figure, we can observe that the number the pub-
lished paper during January 2020 is equal to all papers
published in 1997.

Figure 5 shows a donut graph regarding the num-
ber of papers published into the top-10 conferences
and journals for the cp-based classification topic. In
the same vein, Fig. 6 shows a donut graph regarding
the number of published papers, in the cp-based clas-
sification topic, for each type of document indexed by
SCOPUS.

From Figs. 5 and 6, we can observe that most
of the papers appear in Lecture Note in Computer
Science (including Subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
which publishes conference proceedings. Also, from
Fig. 5, we can notice that other specialized journals
such as Expert System With Applications, Informa-
tion Science, and IEEE Transactions On Knowledge
And Data Engineering are into the top-10 journal list
for publishing papers related to contrast pattern-based
classification.

Figure 7 shows a donut graph representing the
percentage of published papers in the cp-based clas-
sification topic regarding the top-10 subjects indexed
by SCOPUS. From Fig. 7, we can see that the
most prominent subjects for publishing papers of CPs
are: Computer Science, Mathematics, and Engineer-
ing, which mainly contains theoretical papers. Also,
we can notice that there are other suitable subjects
to publish those works applying contrast pattern-
based classification in real-world problems, such as
Decision Sciences, Medicine, Physics and Astron-
omy and Materials Science. These results support
our reviewed papers in Section 2.1, Sectiosn 2.2
and 2.3.

An important point is to know the most promi-
nent countries, as well as their affiliated institutions,
publishing works in the cp-based classification topic.
Hence, in Fig. 8, we have created a thermal-world
map for showing the number of published papers per

https://www.scopus.com
http://dev.elsevier.com/sc_apis.html
http://dev.elsevier.com/tecdoc_developer_faq.html
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Fig. 4 Number of published papers in the contrast pattern-based classification topic since January 1971 to January 2020

country. From this figure, we can notice that China,
India, United States, Taiwan, Japan, Australia, and
France (in this order) are the countries generating
more papers about the cp-based classification topic.
Also, from Fig. 9, we can see that the top-10 institu-
tions generating papers in this topic come from China;
although, it is essential to highlight that Universidad
de Granada (Spain) is making significant advances in
the topic, specifically in the association rule area.

Finally, from our scientometric study, we can con-
clude that contrast pattern-based classification is gain-
ing interest in the international research community,
where more than 700 papers, on average, are published
each year from 2007 to 2019. The main subjects where
these papers were published are computer science,
mathematics, and engineering. On the other hand,
the primary source for publishing papers of pattern-
based classification is conference proceeding (62%
of all published papers). Additional, the most promi-
nent countries working in this topic are China, India,
United States, Taiwan, Japan, Australia, and France;
in this order.

An essential component of any research area
is to prove the proposed algorithms in practical
domains, where the applied context requires to
adjust these proposed algorithms for obtaining both
good performance and high accuracy. For that rea-
son, in the next section, we review several papers
applying the cp-based classification on real-world
problems.

3 Applying Contrast Pattern-Based Classification
to Real-World Problems

In this section, we review 36 of the most outstanding
papers applying the cp-based classification to real-
world problems. Papers were ordered chronologically
as follow:

In 2001, a system for detecting changes in con-
sumer habits was proposed [170]. The consuming
habits are represented with association rules and EPs.
The authors proposed a measure to quantify the degree
of change of the patterns and to filter the patterns.
The authors created two proprietary datasets with dis-
cretized features. Apriori mines the patterns which are
not compared with the results of any other algorithm.

After, in 2004, the authors of [50] use EPs to ana-
lyze gene expression profiles for the diagnosis of a
disease state. The authors use the classifier Prediction
by Collective Likelihood (PCL) on a single dataset
and compare only with C4.5, Naive Bayes (NB),
and (SVM). The authors discretize the feature using
an algorithm that they designed specifically for this
dataset. A border-based algorithm extracts the patterns
which are not compared against the results of different
mining algorithms.

In 2009, the authors of [194] use EPs to detect
metamorphic malware. To classify an object, the clas-
sifier aggregates a score based on Support and Growth
Rate of the EPs (with Support higher than 0.04)
covering the object. The authors reported results of
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Fig. 5 Number of papers published in the top-10 conferences
and journals based on the contrast pattern-based classification
topic

a single dataset without comparing it to any other
classifier.

Next, the authors of [163] mine EPs from proteins
to map the original proteins’ structure [140] into a new
representation where the EPs are the new features.
Then, traditional classifiers predict the protein class.
The results show that SVM outperforms C4.5, NB,
and Bayesian Network (BN) when using the features
based on EPs. The authors do not describe the char-
acteristics of the used dataset neither the evaluation
protocol that they use.

After, a classifier based on a tree of EPs for
myocardial ischemia diagnosis is proposed by [152].
The authors mine EPs from a tree that they build
from discretized features. The proposal outperforms
the classifiers C4.5, Classification based on Mul-
tiple Class-Association Rules (CMAR) [109], and

Classification based on Predictive Association Rules
(CPAR) [196] using a proprietary dataset; but no
statistical test corroborates the results.

Later, the authors of [148] mine EPs and use CAEP
for predicting non-safe power lines. The authors create
a dataset which is not publicly available. The results
showed that CAEP outperforms C4.5, SVM, NB, BN,
CMAR, and CPAR; but there is not any statistical test
supporting the results.

