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1. Introduction

Globally, in 2020, it is estimated that there are 28.5 billion networked devices
such as phones, wearables, and ambient sensors 1. These devices are able to
capture a huge amount of data about users and the environment. For example,
smart-phones are typically equipped with multiple sensors to record audio,
video, and even users’ movements. Smart-watches, which are in contact with
the human skin, can sense medical information such as heart-rate and blood
pressure. Wearable cameras emerge as instruments to record first-person-
view videos, especially in sport and leisure activities. Smart-home systems
that comprise a multitude of sensors have been installed to improve user’s
comfort. Analyzing the sensor data can reveal IMPLICIT INFORMATION of users
and the environment. For instance, the characteristics of human gait can be
extracted from visual and inertial data [124]. Another example is the motif
discovery of users’ routines from first-person-view videos captured with a body-
cam [169]. Gradually, more and more useful information have been collected
by smart devices using their built-in sensors. This provides opportunities to
address existing issues of conventional security mechanisms through leveraging
IMPLICIT INFORMATION extracted from sensor data. We raise the research
question:

How to use implicit information to improve security of user-to-device and

device-to-device relationships?

In this dissertation, we design and implement methods that utilize implicit in-
formation derived from sensor data to improve the security of smart devices. We
categorize the relationships between different smart devices, as well as between
these devices and their users, into four types: ONE-TO-ONE, ONE-TO-MANY,
MANY-TO-ONE, and MANY-TO MANY. In the context of one device and its user
(i.e. ONE-TO-ONE), we introduce a password generation method that personal-
izes authentication challenges according to each user’s activities (see Chapter 3).
When there are wirelessly-connected devices to implement a machine learning
model (i.e. MANY-TO-ONE), we introduce a distributed training algorithm in

1Cisco VNI Forecast Highlights: https://www.cisco.com/c/m/en_us/solutions/service-
provider/vni-forecast-highlights.html [Accessed: Jan 18, 2020]
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which data and model parameters are scattered across all participant entities
(see Chapter 4). Next, we assist users to establish a secure connection between
their personal devices and shared appliances in a new environment (i.e. ONE-
TO-MANY), using vocal commands (see Chapter 5). Finally, when there are many
devices seeking to form a peer-to-peer network (i.e. MANY-TO-MANY), we con-
tinuously extract secret keys from inertial data to facilitate continuous secure
device pairing (see Chapter 6).

1.1 Motivation

It is essential to protect the data and services of smart devices from unautho-
rized access [110]. Authentication is the mechanism to ensure the user’s identity.
There exist three elements used for authentication: something the user knows
(such as a password), something the user possesses (such as a physical key or
a bank card), and something that characterizes the user (such as fingerprints
and other biometric data) [163]. Almost all forms of user authentication require
users to explicitly input secret information. To strengthen the authentication
process, multiple elements can be combined to form multi-factor authentication
schemes, such as a bank card with a Personal Identification Number (PIN).
Although passwords have a long history of usage, they suffer from shoulder-
surfing attacks [49]. Moreover, setting easily-guessed codes and using the same
passwords for a long time are the common reasons of making this authenti-
cation method ineffective [98]. In Chapter 3, we propose and evaluate novel
user authentication schemes that analyse first-person-view videos to generate
always-fresh image-based challenges. Our mechanism releases users from fixed
passwords that are required to be updated regularly.

Smart sensing devices are not only carried by users but are also integrated into
infrastructure such as in smart-home. These systems are comprised of multiple
data acquisition units such as thermometers, motion detectors, and cameras.
These sensors aim to collect data about users and the environment they inhabit
to enhance their comfort and convenience. For example, a occupancy-monitoring
system can recognize users’ activities to control light intensity and room temper-
ature for balancing utility and energy efficiency. Typically, such a system has
one central component that collects and analyzes all data from the distributed
sensors to infer situations of the monitored space [6]. This set-up requires the
sensors to transmit their collected data over the network, which consumes a
significant amount of energy. Backscatter communication has been recently
considered as a solution to reduce the resource consumption [73]. However, the
existing approaches concentrate on data transmission only. In Chapter 4, we pro-
pose algorithms that efficiently train a classification model over data allocated
across wirelessly-connected sensors. Our approach employs simple backscatter
devices [13] that collaboratively implement a shared inference model through
implicit data aggregation on the communication channel.
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Nowadays, it is common for a typical user to interact with more than one smart
device. For example, one can use a laptop for working, a smart-phone for commu-
nication, a smart-watch for health monitoring, and a tablet for entertainment.
To exchange data, these devices require a secure communication channel among
them; hence, it is necessary for them to authenticate each other mutually. This
becomes more challenging whenever users enter a new environment equipped
with shared appliances. We require a seamless mechanism to connect and dis-
connect the user’s personal device with shared appliances for exchanging data
securely. There are smart objects that are temporarily used by multiple users,
such as sensor-equipped shopping carts [161]. A widely-used protocol is to pair
these devices using a Bluetooth connection [61]. This process asks users to verify
generated numeric codes, which is obtrusive from the perspective of users. Some
devices are paired via a fixed PIN code and users rely on their identifiers to select
the right ones. Furthermore, the emergence of wearable gadgets and electronic
textiles with limited user interfaces introduces new challenges for PIN-based
pairing. We propose to utilize the implicit information captured by smart devices
such as characteristics of ambient audio (see Chapter 5) and behavioural data
(see Chapter 6) to address these challenges. Our proposed approaches facilitate
the seamless connection of smart devices, the continuous changing of shared
secure keys, and the automatic disconnection of these devices.

1.2 Research Questions

The dissertation can be considered from two perspectives: the range of implicit
information that smart devices can collected and the paradigm of device relation-
ship. The devices are equipped with multiple sensors to collect environmental
and physiological observations, from which we can extract implicit informa-
tion. We can roughly categorize implicit information into ENVIRONMENT and
PERSONAL information. The recordings possess characteristics listed below:

• Transient: implicit information varies constantly over time. Furthermore,
we can rarely capture two identical sequences of samples due to hardware
and data diversity.

• Implicit: The captured sensor data is always available but uncontrollable
from the perspective of smart devices. It contains implicit information
that is influenced by users and the environment.

• Diverse: implicit information originates from various sources each of which
characterizes an aspect about the users and the environment. Hence, they
require different processing techniques.

Analyzing implicit information, we propose novel security mechanisms in four
relationships between smart devices and their users as well as between devices:
user authentication, collaborative inference, device selection, and device pairing.
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ONE-TO-ONE: Before using services or accessing data in a personal device
(e.g. a smart-phone), a user is required to prove their identity, through an
authentication procedure. Conventional passwords (e.g. alphanumeric or graph-
ical) are selected by users and fixed until being changed by the users, which
may not happen regularly. Hence, such passwords suffer from vulnerability to
shoulder-surfing [49] and side-channel attacks [12]. This has raised the first
research question:

How to authenticate with always-fresh passwords leveraging implicit infor-

mation?

MANY-TO-ONE: Now consider a network of many or even countless wirelessly-
connected smart devices, which can collect a huge amount of data. These devices
collaborate to facilitate intelligent services. During their lifetime, they require
energy to operate and transmit their data over wireless signals. Their data may
contain sensitive information that users do not agree to share widely. These
observations have led to the second research question:

How to secure data aggregation in collaborative inference through implicit

information convolution?

ONE-TO-MANY: Consider that a user wants to connect a personal device
to shared smart-screens or a Bluetooth speaker that supports a voice user
interface (VUI) [119]. Normally, within a new environment equipped with public
appliances, a user is required to obtain a device identifier and a PIN code, which
is inconvenient. For initializing a secure connection between personal devices
and new shared appliances, the third research question is:

How to use implicit information in vocal commands to select shared devices

naturally and securely?

MANY-TO-MANY: When there are multiple devices sharing data, to securely
initiate the device-pairing process (e.g. using Bluetooth [61]), users enter or
verify PIN codes, which can be cracked [132]. Mis-binding is another threat when
devices are paired to a malicious entity [131]. Moreover, when the sharing ends,
these devices often have to be dis-connected manually. Hence, this procedure is
obtrusive and not seamlessly. Hence, we raise the research question:

How to continuously generate secret keys for device pairing from implicit

information?

In Section 1.3, we summarize the contributions of this dissertation to tackle
the aforementioned research questions in the following key areas: user authen-
tication, collaborative inference, device selection, and device pairing. We are
aware that there are other types of relationships in each of these areas. For
instance, a user can be authenticated to multiple devices or several users can
share the same devices (with different user accounts). In this dissertation, we
focus on the one-to-one scenario since it is the fundamental case that can be
extended to others. Another example is that in the sensor network, a node
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Figure 1.1. ONE-TO-ONE in Chapter 3: Always-fresh authentication challenges from first-person-
view videos

can share their information with its neighbours. This requires communication
between devices, which consumes much energy.

1.3 Contributions

The dissertation investigates implicit information captured by the built-in sen-
sors of smart objects to implement novel secure collaboration mechanisms. We
have investigated a variety of sensors, including: audio, video, acceleration,
electroencephalography, and radio signal. After recording the sensed data, we
analyzed ever-changing implicit information extracted from body movement,
ambient audio, first-person-view videos, behavioural data, and wireless signals
to facilitate our security features. Our approaches personalized challenges in
user authentication according to users’ behaviour and environmental situations.
We constantly updated secret information in device-to-device communication
without explicit user interaction. We hid sensing data implicitly through signal
interference in wireless sensor networks during the optimization of an inference
model. Our proposed systems have leveraged the characteristics of implicit
information to improve the security, convenience, and efficiency of user authenti-
cation, data aggregation, device selection, and device pairing (see Table 1.1 for a
summary).

1.3.1 Always-fresh Authentication Challenges

User authentication can be considered as a ONE-TO-ONE relationship between
the smart device and its owner. We proposed to utilize implicit information
extracted from visual data in password generation (see Chapter 3). Our idea
is illustrated in Figure 1.1 with a four-image challenge displayed on the tablet
screen. The authentication challenges consist of images captured from the
user’s point of view. Hence, these images are personalized according to the
behaviour of users over time. Due to their origin, authentication challenges
are temporary for each log-in session. Our approach resists shoulder-surfing
attacks and allows the users to be free from the obligation to change passwords
regularly. Our password designs are beneficial from the convenience of graphical
pattern passwords [17]. Especially, they rely on visual representation, which
is far easier to memorize than alphanumeric characters. We implemented the
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Table 1.1. Contributions of this dissertation (contribution categories: conceptual [C ], method-
ological [M ], technical [T ], and empirical [E ])

Chapter Contribution Publications

Chapter 3:
ONE-TO-
ONE

We propose to utilize first-person-view videos to
generate authentication challenges that are al-
ways fresh and personalized to individuals. We
perform case studies to evaluate the security
and usability of our proposed approach. We con-
tributed a concept of authentication challenges
comprised of first-person-view images [C ], along
with a technical implementation to realize the
concept using video analysis techniques [T ].