In 2010, EPs are used by [152] to describe motifs
of support for Barack Obama in the 2008 presidential
election. This research uses EPs not for classifica-
tion, but for explaining a phenomenon. The authors
filter the patterns with a Growth Rate threshold of 15.
This work is an excellent example of how EPs are
good starting points for data visualization. The authors
create a dataset, with discrete features, which is not
public. There is not any comparison with any other
algorithm for mining CPs.

After, the authors of [204] proposed NRMINER,
an exhaustive-search-based algorithm (see Fig. 2.1.1)
for discovering diagnostic gene CPs from microar-
ray data. The mining algorithm internally filters the
patterns according to their support and confidence.
The authors classify new objects according to the CP
that supports the object and maximizes a proposed
score measure. The authors compare their proposal
only with the algorithm FEAT [64] using three public
dataset, but there is no statistical test supporting the
conclusions.

In 2012, the authors of [108] use EPs and a clas-
sifier named PCL for profiling subtypes of childhood
acute lymphoblastic leukemia patients. The authors
test the proposal in a single public dataset showing that
it outperforms SVM, k-NN, NB, and C4.5. No statis-
tical test corroborates the classifiers differences in this
research.

Next, in [132], the authors compute JEPs for find-
ing genes with high discriminating power in microar-
ray datasets and then they build a classifier based
on the votes of the found genes. There is not any
comparison with any other classifier.

After, in [98], the authors create three subtypes of
JEPs (EPs with occurrence counts, spatial EPs, and
jumping emerging substrings) for classifying multi-
media data. Their classification strategy bases on the
sum of the supports of the minimal patterns by class.
The authors test their proposal in a public dataset
showing that their proposal outperforms C4.5 and
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Fig. 6 Number of
published papers in the
contrast pattern-based
classification topic
regarding the type of
documents

SVM. They do not use any statistical test neither
compare with the most accurate image classifiers:
convolutional neural networks.

Later, the authors of [16] define Frequent Emerging
Molecular Pattern (FEMP) for classifying molecules
as toxic or non-toxic. A FEMP is a pattern from a
two-classes chemical dataset with a frequency and
growth rate higher than some predefined thresholds.
The authors experiment with a public dataset, but there
is not any comparison with other algorithms, and there
is not any statistical test on the results. Similar to EPs,
FEMP are mined from discrete features.

In 2013, the authors of [159] mine fuzzy EPs
for modeling slope units affected or not affected by
landslides. The authors use FISpro tool [80] for clas-
sification based on the fuzzy EPs. An interesting
characteristic of this algorithm is that the authors use

several clustering algorithms and validity indexes to
determine the best partition by feature. The authors
work with a single dataset without comparing with any
classifier or performing any statistical test.

Subsequently, in [167] their authors designed an
algorithm for mining EPs which form hierarchical
clusters of compounds for toxicity predictions. The
authors test their proposal in two public datasets, but
they do not perform the traditional protocols for com-
paring supervised classifiers. The paper has not any
comparison with any other EPs mining algorithm or
supervised classifier. The authors do not perform any
statistical test of the results.

In the same year, the authors of [1] proposed a
rule-based classification approach for phishing detec-
tion. The algorithm works with multi-label rules; this
is similar to the CPs based classification because

Fig. 7 Number of published papers in the contrast pattern-based classification topic regarding the top-10 subjects
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Fig. 8 Thermal-world map for showing the activity by country in the contrast pattern-based classification topic since January 1971 to
December 2019

every CPs may vote for multiple classes. The authors
create new features from a public dataset, but the
new dataset is not public. The experiments, after
discretizing the features, show that the proposal

outperforms C4.5, CBA [110], PART [63], RIP-
PER [38], MCAR [179], MMAC [180]; but
there is not any statistical test supporting the
results.

Fig. 9 Percentage of
published papers in the
contrast pattern-based
classification topic
regarding the top-10
institutions. Collected since
January 1971 to December
2019
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In 2015, the authors of [105] proposed to mine EPs
for profiling users of hotels. The goal of the method is
to generate insights to help tourism managers address
travelers’ concerns. The authors create a dataset that is
not public, so their experiments cannot be replicated.
The research does not include any comparisons with
other EPs mining algorithms, and it does not perform
any statistical test.

After, during the same year (2015), the authors of
[40] use EPs and JEPs for identifying clusters of com-
pounds in datasets about Ames mutagens. The authors
modify a public dataset, but the new dataset is kept
proprietary. Their research does not compare with pre-
vious works neither includes any statistical test of the
results.

In 2016, the authors of [141] use CPs to distin-
guish groups of pieces within a music corpus. The
authors mine different types of patterns on different
datasets without methodological support for this deci-
sion. In the same vein, they compute the p-value of the
patterns for some datasets, and it is not clear the justi-
fication of this decision. There is not any comparison
among the mining strategies, neither any statistical test
comparing different algorithms.

After, in [125], the authors proposed to use CPs
to model failures in Temporary Immersion Bioreac-
tors (TIBs). The authors use the classifier iCAEP
based on CPs to predict the failures in the TIBs.
The authors used eight databases and four classi-
fiers based on patterns in their experimental setup. In
[125] showed that their proposal, using bagging miner
jointly with iCAEP, obtains significantly better classi-
fication results than other tested contrast pattern-based
classifiers.