Publication
III, Publication V,
and Publication
VI

Chapter 4:
MANY-TO-
ONE

We introduce a method to efficiently train a ma-
chine learning model across data distributed ver-
tically in a sensor network. Our technique im-
plicitly protects the sensing data in burst se-
quences as a result of wireless signal interfer-
ence and transfers the ownership of model pa-
rameters to distributed devices. We contributed
a computation-offloading mechanism of machine
learning models [M ] as well as empirical experi-
ments with backscatter communication [E ].

Publication IV
and Publication
IX

Chapter 5:
ONE-TO-
MANY

We proposed a mechanism to connect new devices
using natural vocal commands and ambient au-
dio. We analyzed the recorded speech to identify
appliance types and derive encryption keys for
device-to-device secure communication. We per-
formed experiments with human and hardware
attackers to verify the security of our proposed
approach. We contributed a technical implemen-
tation of our voice-based device-selection mecha-
nism [T ] as well as empirical experiments with
human and hardware eavesdroppers [E ].

Publication VIII
and Publication X

Chapter 6:
MANY-TO-
MANY

We analyzed implicit information extracted from
human gait and heart beats to facilitate contin-
uous device pairing in on-body settings. We pro-
pose a video-based attack that can infer human
gait from high-resolution video recordings. We
contributed a technical implementation to contin-
uously generate pairing keys from gait informa-
tion [T ] and an empirical video-based attack of
several gait-based pairing protocols [E ]. In addi-
tion, we proposed a feature-learning method to
generate fingerprints of sensor data [M ].

Publication
I, Publication II,
and Publication
VII
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Figure 1.2. MANY-TO-ONE in Chapter 4: Numerous distributed sensors collaborate to learn a
machine learning model across vertically-partitioned data

mechanism in a touch-based user interface to evaluate its security and usability.
We realized a procedure to generate transient authentication challenges from

a continuous stream of visual information. The data source came from first-
person-view videos captured by wearable cameras. We assumed that there
existed a secure connection between the data source and the devices that users
were authenticating to. After recording the videos, we filtered blurred frames to
retain only informative images. We then segmented them into separate scenes
depending on the observations and activities of users. After that, authentication
challenges were formed into two formats: the first one asked the user to arrange
these images in the correct chronological order while the second required the
user to select the images that satisfied a temporal condition.

While conventional authentication methods rely on fixed passwords that the
user has to change periodically, our authentication challenges are generated
according to the personal experience of users. Hence, these challenges are
varied in each log-in attempt. Our approach increases the resistance to shoulder-
surfing and smudge attacks and releases users from the burden of changing
passwords regularly. Furthermore, the images forming our challenges originate
from personal observations and activities, which are more memorable than
sequences of alphanumeric characters [41].

1.3.2 Collaborative Inference based on Implicit Data Aggregation

A sensor network represents a MANY-TO-ONE relationship in which smart de-
vices collaborate to perform a shared task, such as inferring situations of the
monitored environment. We propose a collaborative paradigm to infer the en-
vironmental situations through offloading the classification model partially to
the wireless channel, and in the meantime, hiding the sensitive information in
superimposed signals (see Chapter 4). Figure 1.2 illustrates our approach that
implements a logistic regression model distributed across vertically-partitioned
data (i.e. each sensor collects one attribute of the observed environment such
as temperature or humidity). We aggregate the sensing data implicitly in the
signal interference. Based on the proposed method, we develop a model training
procedure that can optimize a shared classifier with minimal feedback from a
coordinator. Later, the classification model can be used while all of its parame-
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(a) Using vocal commands to securely select appli-
ances

(b) Audio fingerprinting

Figure 1.3. ONE-TO-MANY in Chapter 5: Audio-based secure connection initialization of new
devices using vocal commands

ters are distributed among sensor nodes. Hence, our approach not only hides
the sensitive data but also protects the model parameters.

We realize our algorithms in an energy-efficient sensor network based on
backscattering communication. Instead of encoding and transmitting data inside
packages, the sensors backscatter a carrier signal to broadcast their sensing
information. Each of them encodes its processed data into binary sequences
and controls the reflection of carrier signals to transmit information at the
physical layer. Since multiple devices are operating simultaneously, the receiver
can observe the combination of all transmitted data and use it to aggregate
information. Based on this mechanism, we implement an iterative algorithm
to train a logistic regression model in which each sensor device optimizes its
own parameters using binary feedback from a coordinator. Through extensive
experiments with multiple public datasets, we concluded that our technique
used less power than that of the traditional sensor network in which all sensors
transmit their packaged data to a central server for analysis.

1.3.3 Proximity-based Secure Communication using Vocal
Commands

The conceptual system visualized in Figure 1.3 connects a personal device (e.g. a
smart-phone) to a public appliance supporting a voice user interface (e.g. a smart-
screen) within a specific area using vocal commands. We not only extract the
device class from the vocal command but also derive a key for the initialization
of communication. After that, the pairing keys are continuously generated and
updated using ambient audio. Our proposed architectures and protocols support
both peer-to-peer and centralized scenarios. They can be integrated with the
available infrastructures that are developed on standardized network protocols.
We performed experiments in which users could control their verbal conversation
to constrain the device selection range.
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(a) GAIT-based secure pairing of on-body
devices using human acceleration data
during walking

(b) HEARTBEAT-based secure pairing of on-
body devices using ballistocardiography
data during resting postures

Figure 1.4. MANY-TO-MANY in Chapter 6: Two application scenarios of our pairing mechanisms,
including: 1.4a on-body devices with ambulatory activities and 1.4b on-body devices
with resting postures.

1.3.4 Continuous Secure Device Pairing

Device-to-device communication represents the MANY-TO-MANY relationship
between smart devices. We proposed implicit mechanisms to establish a secure
connection between wearable devices within the same body. We leverage be-
havioural (gait) and physiological (heart-beat) data extracted with sensors to
implement secure device pairing. Figure 1.4 visualizes two application scenarios
of our pairing schemes for: ambulatory activities and resting postures. Hence,
our approach covers all scenarios of unobtrusively yet natural connecting multi-
ple devices in a spontaneous manner. The communication keys are continuously
updated and therefore data exchange is prevented whenever a device leaves the
context (e.g. taking a smart-watch off the user’s wrist).

First, as showed in Figure 1.4a, when devices are located on the same human
body, we analyze body movement to form the pairing keys. Our keys are gener-
ated from the disparity between an instantaneous gait cycle and the mean cycle
within a short time window. We apply error correcting codes in such a way that
only data from the same human body can produce identical keys. We update
these keys constantly to support automatic grouping and de-grouping devices.
Then, we analyze the security threats of the proposed mechanism as well as
related techniques. In addition, we implement a video-based attack with the
support of a high-resolution camera and a manual tracking set-up.

Second, during resting postures (e.g. standing, sitting, and lying), we process
heartbeats extracted from Ballistocardiography (BCG) data to generate the
communication keys independently in each device. In this setting, we propose a
network model to learn the keys. The architecture of our model is a combination
of a Siamese networks and an auto-encoder. With this learning paradigm, we
can constrain the network output to issue more similar keys for the same subject
than those for different ones.
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Chapter 2. Background
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Secure Device Pairing

Chapter 7. Conclusion and Future Work

Figure 1.5. Outline of the dissertation

1.4 Dissertation Structure

Figure 1.5 illustrates the organization of this dissertation. We go through the
background summary, the security mechanism in each device relationship, and
conclude the dissertation with future work.

Chapter 2 presents background knowledge and fundamental techniques that
are applied to develop our solutions. We define implicit information and its
characteristics, as well as introducing specific sensors to collect them. The signal
processing algorithms are categorized according to the amount of information
extracted from data and its usefulness. We start with pre-processing techniques
to reduce redundant information in the raw sensor data. Then, we briefly
introduced feature extraction methods that are used to distil implicit information
from the pre-processed data. After that, we discuss applications that are closely
related to our proposed security mechanisms.

The next chapters discuss thoroughly each security mechanism with respect
to the relationships of smart devices. Chapter 3 describes our graphical au-
thentication mechanism that generates always-fresh passwords from visual
information. We propose algorithms to filter, extract, and organize video frames
into challenges that are personalized to a specific user. We introduce and evalu-
ate different designs of the graphical passwords. Addressing user authentication,
we cover the relationship in which one device interacts with its user. Our study
then continues to investigate a scenario in which a team of smart devices collab-
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orate towards a common goal: inference of the current situation. We propose a
decentralized algorithm that allows devices to share their acquired information
over the wireless channel without exposing the raw data. Using our algorithm,
they can collaborate to train and use an inference model that is scattered across
all entities of the network. This is the many-to-one relationship and is analyzed
in Chapter 4. After being identified by personal devices, one may aim to establish
a secure connection to new appliances for data exchange (e.g. connecting smart-
phone to a smart-screen for presentation). Chapter 5 introduces a convenient yet
secure mechanism to select an appliance type using vocal commands. Then, the
number of smart devices increase in the scenarios considered by Chapter 6. We
investigate the secure pairing process within the many-to-many device relation-
ship. In particular, we extract the secret keys that can be use in device-to-device
communication from behavioural and physiological data. The secure information
is automatically updated over time so that the proposed mechanism supports
seamlessly grouping and separating devices.

Finally, we conclude the dissertation in Chapter 7 by summarizing our con-
tributions in the important areas: user authentication, collaborative inference,
device selection, and device pairing. Furthermore, we discuss potential exten-
sions of this dissertation: the security mechanisms of backscatter devices with
energy-harvesting components.
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2. Background

This chapter presents the fundamental concepts and techniques to process data
captured by the sensors of smart devices to reveal implicit information. We
consider diverse modalities including: inertial data, radio frequency (RF) signals,
audio, images, and videos. We focus on signal processing techniques that are
required to develop our security mechanisms. Using these methods, we briefly
explain how implicit information is uncovered from sensor data to serve our
proposed security mechanisms.

We start the chapter by presenting representative sources of external data
that can be collected by sensors. We focus on commercial off-the-shelf sensors
that are equipped in smart-phones (e.g. cameras, microphones, and inertial mea-
surement units) and smart-home appliances (e.g. hygrometer and thermometer).
Then we introduce fundamental techniques to extract useful information from
multidimensional sensor readings. These techniques are summarized in Fig-
ure 2.1, including: filtering, feature extraction, segmentation, clustering, and
classification. Note that the output of one level is the input to the next level of
extracting implicit information from sensor data.