Next, the authors of [205] mine CPs from struc-
tured and sequential data to analyze taxpayer behavior.
The authors mine the CPs from a tree that they cre-
ate using discrete data that takes into account the
temporal dependencies among objects. The authors
experiment with three proprietary datasets without
comparing with any other classifier. No statistical test
supports the results.

Afterward, in [29], the authors proposed to mine
EPs from gamers of Defense Of The Ancients 2. The
idea is to study the behavior of expert gamers, so the
new ones may reduce the learning curve by follow-
ing the patterns of expert gamers. The authors create a
proprietary dataset, do not compare their results with

other algorithms, and do not perform any statistical
test that corroborates the experimental results.

Subsequently, the authors of [160] use EPs to find
combinations of drugs and medical events that are
associated with the development of myocardial infarc-
tion. The authors create a single proprietary dataset
with custom features where they test only their pro-
posal. No statistical test is used, and no comparison
with previous works is performed.

In 2017, the authors of [31] use CPs to model
changes in network traffic. They introduce patterns’s
quality measures to reflect the interpretability of pat-
terns for security managers. The authors filter the
patterns based on growth rate and class coverage dif-
ferentiation. The authors evaluate their patterns only
based on their respective support and do not perform
any classification experiment. There is no evalua-
tion of other mining algorithms or type of patterns,
and there is no statistical test evaluating the mined
patterns.

In the same year, the authors of [154] mine EPs
to identify sets of metabolite biomarkers that are use-
ful to discriminate diseased from healthy subjects.
The authors use a public dataset which features they
discretize to mine EPs. The research includes a com-
parison with SVM, Random Forest, and a Neural
Network; but no statistical test shows a significant
difference among the classifiers.

After, in 2018, the authors in [173] mine closed
frequent patterns to build features that are the input
of Random Forest for complex activity recognition in
smart homes. The authors test their proposal in a pub-
lic dataset where they compare with Hidden Markov
Models (HMM) [14], BN, NB, SVM, and C4.5; but no
statistical test validates the results.

Next, in [44], the authors proposed a generic
framework for mining frequent itemsets from auto-
generated transactional databases of event logs. Sim-
ilar to the rest of the algorithms than mine frequent
itemsets, this research requires discretizing the fea-
tures. The proposal compares with Episode-mining
[102], α algorithm [183], ImprovedInductive-miner
[103], Declare-miner [131], and Episode-miner [102]
using two public datasets; but perform no statistical
test over the results.

Afterward, the authors of [128] mine CPs from
web navigation logs to train PBC4cip to detect bots.
The authors used LCMine, Bagging, and Random
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Forest miners, three state-of-the-art datasets, and two
datasets collected by themselves. The authors showed
that their proposal for using the Random Forest miner
jointly with the classifiers PBC4cip [127] obtains sig-
nificantly better classification results than ten popular
state-of-the-art classifiers. The authors carried out a
validation of the extracted pattern together with the
experts in the application area.

Next, the authors of [150] mine EPs from
microblog streams. Then, the authors cluster the EPs
to detect emerging topics. The authors create a pro-
prietary dataset where they compare with online-LDA
[100], SFSD [151], and HUPC [89]. No statistical test
validates the results.

Subsequently, in [88], the authors proposed to mine
frequent itemsets to discover meaningful patterns in
alarm floods. The authors propose visualization tech-
niques based on exiting plots to show alarm floods
and alarm patterns. The authors create a proprietary
dataset where no comparison with previous works
appear neither any statistical test of significance of the
results.

Later, in [189] use EPs to describe product sales
trends in dynamic markets. The authors create two
proprietary datasets where they test their proposal
without comparing with any other algorithm. No sta-
tistical test validates the results.

Recently, in [122], the authors proposed to extract
CPs from sentiment features from tweets of political
figures related to the presidential election in Mex-
ico, 2018. The author used the Random Forest miner
for extracting contrast patterns and for generating
diversity, they evaluated each binary candidate split
at each decision tree level using four different mea-
sures (Hellinger distance, Bhattacharyya, information
gain, and Gini index). In [122], all extracted pat-
terns were used for describing the tweets together
to a visual model instead of classification. The
authors did not use any statistical method for val-
idating their results because they used the expert
opinions.

During the same year, the authors of [126] extends
their earlier work [125] showing that the classifier
PBC4cip outperforms other 11 classifiers. The authors
used the eight datasets used in [125] and new datasets.
The main difference is that the proposal of [126] can
extract patterns for identifying six types of failures
instead of two failures detected by [125]. The authors

showed that their proposal obtains significantly
better classification results than other 11 state-of-the-
art classifiers.

After, in [28] proposed a protocol for frequent
items discovery in unstructured P2P networks. The
authors created software, which they made public,
that simulates the necessary data to test their pro-
posal. The authors do not compare with other works
neither perform a statistical test to support their
results.

Next, in [193] extracted rare-unusual association
rules from a stroke medical dataset to provide mean-
ingful knowledge to the user domain. The authors
extract rules from a single dataset, which is propri-
etary. There is not any statistical test evaluating the
significance of the rules against any other mining
algorithm.

Afterward, in [54], their authors proposed to extract
association rules to describe the most common condi-
tions of accidents in France. The authors use Apriori
to mine rules from a dataset that they created and made
public. The proposal is not compared with any other
algorithm, and there is no statistical test corroborating
the results.