Next, we introduce common security applications of smart devices. The first
such application occurs in the relationship between a device and its owner:
user authentication. We mainly focus on the use of visual information (i.e.
images) since it is directly related to our proposed approach. Second, when
there are more than one smart device, we focus on methods to securely initialize
a communication channel between them, i.e. let them discover each other
within a group and derive a pairing key for communication. The key can be
used by one device for connecting to other devices and the shared key can be
obtained by many appliances in a restricted space. Finally, we investigate
scenarios in which a team of smart devices collaborate to achieve a common
goal, such as training a machine learning model to monitor the environment.
We design and implement a paradigm leveraging backscatter communication
to reduce the power consumption of the network. Furthermore, our proposed
paradigm implicitly hides the transmitted information inside burst sequences in
the wireless signals.
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Figure 2.1. Techniques to extract implicit information from sensing data

2.1 Sources of implicit information

Smart devices are equipped with built-in sensors that can capture sensor data
from various sources, including data about their users and the environment. In
this dissertation, we focus on audio, video, inertial data, and radio frequency
signals because they allow us to address issues of existing security mechanisms.
The collected data needs to go through processing steps in order to reveal useful
yet implicit information. For example, a microphone is the vital component of
every phone. It can collect not only the human voice but also ambient sounds.
Hence, it has become a rich source of sensor data. Audio data can provide a
holistic view on the context surrounding smart devices. Due to the propagation
of sound, proximate devices tend to record similar audio data. Based on this
observation, audio-based secret keys were utilized to established secure com-
munication between devices in a restricted area [129]. Most smart-phones are
integrated with accelerometers and gyroscopes. These sensors collects motion
data, including: acceleration, orientation, and angular velocity. The collected
inertial data is processed to infer a user’s activities [26] or gait [106]. Even
subtle body movements caused by heartbeats can be detected through analyzing
the recordings captured with these on-body sensors [143].

Although wearable sensors such as accelerometers and gyroscopes have demon-
strated their usability, carrying them all the time is obtrusive for the users [26].
In addition, regular charging their batteries that power the sensors is cumber-
some, especially for the elderly. In order to overcome these constraints, one
rising trend is to employ device-free pervasive systems, for example, through
analyzing RF signals in the environment. Due to multi-path propagation, these
wireless signals are sensitive to changes in the environment (e.g. human mov-
ing) [126, 167]. Hence, wireless signals have been analyzed to deploy device-free
activity recognition [136]. Sigg et al. [136] implemented a system to recognize
human actions using Received Signal Strength Indicator of either ambient FM
radio signals or signals generated by an active transmitter (e.g. a software-
defined radio device). Another source of wireless signals is Wi-Fi, which have
wide coverage, especially in indoor areas. Wang et al. [159] collected and pro-
cessed channel state information to detect gait patterns.

A huge amount of implicit information comes from visual data such as im-
ages and videos which capture the world in two or even three-dimensional
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representation. Analyzing visual information reveals hidden knowledge for
such applications as object classification and human activity recognition [57].
Recently, advances in electronics and optics have squeezed cameras to such a
compact size that they are able to fit into a mobile phone or are able to be worn
by users. These cameras capture the images of a user’s daily activities and
observations from the first-person point-of-view. The recorded videos have been
analyzed to recognized objects or the wearer’s actions [16]. These visual cues
are then used in other applications such as motif discovery [169] or storyline
reconstruction [92]. Egocentric videos can capture motion data that is used to
identify the users [72].

The raw sensor data is diverse and contains a significant amount of redundant
data. Hence, appropriate techniques such as preprocessing [54] and feature
extraction are applied in order to extract implicit and useful information. We
visualize some popular techniques to extract and analyze implicit information
in Figure 2.1. These techniques can be classified into three categories, based on
how many processing stages are required to discover implicit information from
raw sensor data.

2.2 Preprocessing Sensor Data

Preprocessing techniques are applied to prepare the data for further analy-
sis, such as feature extraction. These techniques clean the recorded sensor
data through removing artifacts caused by a variety of sources (e.g. hardware
imperfection, software errors, and electromagnetic interference) [137]. These
techniques include data normalization, resampling, and other data transfor-
mation algorithms [54]. In general, they transform the sensor data into other
formats which are more suitable for specific tasks.

The recorded data in its raw form is the combination of useful and redundant
information (e.g. noise [137]). Filtering is applied to reduce the noise while
retaining meaningful data for further analysis. For example, Bouten et al. [23]
experimentally showed that accelerometer data that is sampled at 20 Hz is
adequate for activity recognition. In the time domain, filtering is done via
convolution ⊗ [162, 44]. One example is the moving average filter [137] which
smooths the signal. Its convolution filter has the form of h[x]= [( 1

N )×N ], where
N is the size of the filter. If the elements of the filter are sampled from a
Gaussian distribution, it becomes a Gaussian filter [137]. There are two widely-
used types of convolution filters: finite impulse response (FIR) and infinite
impulse response (IIR) [137]. Equation 2.2 formulates mathematically an FIR
filter h applied on one-dimensional time series data x:y [n] = h [n]⊗x [n] =∑N−1

k=0 h [k]x [n−k] =∑N−1
k=0 akx [n−k], where N is the size of the filter h and

x [n−k]= 0 if n−k < 0. On the other hand, an IIR filter has a infinite number of
elements: y [n]=h [n]⊗x [n]=∑∞

k=0 h [k]x [n−k].
The recorded data can be represented in the frequency domain using the
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z-transform [137]:X [z] = ∑∞
n=0 x [n] z−n where z = e

i2πk
N is a complex number.

The discrete Fourier transform is a special case of the z-transform when we
aim to extract N frequency components from a time series sequence of N val-
ues. The kth component 2πk

N , where 0 ≤ k < N, is represented as: X [Zk] =∑N−1
n=0 x [n]

[
ei2πk]−n =∑N−1

n=0 x [n] e
−i2πkn

N =∑N−1
n=0 x [n]cos

2πkn
N −ix [n]sin

2πkn
N Sim-

ilarly to filters in the time domain, we can formulate filters in the frequency
domain as: Y [z]=H [z]∗X [z] where Y[z] and H[z] are the z-transform of y[n]
and h[n], respectively. According to the convolution theorem [162, 44], the convo-
lution operator in the time domain is equivalent to the point-wise multiplication
in the frequency domain.

In some cases, we design algorithms to remove data whose content is not
suitable for our applications. For example, to distinguish between useful and
redundant photo frames (i.e. 2D data) in a video stream, we can utilize a
preprocessing algorithm based on blur detection. We prefer techniques that have
low computational complexity, are adaptable to a wide range of visual content,
and are independent of reference. The blurriness in first-person-view videos is
mainly caused by the relative motion between the camera and the captured scene.
A candidate algorithm to filter blurred frames is the no-reference perceptual
blur metric proposed by Marziliano et al [99]. Their algorithm does not require
knowledge of the original image, the content, nor the blurring cause. They
measure the blurring effect on the vertical edges detected in the photos. Beyond
blurriness, content-based filtering is implemented based on more complicated
techniques that extract characteristics or features of images.

2.3 Extracting Implicit Information from Sensor Data

To extract characteristics from preprocessed data, time-series data is often
analyzed in separated segments (e.g. a chunk of temporal data points), called
time windows, with some percentage of overlapping [26]. These characteristics
are represented in a wide range of features. They include statistical values in
the time domain such as mean, standard deviation, or kurtosis, which are simple
to compute but achieve high accuracy in activity recognition [26]. They can
be combined with frequency domain features to improve classification results,
such as energy in frequency bands and mel-frequency cepstral coefficients [54].
There are certain features that are specified according to applications. They are
defined using expert knowledge on certain domains. For example, gait cycles
can be detected with accelerometers as biometrics for identification [2]. One
gait cycle includes two steps, each of which is located by minimum values in the
preprocessed acceleration data [158]. Another example is the fiducial peak point
of ballistocardiography data [143, 133]. In both cases, the core technique is to
detect peaks (local minima or maxima) from segmented sensor data [145].

While the above kind of data is comprised of one or more sequence of values (i.e
in one dimension), an image can be represented as a matrix (i.e. two-dimensional
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data). Hence, these two dimensions have a spatial relationship between each
other. Human pays attention to the spatial configuration or the scene inside
an image to map from visual representations to meaning [66]. They can ex-
tract information from an image to identify its semantic properties, such as
an image of a street with people walking surrounded by buildings. Oliva and
Torralba [112] proposed a computational model to recognize scene categories.
They used spectral and coarsely localized information to estimate a set of per-
ceptual dimensions (naturalness, openness, roughness, expansion, ruggedness)
representing the dominant spatial structure of an image. Their proposed visual
representation, called the GIST descriptor [112], is one of the most well-known
global descriptors. On the other hand, there are local descriptors that charac-
terize object appearance and shape in each spatial regions of an image. For
example, Histograms of Oriented Gradients (HoG) [38] captures local inten-
sity gradient or edge directions as histograms at each cell of an image. To
achieve higher accuracy in image matching, Bosch et al. [20] proposed to accu-
mulate HoG descriptors in increasingly finer spatial grids to form a hierarchical
histogram-based representation.

Features can be learned from the data, for example using the penultimate
layer of a neural network [15]. This paradigm has achieved significant ad-
vances in various data-intensive problems such as those in computer vision
and speech recognition [60]. Many network architectures have been proposed
and continuously adapted to a wide range of applications. Deep convolutional
neural networks have showed their superior performance in the classification
of images [83] and videos [80]. They stacks layers of different types to trans-
form the input data into an output representation. After being trained in a
data-driven manner, a network learns filters (i.e. weight vectors) that can detect
specific patterns at some spatial position in the input. Another architecture
is auto-encoders [156] which are trained to output a representation as close
to the original data as possible. Its latent representation at the bottleneck
layer is employed as learned features which has a lower number of dimensions
than that of the input data. A auto-encoder network improved the accuracy of
different accelerometer-based activity recognition tasks [117]. While the two
aforementioned architectures tend to model spatial relations, recurrent neural
networks [115] aim to capture the dependencies within sequential data. Long
short-term memory [70], one of their variants, was applied to learn the rep-
resentation of biometrics data from electrocardiography [123] and keystroke
behaviour [148].

2.4 Applications of Implicit Information

In this section, we introduce representative applications of implicit information,
which are implemented on four relationships of users and smart devices. These
applications process data collected by embedded sensors to facilitate authen-
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tication (in a ONE-TO-ONE relationship, see Chapter 3), data transmission (in
a MANY-TO-ONE relationship, see Chapter 4), connection initialization (in a
ONE-TO-MANY relationship, see Chapter 5), and peer-to-peer communication
(in a MANY-TO-MANY relationship, see Chapter 6). These mechanisms enhance
usability while maintaining the security requirements of user-to-device and
device-to-device communication.

Autobiographical authentication is developed on the intersection of users’ im-
plicit memories and information recorded within personal devices. Das et al. [39]
proved its effectiveness through two online questionnaires and one field study on
mobile phone usage data. Hang et al. [64] proposed to generate the questions for
fallback authentication from what users have done with their smartphones. The
information directly comes from the data inside the smartphone. For example,
this system asked the users which photo had been taken or whom they had
communicated with. Implicit authentication [76] authenticates users based on
data generated from the actions they are carrying out. Human behavioural data
captured by sensors is a common modality to implement this authentication
paradigm [8]. A similar paradigm is continuous authentication [114], which uti-
lizes sensor data to implicitly identify users and automatically de-authenticate
them when they stop using the device. This is a countermeasure to the threat
where users either forget to log-out or attackers use the device while users
are temporarily absent. For example, Mare et al. [97] collect movement data
with on-wrist inertial sensors. They then analyzed the correlation between
wrist movements and in-device events to continuously identify the legitimate
user. Both paradigms require a data-driven training procedure to distinguish
legitimate users and adversaries, which is susceptible to evasion attacks [95].

Nowadays, the communication capability of smart devices allows them to
form an ad-hoc network with each other to share data and collaborate [63].
The secure connection mostly initiates using a PIN code entered by users [61],
which is obtrusive. Using implicit information extracted from physiological and
environmental data, we can implement unobtrusive device-pairing protocols that
are not only more convenient but also more applicable to limited user interfaces
(e.g. e-textiles without a screen). Smart devices within a range of each other
(i.e. in proximity) are able to collect similar sensor data characterizing device
context. Analyzing contextual information can help to detect the co-presence
of corresponding devices [153]. The correlation between proximity and context
similarity makes the sensor data suitable for unattended proximity-based device
pairing. In particular, contextual fingerprints, usually as binary sequences, can
be generated separately in each device using such modalities as radio-frequency
signals [154, 82] and audio [129]. Then, pairing keys can be derived from these
sequences through an error-correcting code whose parameters are configured
according to the number of mismatching bits. An identical process can be applied
to devices carried by users such as smart-phones and smart-watches. In this
setting, human gait is the source to first generate fingerprints, and then pairing
keys [166, 127].
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Backscattering is the paradigm to implicitly transmit data over a carrier signal
without actively generating radio signals [144]. Recently, ambience backscat-
ter has allowed devices in close proximity to communicate by backscattering
ambient RF signals (e.g. from a TV tower or cellular network) [91] or enable Or-
thogonal frequency-division multiple access (OFDMA) in Wi-Fi backscatter [172].
This low-power and low-cost mechanism has been constantly improved to fa-
cilitate long-range communication. Talla et al. [151] integrated a frequency
synthesizer to enable chirp spread spectrum modulation in their backscatter
devices. Varshney et al. [155] re-designed the computational Radio-frequency
identification (RFID) architecture to achieve a long communication range in the
868MHz and 2.4GHz bands. Their design used two oscillators to generate two
frequencies for Frequency-Shift Keying on the carrier signal. Recently, in order
to implement concurrent transmission of multiple devices, Hessar et al. [69]
utilized distributed chirp-spread-spectrum coding to organize the backscattered
signals. Although backscattering has become a solution for communication with
low power consumption, all current backscattering systems focus only on data
transmission of individual devices. We extend the state-of-the-art by performing
data aggregation over the wireless communication channel. Based on that, we
can realize partially the computation of a machine learning model. We hide the
transmitted data in backscattered signals (i.e. a covert channel to aggregate
sensor data). Moreover, our design simplified the prototype through eliminating
oscillators to further reduce the power consumption.

2.5 Summary

After investigating the existing applications of implicit information, especially in
user authentication, device pairing, and secure data transmission, we discovered
that implicit information could be further utilized to implement novel security
mechanisms or enhance the current ones. In user authentication, we proposed
to generate always-fresh passwords from first-person-view videos. The visual
data captured by an on-body camera had not been used to authenticate users.
Thanks to the ever-changing of first-person-view videos, our image-based pass-
words could address the issues of shoulder-surfing and smudge-based attacks. In
data transmission, especially with such resource-constrained devices as sensors,
backscatter communication provided an elegant solution to the power consump-
tion of transmitting data. However, existing work mainly focused on encoding
data into network packages to mimic conventional protocols. Based on that,
training a machine learning model relied on a central node which aggregated
data from sensors before performing the training algorithm. We simplified the
data transmission by encoding transmit values into burst sequences so that we
could leverage the signal interference as a means to implicitly aggregate data.
We derived a variant of the stochastic gradient descent algorithm that could
work with vertically-partitioned data and allow sensors to retain their model
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parameters at their sites. In addition, the superimposition of burst sequences
possessed an interesting attribute that hid transmit values. In initiating a
communication channel between two devices that have not connected to each
other before, we proposed to utilize vocal commands, which were intuitive from
the users’ point-of-view. We extracted audio fingerprints and used their simi-
larity to establish a secure connection. We then experimented with human and
hardware eavesdroppers to evaluate the users’ awareness with eavesdroppers.
In on-body device pairing, we proposed a novel gait-based pairing protocol that
utilized the difference between a instantaneous gait cycle and a mean gait cycle.
We implemented and evaluated this protocol as a means to realize continuous
on-body device pairing. Later we presented an approach to extend the protocol
to resting positions through using heart-beat data captured with accelerometers.
We introduced the first-ever attempt that formulate the key extraction problem
as a learning model, which is a Siamese auto-encoder. All of these security
mechanisms were based on implicit information extracted from sensor data and
they addressed existing problems in current mechanisms. In the next chapters,
we would introduce in details our proposed mechanisms.
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3. Always-fresh Authentication
Challenges

A device performs the authentication process to evaluate the truth of a user’s
identity in order to decide whether it should allow the user to access its data
and services or not [35]. To be authenticated, the user is required to recall
the secret information considered as passwords [67]. The user authentication
process is an example of the ONE-TO-ONE relationship between the device and
its owner. In this chapter, we generate transient authentication challenges using
first-person-view videos capturing a user’s activities and observations.

3.1 User Authentication

We perform the procedure of authentication everyday. For example, we open
doors with our physical keys, keycards, or numeric codes. This action is to au-
thenticate ourself with the locations that we intend to enter. Digital devices such
as smart-phones and computers offer multiple methods for user authentication,
including numeric codes, graphical patterns, and biometrics (e.g. fingerprints).
One common authentication method on smart devices is the use of Personal
Identification Numbers (PINs) [32], which are sequences of several digits (usu-
ally four) and are chosen by users. These PINs, as well as their longer version
(e.g. passwords containing alphanumeric and special characters), have widely-
known drawbacks, including: selecting weak passwords, using one password
for several devices, storing them in unsecured ways (e.g. writing on a piece
of paper), using the same password for a long time, and being vulnerable to
shoulder-surfing [67]. Graphical passwords have been introduced around 1999
in order to improve memorability and usability while consolidating password
strength against guessing attacks [17]. They are nevertheless still vulnerable
to such attacks as: shoulder-surfing and smudge attacks [146]. Authentication
based on biometrics data [102] is static, limited (e.g. number of fingers), possible
to be stolen (e.g. fingerprints from surface), and non-resilient (i.e. if the biomet-
ric information is compromised, the user can no longer use it) [88]. Behavioural
biometrics [8] such as touching gesture, gait, and keystroke dynamics rely on a
machine learning system training on the users’ behavioural database and are
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Figure 3.1. Potential layouts of our authentication challenges: (a) and (b) are Image-selection
while (c) and (d) are Image-arrangement. Both schemes can be adapted to different
screen sizes by varying the number of images.

vulnerable to evasion attacks [95].
In this chapter, we propose to generate transient authentication challenges

from images capturing a user’s perspective. Our graphical passwords utilize
implicit information on the chronological order of the user’s activities and ob-
servations. These authentication challenges are always-fresh and personalized
for each user. They release users from changing passwords regularly while
still offering a memorable representation of log-in information. There are two
approaches that are the most related to our proposed mechanism. The first one
is called autobiographical authentication [39] [64], which utilizes phone usage
events (e.g. sending messages and taking pictures). This approach, however,
may not obtain enough information to generate authentication questions for
users with little device usage [64]. The second related approach produces pass-
words from images selected by users [43] [51] [42] or from icons of the installed
applications [147]. The images used in these studies came from fixed collections
while those in our approach originate from ever-changing stream of personalized
videos recorded with wearable cameras.
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3.2 Image-based Password Design

We suggest two authentication schemes, as shown in Figure 3.1: Image-selection
and Image-arrangement. These are formed from images in various lengths of
timelines so that they can be adapted to different scenarios, from instant log-in
to fallback authentication. In addition, we can strengthen the approach by using
a sequence of consecutive challenges. In Image-selection, the challenge is to
identify images which belong to a specific time window. With larger screens,
it is also possible to ease the login experience by requiring only a certain per-
centage of correct choices (e.g. 90%). In Image-arrangement, we ask the users
to arrange multiple images in the correct chronological order. In all cases, our
implementation alters the images to form a new challenge with each wrong trial,
so that learning of the right order is difficult in consecutive login attempts. From
our experiments (cf. Section 3.4.1), Image-selection challenges require only a
short completion time. Image- arrangement, however, has a higher mental load
and therefore requires a longer time to solve the challenges. Hence, the former
can be used as an instant login mechanism while the latter is appropriate for
fallback authentication.

Image-arrangement

Image-arrangement passwords facilitate the challenge on the chronolog-
ical order of images. After segmenting and clustering, we group video
frames in such a way that images in the same segment belong to the same
cluster. Then, photos which are in the same cluster but appear in different
segments (i.e. repetitive scenes) are removed from the candidate set. We
do that because the user may be confused if passwords contains a image
pair that describes the same scene but is interleaved by images belonging
to a different scene. Image-arrangement authentication challenges aim
to leverage the usability of pattern passwords on the Android platform.

Image-selection

Image-selection passwords utilize the time window when the user exe-
cutes a certain activity or observes a particular scene. For instance, the
authentication question “What have you done today?” or “What have
you not done after 11:00am?” is shown above the images. Hence, the
clustering algorithm is supplied with videos both within and exceeding
the respective time window. We discard scenes that appear both inside
and outside the time window. Repetitive scenes happening within the
time window are not removed because they do not cause any confusion to
the user.
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Figure 3.2. The process of generating authentication challenges from first-person-view videos

3.3 Generating Passwords from First-person-view Videos

In this section, we discuss the technical details behind our image-based password
generation. First, we present our algorithm to select candidate video frames
which are later used to create image-based authentication challenges. Second,
the selected frames are segmented into different scenes according to the user’s
observations and activities. Next, we introduce a clustering-based technique to
remove repetitive scenes which do not support the user’s recall process. Finally,
we form the authentication challenges from the remaining images, which are
clear and memorable. Figure 3.2 summarizes our procedure that transforms
first-person-view videos into authentication challenges.