Later, the authors of [129] extract CPs from tweets
text to describe the behavior of legitimate and auto-
mated bot accounts. The authors used three different
algorithms for mining contrast patterns by using the
option of filtering. They tested their results in four
datasets describing tweets issued by political fig-
ures. The authors showed that their proposal of using
the Random Forest miner jointly with the classifiers
PBC4cip [127] obtains significantly better classifi-
cation results than ten popular state-of-the-art clas-
sifiers. The main difference of this work with the
proposed by [122] is that [129] proposed a new feature
representation based on the frequency of the issued
tweets.

In summary, CPs-based algorithms are as accu-
rate as traditional classifiers (e.g., SVM, C4.5, k-NN,
NB, BN) but most of the applications test on a single
dataset, which is not public. Most of the works do not
use any statistical test, and they compare with three
or fewer classifiers. The works of Loyola-González
et al. [126, 129] stand out as exception because they
use multiple datasets (some of them are public), they
use statistical tests, and they compare with at least ten
different classifiers.
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4 Trends and Opportunities

In this section, we describe potential research direc-
tions for supervised classification, based on our
reviews in Section 2. First, in Section 4.1, we discuss
a number of existing CP-based approaches, includ-
ing their limitations. Next, in Section 4.2, we identify
under-explored areas and potential approaches that
warrant further exploration.

4.1 Trends

From data of the last decade, we observed that many
different approaches for each stage of CP-based super-
vised classification have been presented. Similarly,
a number of exhaustive-search-based algorithms for
extracting patterns from data streams or imbalanced
databases have also been recently proposed. Although
these proposals solve interesting problems, they con-
tinue to use initial discretization for all numerical
features. As we have previously discussed, there are
several limitations associated with the use of initial
discretization [70, 71, 127]:

– Information loss caused by the limited possibility
of transformed data interpretation.

– Additional and high-computational times for car-
rying out this task.

– Undesirable results, such as the omission of pat-
terns, because the values of other features could
hide essential relations in the objects of a class.

– All extracted patterns only have items of the form
[fi = vj ] and do not take into account other rela-
tional operators, subtracting discriminative power
from patterns.

– The features containing missing values cannot be
effectively handled; consequently, the extracted
patterns may not be representative of the problem.

We also noted that there have been attempts to
design approaches for extracting CPs from decision
trees. Such approaches remove the need for initial
discretization, and hence reduce the search space
of potential patterns significantly. In addition, such
approaches can also handle missing values, and gen-
erate a small collection of high-quality patterns. It
has also been shown in the literature that patterns
extracted from decision trees can help achieve bet-
ter classification results than those extracted from
exhaustive-search-based algorithms [70, 71, 127].

At the data level, other trending approaches, such as
bagging and resampling methods, have been used for
extracting CPs. The main idea is to use the advantages
of these approaches for dealing with noisy objects
and imbalanced databases before (or during) the min-
ing stage. Researchers [5, 70, 124] have shown that
applying these approaches allow one to obtain CPs
that improve the classification results. However, these
approaches could promote the extraction of patterns
which are not representative of the problem. For exam-
ple, if a CP is extracted using only a subset of the
training dataset, then the particular CP is only rep-
resentative for the particular subset and not of the
original training dataset. Even more, a CP could stop
being a CP to be only a pattern because of the sup-
port of that CP could significantly change when it is
updated by using the original training dataset.

For the filtering stage, we observed that approaches
based on set theory are essential in this stage, due
to their ability in obtaining a subset of high-quality
patterns (like the subset of minimal patterns). This
allows one to obtain good classification results. How-
ever, in some contexts, these approaches may obtain
a subset of patterns that do not cover all objects
of the training dataset. Consequently, classification
results may degrade. On the other hand, pattern filter-
ing approaches based on QMs can obtain a collection
of high-quality patterns, which covers all objects of
the training dataset (e.g., the covering algorithm).
However, filtering approaches based on QMs cannot
guarantee that a QM for ranking CPs obtains the same
behavior for two different problems; hence, selecting a
QM as the best one for ranking patterns in any context
would produce undesired results.

Filtering algorithms allow having a set of CPs with
significantly fewer patterns than using all extracted
patterns, but their main drawback is that the number of
selected patterns is yet impractical to be analyzed by
experts; depending on the database, it ranges from 100
to several thousand of patterns. The fewer patterns,
the more understandable the model. Although usually,
the fewer patterns, the worse classification results. A
possible explanation is that the mining stage cannot
provide a set of high-quality patterns; hence, more pat-
terns are necessary for obtaining good classification
results.

Finally, at the classification stage, we have
observed that several pattern-based classifiers are
using a scoring function for integrating the votes



A Review of Supervised Classification based on Contrast Patterns: Applications, Trends, and Challenges

coming from a collection of patterns. As we have
stated in Section 2.3, those classifiers using a scoring
function based on the support can be affected by some
practical problems, for example, the class imbalance
problem [124]. As a consequence, these classifiers
could bias their classification results toward one class
while avoiding the remaining classes

On the one hand, some classifiers introduced a vari-
ant to weight the scoring function, like PBC4cip [127],
BCEP [57], and CACSP [130], to avoid the bias clas-
sification presented by traditional scoring functions.
These variants have shown high classification results
than other proposals. The main idea is that those pat-
terns with low support for one class do not become
overwhelmed by those patterns with high support for
the remaining classes. This is possible by rewarding
the support of the class with fewer patterns while pun-
ishing the support of those patterns belonging to the
remaining classes.