3.3.1 Key Frame Selection

The recorded videos contain a huge number of images or frames with greatly
varying quality and content. A significant part of them are blurred due to body
and head movements. Hence, we retain only key frames with memorable content.
To do that, we calculate the blurriness of each frame using the method proposed
by Crete et al. [36]. They apply a low-pass filter on a grayscale image, then
compare the neighbouring pixel variation between the original and filtered photo.
If the difference between the two versions is high, the original one is sharp;
otherwise, it is blurred. Let F be an m×n grayscale image. We apply a vertical
and horizontal low-pass filter to obtain the blurred image B:

Bv = hv ∗F

Bh = hh ∗F

where: hv = 1
9
×
[
111111111

]
and hh = h�

v

(3.1)
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Then the variation of neighbouring pixels is calculated vertically and horizontally
for both images:
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Finally, the blurriness of F nF is:
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Assume the video consists of k frames vi whose blurriness is ni, we remove
vi if ni � median({ni|i ∈N,1� i � k}). The remaining photos tend to describe
memorable moments that have captured the user’s own attention. Alternatively,
if the headset is equipped with an eye-tracking camera, we can detect fixation
moments to choose important frames. Here, however, we focus on the blurriness-
based method because it is more versatile.

3.3.2 Image Features

We aim to extract both global and local characteristics of each video frame. Each
feature vector is able to describe the appearance of the whole scene as well as
that of the local sub-regions and individual objects. To fulfil this requirement, we
combine the Census Transform Histogram (CENTRIST) [164] and the Pyramid
of Histograms of Orientation Gradients (PHOG) [20] to form the representation
of our first-person-view images. We perform Principle Component Analysis to
reduce the number of dimensions. We achieved the best result when each feature
vector contains n = 100 variables. The 100-dimensional vectors are then used
to split the video frames into temporal sequences and cluster images that have
similar content.

CENTRIST: [164] generates a holistic representation of a scene by capturing
structural characteristics and rough geometry. Census transform compares
the intensity value of each pixel with those of its neighbourhood. If the value
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is less than for one of its neighbours, the corresponding location is assigned
0, otherwise 1. Then, eight bits in the neighbourhood are concatenated and
converted to a base-10 number called the census transform value of the central
pixel. After all pixels of the image are evaluated, the CENTRIST descriptor is
constructed from a histogram of census transform values. A spatial pyramid
scheme is applied to obtain a robust global representation. An image is split
into (sliding) blocks in different levels. In each block, the CENTRIST descriptor
is extracted independently. Finally, the descriptors (i.e. histograms) of all blocks
at all levels are aggregated to form the representation of the image.

PHOG: To complement the above global descriptors, we compute the PHOG
feature [20]. With this descriptor, Bosch et al. [20] aimed to represent an
image through its local shape and the spatial relations of the shape. They
divide an image into rectangular regions at several resolutions and calculate
the distribution (histogram) of the edge orientations in each region. Each bin
of the histogram contains the number of edges whose orientations belong to a
specified angular range. Then, the concatenation of histograms from all regions
becomes the descriptor of the image.

3.3.3 Image Memorability Classification

We evaluate the effectiveness of our blurriness-based image removal technique
by selecting 192 confused images and 234 memorable images from the output
of our algorithm. These images were then fed to an online evaluation service 1,
which was developed from crowdsourced photos, to assess their memorabil-
ity [74]. The mean memorability score of the former was 0.51 while that of the
latter was 0.76 (1 is the most memorable).

This result implies that a classification algorithm can also be developed to
discriminate images into two categories. To test this hypothesis, we trained a
Support Vector Machine classifier using LibSVM 2 with CENTRIST [164] and
PHOG [20] features. We randomly split the above image sets into training and
testing subsets. The classifier parameters were optimized with cross-validation.
Then, the optimal model was applied on the testing subsets. We repeated this
process ten times. The average correct classification rate and F-measure were
92% and 0.93, respectively. This shows that the technique is useful for filtering
out unmemorable images.

3.3.4 Segmentation

After the first phase of extracting key frames, the k′ � k selected images are
then segmented into scenes, based on the similarity of visual features (cf. Sec-
tion 3.3.2). If the difference between two frames is below a certain threshold τ,
they belong to the same segment. We define τ as the median value of the Eu-

1http://memorability.csail.mit.edu/demo.html [Accessed: June 18, 2019]
2https://www.csie.ntu.edu.tw/ cjlin/libsvm/ [Accessed: June 18, 2019]
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clidean distance between two consecutive (representative) frames in the feature
space:

median({d( f (vi), f (vi+1))|i ∈N,1� i � (k′ −1)}), (3.4)

where the function f extracts the feature vector from video frames and d is the
Euclidean distance function. We choose τ instead of the pairwise distances be-
tween every pair of frames for its lower computational complexity (O (n) instead
of O (n2)). The algorithm is summarized in Algorithm 1. We later refine the
segmentation output through discarding short segments resulting from quick
head movements.

Algorithm 1: Segmentation
Data: An array F of k′ images of size m×n
Result: An array S of segment indices
for i ∈ [1,k′ −1

]
do

f i = PCA((CENTRIST(Fi),PHOG(Fi)));
f i+1 = PCA((CENTRIST(Fi+1),PHOG(Fi+1)));
di = calculate_distance( f i, f i+1);

end
τ= median

(
{d
(
i
)|i ∈ [1,k′ −1

]
}
)
;

for i ∈ [2,k′ −1
]

do
if di < τ then

Si = Si−1;
else

Si = Si−1 +1;
end

end

3.3.5 Clustering

Next, we cluster similar segments into groups of the same scenes. The number
of clusters is not determined beforehand because there is no knowledge on
which activities are repetitive. We therefore use Density-based spatial clustering
of applications with noise (DBSCAN) [50], which groups together points that
are in a neighbourhood. The algorithm requires a distance threshold to group
similar images and the minimum number of images in each cluster. For the
distance threshold, we again use the difference of consecutive frames τ in
Equation 3.4. The second parameter allows us to discard noisy images, which
are non-informative.
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Figure 3.3. Sample images extracted from our egocentric videos. They vary in activities (e.g.
holding objects, playing sport, traveling on public transport, and social interaction),
locations (indoor and outdoor), weather conditions (e.g. winter and summer), and the
light intensity (e.g. sunny day, having dinner at night, and dark scene).

3.4 Case Studies

In this section, we implemented our proposed method and deployed the system to
realistic scenarios in order to answer the research question: How to authenticate
with always-fresh passwords leveraging implicit information? We performed
several case studies: (1) experimenting the image-arrangement authentication
mechanism which performed during two consecutive days and on an object-
interaction setting in an office unfamiliar to the users and (2) experimenting the
image-selection authentication mechanism which covered an extreme case of a
subject traversing first-time visited locations continuously over a period of three
weeks and a basic study spanning two consecutive days. The results achieved in-
dicate that the log-in time required is comparable with other graphical password
schemes such as PassApp [147] (7.27 seconds), Passfaces [51] (18.25 seconds),
and Déjà Vu [43] (27 - 32 seconds), even though the passwords utilized in our
case are, in contrast, not static.

For video recording, we utilized two on-body cameras (cf. Figure 3.4). The
Transcend DriveProTM Body 10 device (cf. Figure 3.4a) was mounted on the chest
while the Pupil Labs headset [81] could be worn near the eyes (cf. Figure 3.4b).
Both feature high-definition resolution and a wide-angle lens. A collection of
images extracted during these studies is shown in Figure 3.3. Those photos
represent diverse settings due to the subjects’ activities, body movements, loca-
tions, weather, light intensity, and scene appearance. The wearer then solved
the passwords on personal devices while the number of attempts and the entry
time were collected. We assumed that all involved components (e.g. wearable
cameras, personal devices, and processing servers) were securely connected.
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(a) Chest-mounted camera (b) Head-mounted cam-
era

Figure 3.4. The devices used to collect video data: Transcend DriveProTM Body 10 camera (a)
and Pupil Labs headset (b)

3.4.1 Image-arrangement Study

Experiment on multiple indoor locations

Participants : We recruited five subjects (μage = 30) and two of them
were female. Two of them wore glasses. Their height was from
1.60m to 1.85m (μheight = 1.7m).

Materials : We used a Transcend DriveProTM Body 10 device to record
first-person-view videos (see Figure 3.4a).

Design : The camera was attached to the subjects’ clothes using its clip.
We deployed a web application to capture the log-in time and the
number of attempts.

Procedure : The camera wearer continuously recorded videos when
possible, considering technical, legal, and social regulations. The
videos contained data related to the subjects’ daily activities and
observations.

We conducted two experiments to investigate the performance of the image
arrangement authentication challenge. For the first study, we recruited five
participants (two female). To record the videos, a Transcend DriveProTM Body
10 device was worn by each subject on two consecutive days (cf. Figure 3.4a).
The camera has a rotational clip to attach easily on clothes or backpack straps.
The camera wearer continuously recorded videos when possible, considering
technical, legal, and social regulations. The videos contained data related to the
subjects’ daily activities and observations.

We developed a web application that supports slide-and-swipe gestures with
Javascript and HTML. Each challenge, i.e. graphical password, consists of four
video frames which are selected from distinguishable temporal segments. In each
challenge, the user needs to answer n = 4 image-based authentication challenges
consecutively. The number of attempts and the entry time are collected for
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each password. The system changes the challenge (i.e. new images) with every
wrong arrangement. We observed a mean entry time of 9.79 seconds and a mean
number of attempts of 1.87.

Experiment on object-interacting activities in an indoor scenario

Participants : We recruited seven participants (four females, two with
glasses). Their mean age was μage = 32. Their height was from
1.60m to 1.85m (μheight = 1.7m).

Materials : Each subject wore the Pupil Labs headset [81] (cf. Fig-
ure 3.4b). The room in this experiment contained basic furniture
and office equipment.

Design : The camera was attached to a headset frame. The activities
that the subjects could performed included: reading a book, working
on a laptop, writing on paper, writing on a board, viewing a poster,
talking to a person, using a smart-phone, unboxing an item, playing
a boardgame, and using a paper-cutter. The objects were put on the
desks (laptop, paper, boardgame, and paper-cutter), hung on the
wall (poster and board), or in the subject’s pocket (smart-phone).
We utilized the web application to capture the log-in time and the
number of attempts.

Procedure : Each subject wore the Pupil Labs headset and performed
the activities in any order, before solving authentication challenges
generated from the recorded first-person-view videos.

In order to understand the performance of the system in indoor environments
with similar background and limited video footage, we prepared an extreme case
in which interaction with several objects in a single office room is investigated.
The setting was challenging to our system because all activities occurred at the
same location, so that object appearance and interaction are the only visual cues
that assist our video analysis algorithm. The room featured basic furniture and
office equipment and was unknown to all seven participants (four females, two
with glasses). Each subject wore the Pupil Labs headset [81] (cf. Figure 3.4b) and
performed activities in an arbitrary order, before solving passwords generated
from the recorded egocentric videos. The activities included: reading a book,
working on a laptop, writing on paper, writing on a board, viewing a poster,
talking to a person, using a smart-phone, unboxing an item, playing a boardgame,
and using a paper-cutter. The objects were put on the desks (laptop, paper,
boardgame, and paper-cutter), hung on the wall (poster and board), or in the
subject’s pocket (smart-phone).

Figure 3.5 shows the number of attempts and entry time. The declining trend
in both Figure 3.5a and Figure 3.5b indicates that the wearer is able to learn
about the occurrence order due to the limited variation possible in this setting.
Participants spent on average 12.62 seconds to answer the first authentication
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(a) Average number of attempts to solve each
password

(b) Average entry time spent on solving each
graphical password

Figure 3.5. User effort in terms of the number of attempts and the entry time in the object-
interaction scenario with image-arrangement authentication challenges. The proto-
type supports slide-and-swipe interaction to decrease the entry time.

(a) Number of clicks to solve the passwords (b) Time duration spent on solving the pass-
words

Figure 3.6. User effort in terms of the number of clicks and the entry time (duration) in the daily
condition study with image-selection authentication challenges

challenge. When all four passwords were taken into account, each subject spent
9.77 seconds with 1.21 attempts to solve a password.

3.4.2 Image-selection Study

To evaluate our system in the Image-selection mechanism, we conducted two
experiments in which the subjects wore the cameras for several days. For this,
another web-based prototype was implemented that displays from two to eight
photos. Both the total number of images n and the quantity of valid photos
1 ≤ k ≤ (n−1) were varied randomly. The challenge consisted of the images
describing events on the previous day but not on the current day. The subjects
were able to select and unselect an image multiple times until achieving the
correct configuration. We recorded the number of clicks. The entry time was
calculated from when the password fully appears until when the proper selection
was reached.
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Experiment on activities in outdoor scenarios

Participant : We recruited one male subject (30 years old, 1.65m tall,
no glasses).

Materials : The subject wore Transcend DriveProTM Body 10 camera on
the chest.

Design : The experiment aimed to capture scenes of home, workplace,
and navigation (both on foot and on vehicle). The subject was au-
thenticated with image-selection challenges generated dynamically.
We recorded the number of clicks (on the images) and the log-in
time.

Procedure : The camera continuously captured videos in considera-
tion of technical, legal, and social regulations. The videos con-
tained scenes related to the subject’ daily activities and observa-
tions. The subject randomly performed the authentication with
image-selection passwords and the number of clicks and the log-in
time were recorded.

In the first experiment, the Transcend DriveProTM Body 10 camera was worn
by a graduate student over a period of three weeks (cf. Figure 3.4a). Mainly,
the videos contain scenes of home, workplace, and navigation (both on foot and
on public transport). In particular, the subject also captured videos of a trip
to Stockholm (Sweden), Wadern (Germany), and Brussels (Belgium), where
the student visited for the first time. The subject performed the log-in actions
multiple times during the experiment with dynamically-generated graphical
passwords. Depending on password length and the number of valid images
(n,k), the time to success varied (cf. Figure 3.6). Apparently, the number of
clicks and the entry time increase when the password becomes complex. In the
experimental results, 50% of the two-image passwords were solved in about
1 second or less with a single click. Even though passwords with 8 images
are more challenging, the subject solved them on average in 4.78 seconds (cf.
Figure 3.6a), with 7.44 clicks (cf. Figure 3.6b).
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Table 3.1. Average entry time in seconds and number of clicks to achieve partial and total
correctness in the image-selection scheme. The numbers in brackets are standard
deviation.

Correctness � 50% � 75% 100%

Entry time (s) 3.77 (2.88) 4.85 (3.08) 5.66 (3.33)

# clicks 2.09 (0.98) 3.14 (1.68) 3.68 (2.08)

Experiment on activities in outdoor scenarios

Participant : We recruited five subjects (μage = 30) and two of them
were female. Two of them wore glasses. Their height was from
1.60m to 1.85m (μheight = 1.7m).

Materials : The subjects wore Transcend DriveProTM Body 10 camera
on their chests.

Design : The experiment aimed to capture scenes of home, workplace,
and navigation (both on foot and on vehicle). The subject was au-
thenticated with image-selection challenges generated dynamically.
We recorded the number of clicks (on the images) and the log-in
time.

Procedure : The camera continuously captured videos in consideration
of technical, legal, and social regulations. The videos contained
scenes related to the subjects’ daily activities and observations.
The subject randomly performed the authentication with image-
selection passwords and the number of clicks and the log-in time
were recorded.

Furthermore, we investigated another case involving five subjects (two females,
two with glasses). Each of them wore the camera over two consecutive days.
Then, they tried to solve the image-selection authentication challenges. For a
password length of 2−8 images with 1−7 valid images, the mean entry time
was 4.67 seconds (standard deviation 3.17) and the mean number of clicks was
2.92 (standard deviation 1.89). For challenges with a bigger number of images,
it was more likely that one of the images was selected incorrectly. As a trade-off
between usability and security, we therefore also compared the performance
until a specific fraction of images was chosen correctly (see Table 3.1 where
only 8-image passwords have been considered). When the users answered the
challenges, we quantified the correctness of the current solution based on the
number and position of the chosen valid photos. The table shows the user
effort in terms of the average entry time (seconds) and number of clicks to
achieve answers 50%, 75%, and 100% of similarity compared with the correct
image-based authentication challenges.

Based on these results, our system can be configured to balance security and
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(a) Number of permutations in an image ar-
rangement password

(b) Number of combinations in an image selec-
tion password

Figure 3.7. Number of possible answers (permutation or combination) of our authentication
mechanism

usability according to individual demand or preference. This approach reduces
the effort in terms of entry time and number of clicks.

3.5 Security Analysis

In this section, we analyze four attacks where adversaries try to log in to a user’s
personal device without obtaining the wearable camera. The case of accessing
both devices is not in the scope of this study, though it can be mitigated by using
head movements detected by inertial sensors [89] or video analysis [72].

3.5.1 Brute Force Attacks

The bruteforce attack assumes that attackers obtain the personal device but do
not have other information such as the user’s routine. Hence, the adversaries
have to try all possible combinations of images in each authentication challenges.
In Figure 3.7, we illustrate the number of potential solutions for one password
of fixed images. Note that in our implementation, each image-arrangement
password is composed of fresh images after each trial. Hence, it would be more
challenging for attackers to find the right chronological order.

Previous image-based authentication schemes selected photos from a fixed
collection, such as in [43, 51, 59]. Hence they suffer from attacks based on
probabilistic bias of frequently-selected photos [59] or regions in each image [7].
Our authentication challenges come from ever-changing egocentric videos, which
are collected naturally in a personalized manner. This mechanism offers more
variety in selected image content while being customized to a specific user.

3.5.2 Smudge-based Attacks

In smudge-based attacks, attackers analyze traces (smudges) on the device
screen to reconstruct the user’s passwords. Our mechanism forms a new au-
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Table 3.2. Observation attacks and proposed countermeasure methods

Attacks Coverage Countermeasures

Following users All Situational awareness

Insider All Situational awareness

Social media Partial Privacy settings

Location tracking Partial Privacy settings

Video surveillance Partial Situational awareness

thentication challenge in terms of image content whenever users initiate the
authentication procedure or enter wrong answers. This makes it more challeng-
ing to adversaries because our authentication challenges are generated from
ever-changing videos. Hence, our approach is resistant to smudge-based attacks.

3.5.3 Observation Attacks

In observation attacks, adversaries can access information sources that contain
data to infer the chronological order of images displayed in authentication
challenges. For example, adversaries can follow the user or leverage social
media, location tracking, and surveillance cameras. We summarize these threats
and possible countermeasure methods in Table 3.2. An obvious threat for our
authentication schemes is when an adversary following the user, remembering
visual context, and is in possession of the locked device. The first two attacking
strategies in Table 3.2 are derived from shoulder-surfing. In shoulder-surfing
attacks, adversaries observe an authentication process and therefore know at
least one right configuration of images. The attacking strategies of following
users or obtaining insider’s information are more sophisticated to perform since
adversaries are required to observe users for a longer time (to collect enough
visual context data), compared to stealing alphanumeric passwords. Moreover,
a fixed password can be obtained and used later while solving ever-changing
challenges requires immediate knowledge of users’ activities. While possible, we
remark that it is challenging for attackers to remain undetectable, especially for
a stranger, if the users are aware of their environment. In addition, users may
be in a personal space (e.g. office, car, or home) most of the time. Furthermore,
as we show below, even if the adversary obtains knowledge on the routine of the
user, it is still challenging to guess the generated passwords without tracking
the user suspiciously. To better understand this threat, we have conducted a
user study. Using the office setting in Section 3.4.1, we implemented an attack
in which two informed adversaries with knowledge on the environment tried
to solve the authentication challenges of others. These attackers remembered
the furniture layout and the list of activities. They reported that two strategies
were leveraged to obtain the correct temporal order of images: (1) employing
their knowledge on the suggested activities and the furniture arrangement to
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form a candidate image order, and (2) fixing an arrangement for every graphical
password without paying attention to the images. If they could not determine
any answer, they tended to choose a random one. For the first strategy, the mean
time spent on a single challenge was 54.91 seconds (standard deviation 67.04)
with average 10.72 attempts (standard deviation 10.91). In case of the second
strategy, each image-based password took the attacker 64 seconds (standard
deviation 56.12) with 22.36 attempts (standard deviation 20.82) on average.
Even though occasionally the attackers selected the correct order, their effort
was much greater than that of a legitimate user. Hence, thresholds can be set on
the user’s effort (entry time and number of attempts) to lock the personal device.

We also consider the exploitation of side information to obtain the chrono-
logical order of images showed in authentication challenges. Nowadays, users
may share their data (e.g. locations or photos) in social media services. An
attacker with access to these recordings may infer the user routine and crack
the authentication challenges. We advise users to control the privacy settings in
social media services as a countermeasure method.

The popularity of surveillance cameras provides another source of information
for adversaries to leverage. We notice that these cameras are installed in public
places. Hence, they only cover a part of a user’s routine. The adversaries must
therefore combine multiple sources to solve an authentication challenge.

3.6 Conclusion

In this chapter, we presented a novel user authentication mechanism compati-
ble with touch-based interfaces, which takes advantage of implicit information
collected with wearable cameras. Our approach offered always-fresh authentica-
tion challenges that were personalized to individual users and were changing
constantly in each log-in session. We explained how to select video frames that
contain meaningful visual details from the first-person perspective. We realized
two image-based password designs: image-arrangement and image-selection. In
the first one, an image sequence must be arranged into the correct chronological
order. The second allocates images into time intervals and users are required
to identify which scenes have appeared or which activities have happened at a
certain moment. We conducted multiple user studies to evaluate the proposed au-
thentication mechanism. The security threats were discussed and another case
study was conducted to investigate the vulnerability of our approach towards
an active adversary. We conclude that our scheme is robust against shoulder
surfing and smudge attacks. It can also mitigate threats arising through active
adversaries either following the subject or stealing the hardware with the user’s
situational awareness or a parametric limit of log-in time. Our image-based
authentication mechanism supports the security of the one-to-one relationship
between a device and its legitimate user.
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4. Collaborative Inference based on
Implicit Data Aggregation

Ericsson has forecast that by 2022 the number of short-range IoT (Internet-of-
Things) devices will reach 16 billion, and that of wide-area IoT devices will be
2.1 billion 1. The increasing number of connected devices has made their power
consumption a main concern [29], especially when they encrypt and transmit
data [40]. This motivated us to develop data aggregation algorithms that are
secure and efficient. We propose to utilize the characteristics of wireless com-
munication channels to perform confidential data aggregation. The interference
of simultaneous transmissions can facilitate the implementation of arithmetic
functions on the channel itself. Based on that, we can train a machine learning
model by offloading partially the computation over the wireless channel. We
employ this mechanism on passive radio devices (i.e. backscatter devices) to
introduce a energy-efficient collaborative training procedure of inference models
with minimal communication. The connected devices collaborates to implement
a shared classification model, which is an instance of the MANY-TO-ONE device
relationship.