On the other hand, there exist the FEPC classi-
fier [68], which modifies the support with the aim of
making it suitable for fuzzy problems. In this way, an
object supports a fuzzy pattern according to the mem-
bership degree of that object for each item belonging
to that pattern. The FEPC classifier has shown better
classification results than other cp-based classifiers. A
possible explanation is that FEPC takes into account
the relationships among items based on a membership
degree, avoiding the crisp way used by other cp-based
classifiers (which could be very restrictive).

Other pattern-based classifiers showing good clas-
sification results are OCLEP and OCLEP+. These
classifiers rely on the quality measure length (i.e.,
the number of items of a pattern) for building a
one-class classification model. OCLEP and OCLEP+
were tested using only an exhaustive-search-based
algorithm and only a few databases; consequently,
their classification results could change when they
use patterns extracted from other mining algorithms,
which not use an initial discretization. The main rea-
son is that in some context, patterns extracted from
exhaustive-search-based algorithms have more items
than those patterns coming from decision trees based
algorithms, due to some filtering strategies cannot be
applied (e.g., removing redundant items). As a con-
sequence, both OCLEP and OCLEP+ must be tested
using suitable experimentation in order to show their
performances as a pattern-based classifier for one-
class problems.

4.2 Challenges

An important key in any paper is to show future
research directions with the aim of promoting the
development of new proposals. In this section, we
state some of those proposal based on CPs that have
been little studied as well their possible improving
items. Also, we point out possible approaches for
exploring in the supervised classification based on
CPs.

From our review, fuzzy pattern-based classifiers
have shown to make consistently more accurate pre-
dictions than other popular non-fuzzy pattern-based
classifiers. However, this approach has been little
studied; only three classifiers based on fuzzy pat-
terns have been proposed [68]. Fuzzy patterns look
more similar to the language used by experts than
other types of patterns. This is possible thanks to
the use of linguistic hedges (e.g., “very,” “often,” and
“somewhat”), which are commonly used for fixing
the discretization of continuous features. An inter-
esting point to explore is to develop new linguistic
hedges, which can be extracted from interaction with
experts. Another point to explore is to modify the algo-
rithm proposed by [68] for mining fuzzy patterns from
decision trees in order to use a variant of the C4.5 algo-
rithm [157] instead of the current variant using ID3.
As was stated by [157], the C4.5 algorithm improves
the ID3 algorithm significantly.

Another interesting key is that pattern-based clas-
sification for one-class problems has not been enough
studied. For example, OCLEP+ [51] is a recent
pattern-based proposal for one-class problems. Nev-
ertheless, as we have stated before, OCLEP+ contin-
ues using an initial discretization before mining CPs,
which produces many handicaps. A possible solu-
tion is to use a One-Class Random Forest (OCRF)
as proposed by [42] for inducing several decision
trees and after that, mining CPs from these deci-
sion trees; in this way, the initial discretization is
removed.

In the same vein, many algorithms for mining
CPs from data streams have been proposed [23–26,
83]. Nevertheless, they continue using an initial dis-
cretization and an exhaustive-search-based algorithm
for mining CPs, which are limiting the power of these
proposals. Hence, an alternative for solving it is to use
a strategy for building fast decision trees, like the pro-
posal of [195] using an adaptive tie threshold and an
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incremental pruning, or another one proposed by [104]
for building fast decision trees in one-class problems.

As we have stated in Section 2.1.2, CP-based clas-
sification has reported good classification results in
several contexts by using CPs extracted from deci-
sion trees, but an interesting point to explore is to
build new decision trees induction procedures specif-
ically designed for extracting CPs. A starting point
could be the modification of the measure for evalu-
ating candidate splits, the pruning procedure, and the
stop conditions in the tree induction procedure with
the aim of producing trees fulfilling the condition of
CP in any path from the root node to the leaf nodes
during the induction procedure and not after that.

As was argued by López et al. [116], there are data
intrinsic characteristics such as noisy data, overlap-
ping among the classes, and data fragmentation that
is affecting the classification results of the cp-based
classifiers on imbalanced databases. Hence, another
line of future research could be to focus on detect-
ing these intrinsic characteristics before mining CPs
in order to improve the cp-based classification. In
the same vein, from several experiments conducted
in [121, 123, 124, 127], we can notice that there are
some databases where every cp-based classifier attains
good classification results; on the contrary, there are
other databases where the classification results are
bad. It could be vital to find an automated procedure
to detect those cases, based on some database infor-
mation. A meta-analysis study could be an initial point
for carrying it out.

Pattern-based classifiers have reported good clas-
sification results, in class imbalance problems, when
patterns are extracted from a resampled database [5,
6], an interesting point to explore is how to create
resampling methods designed specifically for improv-
ing the task of CP mining, even if these methods are
not good for improving other classification tasks. The
main challenge for that is to extract a small collection
of high-quality CPs, which should be representative of
all training dataset. A starting point could be updating
the support of all patterns extracted from each sub-
sample regarding the original training dataset and, in
this way, only those patterns fulfilling the condition of
CPs are selected in the final collection.