4.1 Training Classifiers across Vertically-Partitioned Data

In this section, we describe how weights at individual distributed devices are
trained through an interactive protocol. In a nutshell, (1) the coordinator reads
the weighted feature values from the channel, (2) evaluates the classification
model, (3) shares the loss with the smart devices, that (4) update their weights
accordingly. These four steps are repeated until convergence is reached.

In particular, for logistic regression [104], optimal weights can be found by
minimizing the error function:

E[w j]=
{

− log(h(x j)) if y= 1

− log(1−h(x j)) else
, (4.1)

which is usually formulated as the negative log likelihood (or the loss func-

1Internet of Things forecast: https://www.ericsson.com/en/mobility-report/internet-of-
things-forecast [Accessed: Jan 18, 2020]
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Distributed device i

Distributed device i

Distributed device i

. . .

Coordinator

Coordinator

Coordinator

Stored weight wi and learning rate λ

Sensor reading: xi
Compute wi xi

Transmit wi xi
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(a) Full feedback

Distributed device i

Distributed device i

Distributed device i

. . .

Coordinator
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Coordinator

Stored current weight wi , previous weight w′
i ,

and update direction ri
Sensor reading: xi
Compute wi xi

Transmit wi xi

Received:
∑n

i=1 wi xi =w�x
Compute loss using Equation 4.2

Generate binary feedback b (Algorithm 3)

Positive b: wi = wi + rẋi
Negative b: wi = w′

i
r i =−ri

Broadcast b

(b) Binary feedback

Figure 4.1. Protocols for the distributed gradient descent algorithm between the coordinator and
all n distributed devices. The schematic displays an update process with respect
to device i on one sample. The process is repeated with new sensing data. Each
distributed device i stores its current weight wi , the previous weight w′

i , and the
learning rate λ to control the convergence speed.

tion) [22]:

l(w)=−logL(w)=−
m∑

j=1

yjlogh(xj)+ (1− yj)log(1−h(x j)) (4.2)

via gradient descent such that for each wi an improved weight is iteratively
found by

wi = wi +λ · ∂

∂wi
E[wi]. (4.3)

In our case, the weights wi are distributed at the respective devices i ∈ {1, . . . ,n}.
We propose to implement gradient descent across devices spread in the envi-
ronment (cf. Figure 4.1). In particular, the receiver, which is the coordinator in
our scheme, guides the training process for a given class (e.g. an environmental
situation that is to be trained). Distributed devices continuously compute and
transmit their weighted feature values as Poisson-distributed burst sequences
as described in Section 4.2. The coordinator, at receiving

∑n
i=1 wixi, computes

the expected loss E[w] and broadcasts this to the distributed devices, which
update their weights accordingly. This process is iterated until convergence
is reached. Since this process implements a version of the gradient descent
algorithm, the devices eventually approach an optimal configuration of their
weights wi with respect to the trained classes.

Figure 4.1 describes two protocols for training a distributed logistic regression
model. Figure 4.1a with full feedback based on the classification error and a
modified protocol in Figure 4.1b that achieves gradient descent with minimal
binary feedback. In particular, as depicted in Figure 4.1b, instead of transmit-
ting E[w] to the distributed devices, a binary information that informs whether
E[w] improves or not is broadcast. If the feedback is positive, device i main-
tains the current direction (increasing or decreasing) in which the weight wi
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.

is changing. Otherwise it reverses the direction. Regularization terms can be
integrated into this scheme if they satisfy an additive factorization form [168].
We implemented mini-batch training for the algorithm [22]. Practically, in order
to reduce the variance of updates [22], the weights are modified after computing
and transmitting some samples over the channel.

Our update mechanism of the weights is elaborated in Algorithm 2 and the
feedback generation procedure is listed in Algorithm 3. Algorithm 2 summarizes
the state transition and the corresponding action of each device according to the
feedback it receives. Each holds its own set of features for the training dataset.
Lines 4 - 6 add or subtract an update that combines a generated quantity ri and
a local feature value xi to the current weight wi; then changes the device state
to reversible. These steps can be customized by putting a probability of updating,
which can control the possibility of multiple distributed devices changing their
weights at the same time. Lines 8 - 10 reverse the update if it does not improve
the model quality, as well as alternating the update direction ri for future
rounds. If the feedback is good (Lines 15 - 20), the devices continue following
the current update direction ri. Algorithm 3 describes how the coordinator
generates feedback values when receiving data from the devices over a wireless
communication channel. It calculates the loss value at Line 1 before detecting
the loss trend (see Equation 4.2 for mathematical formulation). Then, the
feedback is generated from Line 3 to Line 7.

4.2 Computation over Backscattered RF Signals

We utilize the superimposition of simultaneously transmitted bursts on the
wireless channel to compute part of the distributed classification task. In
particular, as demonstrated in [134], it is possible to realize all four basic
mathematical operations using Poisson-distributed burst sequences. The scheme
is tolerant to weak synchronization of the transmitters and requires only simple
operations by participating nodes. The general principle is described in the
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Algorithm 2: Update algorithm for each distributed device
Data: A binary feedback value b ∈ {0,1}
Result: Parameter wj of the distributed device j and its state s j

if b = 0 then
// Previous update does not improve the model under training

begin
switch s j do

case 0 do
// Possible to update

wj = wj + rx j
i

s j = 1
end
case 1 do

// Replacing the current parameter with its previous

value and alternate the update direction

wj =Reverse( j)
ri =−ri

s j = 0 // Ready-to-update state

end
end

end
else

if s j = 0 then
// Possible to update

wj = wj + rx j
i // Add or substract a value following the current

update direction

s j = 1 // Reversible state

else
wj = wj + rx j

i // Continue to update following the current

direction

end
end
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Algorithm 3: Feedback generation at the coordinator

Data: A set of values wjx
j
i from each distributed device j over the sample

xi

Result: A binary feedback value b ∈ {0,1}
// Calculate the loss value

l(w)=−yilogh(xi)− (1− yi)log(1−h(xi))
t = IsLossDecreasing(l(w)) // Detecting the trend of loss values

if t = True then
b = 1

else
b = 0

end

following paragraph and visualized in Figure 4.2.
For two burst sequences encoding Poisson-distributed variables χ1 and χ2 with

means μ1 and μ2, their combination χ1 +χ2 again yields a Poisson-distributed
variable with mean μ1 +μ2 [140]. This is a general property that can be applied
similarly to other probability distributions. We leverage Poisson-distributed
values due to their representation as a sequence of bursts, which can be combined
with superimposition. For the transmission of a value, we divide a burst sequence
of length t into κt sub-sequences of length 1

κ
each. Each of these sub-sequences

contains with probability pκ one or more of a finite number of bursts. The
Poisson distribution then defines the probability to find k bursts in one such
sequence as [52]:

p(k;μt)= e−
μ

κ

(μ
κ

)k

k!
. (4.4)

The parameter μ determines the density of bursts within the sequence. The
larger μ is, the smaller the probability of finding no burst. It is also the mean of
the distribution.

We assume that environmental data is recorded by distributed sensors. The
resources, especially battery, at such devices are expected to be strictly restricted
so that the transmission of sensed values is expensive. Hence, training ma-
chine learning models over backscatter sensor networks is a suitable use case
for our proposed techniques. Consider n backscatter sensor nodes [13] with
corresponding transmit values v1, . . . ,vn. Each of these devices i defines a Pois-
son distribution with mean μi = vi. When the antennas of these n backscatter
nodes are excited from environmental electromagnetic signals, their transmit
sequences are then designed such that each of the κt transmit sub-sequences
has the probability p(k; μi

κ
) (cf. Equation (4.4)) that it contains exactly k bursts.

Specifically, each respective node switches between its ON-state and OFF-state
such that an ON-OFF keying sequence of bursts is generated which establishes
exactly the burst occurrence probability p(k; μ

κ
) for that it contains exactly k
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bursts in each transmit sub-sequence. At a receiver, the burst sequences are
constructively superimposed. For this received superimposed sequence, note
again that the bursts also follow a Poisson distribution, and that the probability
to observe exactly k bursts in a sub-sequence of length 1

κ
is then p(k;

∑n
i=1μi
κ

)
– a convolution of the individual Poisson distributions where the mean of the
convolution is the sum of the means μi of the individual processes.

We note further that, provided that no collision occurs, for the duration in
which the transmit sequences are jointly received from all backscatter nodes,
the probability to observe an individual burst in one transmit slot of the received
superimposed sequence is identical for all transmit slots. The probability of
collisions can be controlled via the length 1

κ
of the sub-sequences and was

analyzed in [135]. Equivalently, the probability to observe exactly k bursts
within 1

κ
transmit slots of the received burst sequence is identical regardless of

which 1
κ

slots are considered. Consequently, when the receiver disregards the
beginning and the end of the received burst sequence, transmitting backscatter
devices do not require synchronization.

The receiver extracts the combined value μ = ∑
i μi, computed during the

superimposition of simultaneous transmissions on the wireless channel by es-
timating the underlying probability distribution. Note that each sub-sequence
of length 1

κ
constitutes an individual random experiment so that estimation is

possible following the law of large numbers. In particular, the receiver simply
counts the number Ni of sub-sequences with exactly i bursts as well as the
total number of bursts T =∑n

i=1 i ·Ni. If N =∑n
i=1 Ni is large, we expect that

Ni ≈ N p(i; μi
κ

) [52]. We conclude

T ≈ N
(

p
(

1;
μ

κ

)
+2p

(
2;

μ

κ

)
+ . . .

)

= Ne−
μ

κ
μ

κ

⎛
⎜⎝1+

μ
κ

1
+

(
μ
κ

)2

2!
+ . . .

⎞
⎟⎠

= N
μ

κ
(4.5)

and consequently
μ

κ
≈ T

N
. (4.6)

A receiver can therefore extract μ=∑
i μi from a received superimposed burst

sequence transmitted by independent unsynchronized backscatter devices. By
utilizing logarithm laws and fractions of values, it is possible to generalize this
computation to all four basic mathematical operations (addition, subtraction,
multiplication, division) on the wireless communication channel [134].
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4.3 Security Analysis

In this section, we discuss two security aspects of the proposed approach. First,
the parameters of our trained model are scattered across devices, instead of
storing in one central location. Second, our technique of encoding values into
burst sequences to transmit simultaneously offers an implicit data perturbation
mechanism.