In [27] showed that CPs extracted from multivari-
ate decision trees allow obtaining better classifica-
tion results than those CPs extracted from univari-
ate decision trees. An important point to explore is

to extract CPs from multivariate decision trees with
higher polynomial degrees than those tested by [27]
to find if it can improve the obtained classification
results. However, it is essential to continue obtaining
an understandable pattern-based model from decision
trees, which could be affected by using high poly-
nomial degrees or using data transformation, like the
rotation forest algorithm proposing by [161]. Obtain-
ing an understandable model helps model credibility
and even acceptability in practical contexts. Hence,
it would be interesting to explore using fuzzy multi-
variate patterns for classification. The main idea is to
extract multivariate patterns from other algorithms for
inducing fuzzy decision trees such those reviewed by
[99] or fusing polynomial, fuzzy logic, and decision
tree structures like the one proposed by [139].

As far as we know, the first algorithm for mining
cost-sensitive patterns was proposed by [130]. It looks
an attractive idea to be deeply studied due to in prac-
tical problems the experts need to rely on a cost
matrix, which is commonly depending on the prob-
lem. Providing an understandable model for this type
of problems would help to experts to take actions by
using discriminate power of the pattern jointly the
associated cost matrix. An alternative to explore is
to use the test cost approach, which computes the
expected cost by adding the cost associated with each
feature used in the decision nodes traversed from the
root to the leaves for classifying a query object. The
main handicap of this type of problem is to find
the cost matrices associated with each feature of the
problem.

Filtering CPs by using quality measures for patterns
has shown interesting results. However, further work
is needed to analyze which quality measures can cre-
ate a ranking of patterns in a similar way as an expert
in the domain application does. It would help to select
a collection of high-quality pattern similar to how the
experts do it in the application domain.

The most interesting point to explore at the filter-
ing stage is to obtain a small subset of high-quality
patterns that meet the following conditions: (i) allows
obtaining good classification results and (ii) provid-
ing a reasonable amount of patterns to be interpreted
by experts in the application domain. Usually, from
our review, we notice that when the first condition is
fulfilled, then the second one fails by far.

The main advantages of cp-based classification are
the good classification results and the possibility of
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providing an understandable model, being this latter
the desired property in practical domains.

As we have stated in Section 3, several papers
are applying the cp-based classification to real-world
problems. However, nowadays, with the advancement
of technology, there are emerging new real-world
problems where the contrast pattern-based classifica-
tion has been little (or none) applied.

The technology revolution has been facilitating the
generation of several data using digital devices, result-
ing in what has been called “big data” [3]. On the
one hand, big data can be obtained from stored data
in disks where a few cp-based proposals have shown
their advances in this topic; like the one proposed
by [74]. Nevertheless, there are not recent studies
for making the cp-based classification suitable to big
data. An alternative to do it is to use the MapReduce
paradigm [41]. MapReduce not only allows dealing
with Big Data, but it is also a paradigm allowing the
creation of scalable methods [192].

On the other hand, big data can be provided from
sensors or frameworks in the form of data streams
[166]. For this type of problem, there are several theo-
retical proposals such proposed by [23–26] and [169].
Nevertheless, these algorithms only were proved using
synthetic data (or no real data streams), and com-
monly there are new real-world problems where these
algorithms should be proved.

Some interesting practical contexts for applying the
cp-based classification from data streams are:

– One may want to query, in real time, about the top-
2 most frequent political hashtags of twitter [164]
every 10 minutes, to predict a political campaign.

– Obtaining, in real time, the top-5 frequent prod-
ucts consulted by users in Amazon.com every
minute, to promote sales.

– Selecting, in real time, the top-3 frequent news
from Facebook.com, Google News, and CNN, to
analyze trending news.

Notice that from the items mentioned above the
main advantage of the cp-based classification is to
provide an explainable model, where the final user can
take actions based on the patterns’s interpretability.

Finally, from this section, we can conclude that
there are several works in the cp-based classifica-
tion topic, but they leave an improving room at each
stage; mining, filtering, and classification. For every
stage, we have provided future research directions to

increase the obtained results in the pattern-based clas-
sification. Additionally, we have promoted some new
real-world applications for applying the pattern-based
classification, which could be suitable for showing
both discriminative power and interpretability of CPs
in practical contexts.

5 Conclusion

The renewed interest in artificial intelligence
approaches, such as those based on machine learning
or deep learning, is partly due to their applications
in a broad range of applications such as parallel and
distributed systems. Therefore, in this paper, we per-
formed an in-depth review and a scientometric study
of CP-based supervised classification approaches. In
addition to the findings (e.g. taxonomy) discussed in
this paper and summarized in the below bullet-points,
potential research opportunities were also presented
in Section 4.

Advantages:

– Based on our scientometric study, we observed
that pattern-based classification continues to
attract interest from the research community,
with several hundreds publications annually
between 2017 and 2019.

– CPs are useful for applications where end-users
require pattern explanation.

– CP-based techniques based on decision trees
have been shown to obtain better classification
results.

– Fuzzy CP-based classifiers have shown better
classification results, in comparison to other
classifiers based on patterns. However, this
type of classifiers should be studied further, for
example by exploring the potential of utiliz-
ing linguistic hedges (may be more related to
language used by experts than other types of
patterns).

– From our taxonomy, we concluded that most
of the existing algorithms extract CPs based on
exhaustive search, despite algorithms based on
decision trees having better accuracy and Area
Under the Curve (AUC).
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Disadvantages:

– CP-based techniques using initial discretiza-
tion appear to suffer from limitations such as
information loss, high-computational time, not
capable of finding patterns, subtracting dis-
criminative power from patterns, and difficulty
in handling missing values. Such limitations
may be overcome when CPs are extracted from
decision trees.

– Several filtering algorithms for CPs have been
proposed, but the number of patterns pro-
vided by filtering algorithms is still impractical
to be analyzed by experts in the application
domain.

– From our review, we observed that there
are fewer proposals related to the filtering
stage than the mining and classification stages.
Hence, developing new filtering methods for
contrast patterns also appear to be a topic that
requires further attention.

– CP-based classifiers that use a scoring func-
tion as the classification strategy may suf-
fer from class imbalance problems. Conse-
quently, there have been attempts to design
CP-based classifiers using a weighted scoring
function.

Notations
The notations used in this paper are listed here.
API Application Programming

Interface
CEP Bayes-based Classification

using Emerging Patterns
BEP Balanced emerging pattern
BFS Breadth First Search
BN Bayesian Network
BSC-tree Bit String Compression tree
CACSP Classification by Aggregat-

ing Cost-Sensitive Patterns
CAEP Classification by Aggregat-

ing
Emerging Patterns

CEPM Cascade Emerging Pattern
Miner

CMAR Classification based on
Multiple Class-Association
Rules

CPAR Classification based on Pre-
dictive Association Rules

CP Contrast pattern
CSP Cost-sensitive pattern
D2D-Apriori Dynamic queue & Deep Par-

allel Apriori
DBF Delete Best Feature
DBP Delete Best Property
DBPL Delete Best Property by

Level
DFS Depth First Search
DGCP-Tree Dynamically Growing Con-

strat Pattern Tree
EP Emerging Pattern
EPRFm Emerging Patterns with Ran-

dom Forest miner
EJEP Essential Jumping Emerging

Pattern
EvAEP Evolutionary Algorithm

for Extracting Emerging
Patterns

EvAEFP-Spark Evolutionary Algorithm
for Extracting Emerging
Patterns using Spark

HRFm Hellinger Random Forest
miner

FCI-Outlier An Frequent Closed Itemset-
based Outlier detecting
approach

FEP Fuzzy Emerging Pattern
FEPM Fuzzy Emerging Pattern

Miner
FEPC Fuzzy Emerging

Pattern-based Classifier
FPR False Positive Rate
HMM Hidden Markov Models
iCAEP Information-based Clas-

sification by Aggregating
Emerging Patterns

JEP Jumping Emerging Pattern
JEPN Jumping Emerging Pattern

with Negation
LCMine Logical Complex Miner
LexOrdMiner Lexicographie Order Miner
MCP Multivariate contrast pattern
MOEA-EFEP Multi-Objective Evolution-

ary Algorithm for Extracting
Fuzzy Emerging Patterns

NB Naive Bayes
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OCLEP One-class Classification
using Length statistics of
Emerging Patterns

OCRF One-Class Random Forest
ocSVM one-class Support Vector

Machine
ODFP-tree Ordered Dynamic Frequent

Pattern tree
PCP Pan-Correlation Pattern
PBC4cip Pattern-based Classification

for class imbalanced prob-
lems

kg Kilogram
RFm Random Forest miner
SMOTE-TL+LCMine Synthetic Minority Over-

sampling Technique using
Tomek Links before apply-
ing Logical Complex
Miner

SVM Support Vector Machine
UDFP-tree Unordered Dynamic

Frequent Pattern tree
QM Quality Measure
SEP Strong Emerging pattern
SJEP Strong Jumping Emerging

Pattern
SysTreeMiner Systolic Tree Miner
TPR True Positive Rate
WBEPM Windows Balanced Emerg-

ing Pattern Miner
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2. Agrawal, R., Imieliński, T., Swami, A.: Mining
association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’93, pp. 207–216. ACM, New York.
https://doi.org/10.1145/170035.170072 (1993)

3. Alam, S., Yao, N.: Big data analytics, text mining and
modern english language. J. Grid Comput. 17(2), 357–366
(2019). https://doi.org/10.1007/s10723-018-9452-4

4. Alavi, F., Hashemi, S.: Dfp-sepsf: A dynamic fre-
quent pattern tree to mine strong emerging patterns
in streamwise features. Eng. Appl. Artif. Intell. 37,
54–70. https://doi.org/10.1016/j.engappai.2014.08.010.

http://www.sciencedirect.com/science/article/pii/
S0952197614002097 (2015)

5. Alhammady, H.: A Novel Approach for Mining Emerging
Patterns in Rare-Class Datasets. In: Sobh, T. (ed.) Inno-
vations and Advanced Techniques in Computer and Infor-
mation Sciences and Engineering, pp. 207–211. Springer,
Netherlands (2007)

6. Alhammady, H., Ramamohanarao, K., Zhang, C.: The
Application of Emerging Patterns for Improving the Qual-
ity of Rare-Class Classification. In: Dai, H., Srikant,
R. (eds.) Advances in Knowledge Discovery and Data
Mining, Lecture Notes in Computer Science, vol. 3056,
pp. 207–211. Springer, Berlin (2004)

7. Alhammady, H., Ramamohanarao, K.: Mining Emerg-
ing Patterns and Classification in Data Streams. In: The
IEEE/WIC/ACM International Conference on Web Intelli-
gence (WI’05), pp. 272–275. https://doi.org/10.1109/WI.
2005.96 (2005)

8. Alkadi, O.S., Moustafa, N., Turnbull, B., Choo, K.R.:
An ontological graph identification method for improv-
ing localization of ip prefix hijacking in network systems.
IEEE Trans. Inf. Forensic. Secur. 15, 1164–1174 (2020).
https://doi.org/10.1109/TIFS.2019.2936975

9. An, Z., Deng, W., Hu, J., Zhong, Y., Zhao, Y.: Apa: Adap-
tive pose alignment for pose-invariant face recognition.
IEEE Access 7, 14653–14670 (2019). https://doi.org/10.
1109/ACCESS.2019.2894162

10. Bailey, J.: Statistical Measures for Contrast Patterns. In:
Dong, G., Bailey, J. (eds.) Contrast Data Mining: Con-
cepts, Algorithms, and Applications, chap. 2, pp. 13–20.
Chapman & Hall/CRC, USA (2012)

11. Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast
Algorithms for Mining Emerging Patterns. In: Elomaa, T.,
Mannila, H., Toivonen, H. (eds.) Principles of Data Min-
ing and Knowledge Discovery, pp. 39–50. Berlin, Springer
(2002)

12. Barandiaran, I.: The random subspace method for con-
structing decision forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20(8) (1998)

13. Barman, S., Shum, H.P.H., Chattopadhyay, S., Samanta,
D.: A secure authentication protocol for multi-server-
based e-healthcare using a fuzzy commitment scheme.
IEEE Access 7, 12557–12574 (2019). https://doi.org/10.
1109/ACCESS.2019.2893185

14. Baum, L.E., Petrie, T.: Statistical inference for prob-
abilistic functions of finite state markov chains. Ann.
Math. Stat. 37(6), 1554–1563. http://www.jstor.org/stable/
2238772 (1966)

15. Bayardo Jr., R.J.: Efficiently mining long patterns from
databases. In: Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’98, pp. 85–93. ACM, New York. https://doi.org/10.
1145/276304.276313 (1998)

16. Cuissart, B., Poezevara, G., Lepailleur, A., Bureau, R.:
Emerging Patterns as Structural Alerts for Computa-
tional Toxicology. In: Dong, G., Bailey, J. (eds.) Con-
trast Data Mining: Concepts, Algorithms, and Applica-
tions, Data Mining and Knowledge Discovery Series,
chap. 19, pp. 269–282. USA, Chapman & Hall/CRC
(2012)

https://doi.org/10.1016/j.eswa.2014.03.019
https://doi.org/10.1016/j.eswa.2014.03.019
http://www.sciencedirect.com/science/article/pii/S09574174140 01481
http://www.sciencedirect.com/science/article/pii/S09574174140 01481
https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/s10723-018-9452-4
https://doi.org/10.1016/j.engappai.2014.08.010
http://www.sciencedirect.com/science/article/pii/S09521976140 02097
http://www.sciencedirect.com/science/article/pii/S09521976140 02097
https://doi.org/10.1109/WI.2005.96
https://doi.org/10.1109/WI.2005.96
https://doi.org/10.1109/TIFS.2019.2936975
https://doi.org/10.1109/ACCESS.2019.2894162
https://doi.org/10.1109/ACCESS.2019.2894162
https://doi.org/10.1109/ACCESS.2019.2893185
https://doi.org/10.1109/ACCESS.2019.2893185
http://www.jstor.org/stable/2238772
http://www.jstor.org/stable/2238772
https://doi.org/10.1145/276304.276313
https://doi.org/10.1145/276304.276313


O. Loyola-González et al.

17. Bongard, M.: Solution to geological problems with sup-
port of recognition programs. Sov Geol. 6, 33–50 (1963)

18. Bouadjenek, M.R., Hacid, H., Bouzeghoub, M.: Social
networks and information retrieval, how are they con-
verging? a survey, a taxonomy and an analysis of social
information retrieval approaches and platforms. Inf. Syst.
56(0), 1–18 (2016)

19. Breiman, L.: Bagging predictors. Mach. Learn. 24(2),
123–140 (1996). https://doi.org/10.1007/BF00058655

20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324 (2001)

21. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher,
M.: Min-wise independent permutations. J. Comput. Syst.
Sci. 60(3), 630–659 (2000). https://doi.org/10.1006/jcss.
1999.1690. http://www.sciencedirect.com/science/article/
pii/S0022000099916902

22. Brodley, C.E., Utgoff, P.E.: Multivariate decision trees.
Mach. Learn. 19(1), 45–77 (1995). https://doi.org/10.
1007/BF00994660

23. Bustio, L., Cumplido, R., Hernández, R., Bande, J.M.,
Feregrino, C.: Frequent Itemsets Mining in Data Streams
Using Reconfigurable Hardware. In: Ceci, M., Loglisci,
C., Manco, G., Masciari, E., Ras, Z.W. (eds.) New Fron-
tiers in Mining Complex Patterns, pp. 32–45. Springer
International Publishing (2016)

24. Bustio-Martı́nez, L., Cumplido, R., Hernández-León, R.,
Bande-Serrano, J.M., Feregrino-Uribe, C.: On the design
of hardware-software architectures for frequent itemsets
mining on data streams. J. Intell. Inf. Syst. 50(3), 415–440
(2018). https://doi.org/10.1007/s10844-017-0461-8

25. Bustio-Martı́nez, L., Cumplido, R., Letras-Luna, M.,
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27. Cañete-Sifuentes, L., Monroy, R., Medina-Pérez, M.A.,
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