4.3.1 Model Confidentiality

Machine learning models are valuable since training them requires significant
effort and a huge amount of data. They are likely to retain sensitive information
of training data. Such information could be extracted by attackers once they
have access to the model [138]. Storing the classification model in one central
location creates a single point of failure, where attackers can concentrate their
effort to steal the model parameters.

With our approach, the model is intentionally not shared but instead dis-
tributed among devices participating in the training process. Stealing the model
in our scheme means to reverse-engineer it from the model prediction, which con-
stitutes a remarkable effort [152]. Since the model is distributed and not known
completely to any individual device, it is harder to steal all model parameters
and to infer sensitive information of the environment or its inhabitants.

On the other hand, attackers can generate burst sequences to alter aggrega-
tion results or even disrupt the model functionality (denial-of-service attacks).
Mitigating these threats is considered as future work, e.g. using physical layer
security [122] to modify our computation scheme. Note that these threats are
also applicable to conventional wireless sensor networks.

4.3.2 Implicit Data Perturbation

We explore an interesting aspect of the proposed approach: implicit data per-
turbation. As described in Section 4.2, our paradigm partially offloads the
computation of a machine learning model to the wireless communication chan-
nel. Specifically, each device transforms the transmit values into burst sequences
following a Poisson distribution. Since all devices can transmit simultaneously,
the receiver can observe the superimposition of all burst sequences. This implic-
itly hides individual values in the wireless signals, which can be considered as
a means of implementing data perturbation. We quantify this property of our
computation scheme, using the differential privacy paradigm [46].

Differential privacy [46] is the paradigm to mathematically evaluate the
quantity of information leakage from an algorithm applied on sensitive data.
We define a dataset D = (X, y) of which:

• X ∈Rn×d denotes a matrix in which each row i contains a d-dimensional
sample xi ∈Rd and
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• y ∈ Rn denotes a label vector in which each value yi corresponds to a
sample xi in X.

Consider another dataset D′ that differs from D with one sample. D and D′ are
neighbouring datasets. Dwork and Roth [46] introduced differential privacy to
quantify the privacy of a randomized algorithm M applied on these datasets.
Let O denote the image of M and S ⊂O . M preserves (ε,δ)-differential privacy
if:

Pr[M (D) ∈ S]≤ Pr[M (D′) ∈ S]× eε+δ (4.7)

where ε is the privacy budget and δ is the failure probability. If δ= 0, we achieve
ε-differential privacy:

ln
( Pr[M (D) ∈ S]

Pr[M (D′) ∈ S]

)
≤ ε (4.8)

From the definition, low values of ε express high privacy, i.e. less information of
the different sample is exposed when performing a function on D and D′. One
way to achieve ε-differential privacy is to add noise sampled from a distribution
to the outputs of the algorithm M , such as Laplace distribution [46], Gaussian
distribution [48], and binomial distribution [47].

Our computation scheme (see Section 4.2) represents feature values from the
device i as Poisson-distributed random variables χi. Each χi ∼ Poisson(wixi) is
then encoded into burst sequences in which each burst is generated following a
Bernoulli distribution (of a fair coin). Hence, the occurrence of bursts follows a
binomial distribution with n trials. This implementation makes the procedure
become a randomized algorithm M with the binomial mechanism. Dwork et
al. [47] calculated the condition for binomial distributions to achieve (ε,δ)-
differential privacy according to the number of trials n as:

n ≥ 64ln( 2
δ
)

ε2 (4.9)

Note that instead of explicitly adding noise to sensitive data, our approach
considers the bursts coming from other devices as a mechanism to implement
data perturbation for one device. Using Equation 4.9, we can find the minimum
number of bursts n in a burst sequence of length t to satisfy the pre-defined (ε,δ)-
differential privacy policy. Since we allow devices to transmit simultaneously,
we can conclude that adding more devices to the network would improve the
data privacy.

4.4 Experiments

We study the proposed distributed training of logistic regression with regard to
three aspects: the power consumption in comparison to the centralized approach
during the training process, the performance of the models trained by our
algorithms, and the robustness of detecting burst sequences under changes of the
environment. We deploy the computation offloading technique to a backscatter
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Table 4.1. Datasets of pervasive systems used to compare decentralized and centralized learning

INDOOR [27] OUTDOOR [45]

Environmental information in an office
over several days. Modalities: tempera-
ture, humidity, CO2 level, and light in-
tensity. The ground-truth was acquired
using a surveillance camera. The tar-
get of this dataset is to detect occupancy
of the office: whether there are people
inside the office or not.

DARPA/IXOs Sensor Information Tech-
nology experiment: scattered sensors
over 900×300m2, separated by at least
20-40m. Modalities: acoustic (micro-
phone), seismic (geophone), and infrared
(polarized IR sensor). The data describes
vehicles from two classes: tracked and
wheeled.

sensor network [13]. In these experiments, we aim to answer the research
question: How to secure data aggregation in collaborative inference through
implicit information convolution?

4.4.1 Decentralized Training

In this section, we compare our distributed training technique to the centralized
learning model on multiple datasets (see Table 4.1) in terms of convergence
rate and power consumption. With centralized training, all feature values xi

are transmitted to a central device (packet based) [5]. With our decentralized
algorithm, the weighted feature values wixi are backscattered via Poisson-
distributed burst sequences, and thereby aggregated (

∑
i wixi) on the wireless

communication channel (see Section 4.2).
To allow repeated execution of the experiments, backscatter devices have been

fed with feature samples xi from existing datasets. For the classification algo-
rithm, it makes no difference whether the values are fed from pre-recorded data,
or acquired from a sensor attached to the device. Tables 4.1 and 4.2 summarize
the characteristics of the four datasets we used to assess our distributed training
scheme. They are diverse in terms of size, number of features, and acquisition
sources (i.e. sensors). We presented the results on these datasets to illustrate
that our proposed training algorithm were extensible to various application
scenarios. In our evaluation, we assume that the number of backscatter de-
vices (i.e. sensors) is equal to the number of features in each dataset. That
is, each backscatter device will be fed with values belonging to one particular
feature. With OUTDOOR [45], INTRUSION [85], and PHISHING [105], we ran-
domly split 75% for training and 25% for testing. With INDOOR [27], we follow
the authors’ approach [27] to use six days for training and the remaining days
for testing. The data has been evaluated both with a centrally-trained logistic
regression (stochastic gradient descent, using scikit-learn 0.20.1 2) as well as
via our decentralized training approach (see Section 4.1).

To calculate the power consumption of our backscatter prototype hardware, we
use the equation 1

2 CV 2F [171], where C is the capacitance of the diode, V is the

2https://scikit-learn.org/stable/ [Accessed: Jan 20, 2019]
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Table 4.2. Benchmark datasets used to compare decentralized and centralized learning

INTRUSION DETECTION [85] PHISHING [105]

TCP data from 1998 DARPA Intrusion
Detection Evaluation [85]: distinguish-
ing “bad” (intrusions) from “good” traffic,
using such features as connection dura-
tion, used protocol, network service, size
of data, connection status, etc.

The dataset is analysed for predict-
ing phishing websites. It characterizes
anomaly in potential malicious sites, in-
cluding description of their links, format,
and content.

voltage, and F is the frequency of operating the diode. Based on the datasheet
of Infineon Technologies BAR8802VH6327XTSA1 (C = 0.25 pF,V = 5 V ,F =
1 MHz), the power consumption of our backscatter prototype is 3.125μW or
0.003125mW. This amount is lower than that of some backscatter devices re-
ported in the literature. For comparison, that of PLoRa [116] is 0.0035mW
(which is better than others, including: chirp spread spectrum LoRa backscat-
ter [151] 9.25μW, on-body frequency-shifted backscatter [171] 45μW, and fre-
quency shift keying backscatter [155] 70μW.). The power consumption of an
active LoRa node is 4.17mW [116]. We repeated the experiments 10 times for
each dataset. To show the convergence of our algorithm, we visualized the loss
function (minimizing the negative log likelihood function in Equation 4.2) along
with their confidence interval. During training, our algorithm uses less power to
optimize weights (i.e. parameters) of the logistic regression model, compared to
the centralized approach (cf. Figure 4.3).

The prediction accuracy achieved is competitive to that of centralized training
(in parentheses): INDOOR 0.92 (0.94), OUTDOOR 0.72 (0.78), INTRUSION 0.98
(0.97), PHISHING 0.75 (0.80). We visualized the confusion matrices on the test
samples of four datasets in Figure 4.4, 4.5, 4.6, and 4.7, respectively.

4.4.2 Classification Offloading in Backscatter Sensor Networks

We investigate the classification offloading described in Section 4.2 over a
backscatter sensor network [13]. First, we investigate the communication range
utilizing omnidirectional antennas (Ettus VERT900 824 to 960 MHz, 1710 to
1990 MHz Quad-band Cellular/PCS and ISM Band omni-directional vertical
antenna, at 3dBi gain). As transmitter and receiver, we used the Ettus N200
USRP devices with SBX daughterboards, carrier frequency 868MHz and sample
rate at the receiver as 1MHz. The measurements were conducted in the public
coffee space of our department. The layout of our experiments is shown in
Figure 4.8. The range of a transmission system can be extended into a specific
direction by concentrating a larger fraction of the emitted energy in this direc-
tion, for instance, by utilizing directional or semi-directional antennas. Then,
the semi-directional antenna we use is a microstrip antenna (cf. Figure 4.9). It
was designed for the frequency 868MHz and printed in our laboratory. The base
material is a fiber glass circuit board (FR4) with copper layers. This has relative
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(a) INDOOR dataset [27]: 4 sensors (features),
total 8143 training samples, batch size 20
samples

(b) OUTDOOR dataset [45]: 100 sensors
(features), total 73896 training samples,
batch size 500 samples

(c) INTRUSION [85]: 494020 samples of 40
features, batch size 100

(d) PHISHING [105]: 11055 samples, 30 fea-
tures, batch size 100

Figure 4.3. Power consumption of the systems implementing our approach and the centralized
logistic regression (Active LoRa and Backscatter PLoRa [116])

(a) Backscatter (b) Centralized

Figure 4.4. Confusion matrices on INDOOR
dataset [27]

(a) Backscatter (b) Centralized

Figure 4.5. Confusion matrices on OUTDOOR
dataset [45]

(a) Backscatter (b) Centralized

Figure 4.6. Confusion matrices on INTRUSION
dataset [85]

(a) Backscatter (b) Centralized

Figure 4.7. Confusion matrices on PHISHING
dataset [105]
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permittivity in the order of 4.5. This antenna has a maximum gain of 4.7 dBi
which is directed along the x-axis. It is attached to the transmitter and facing
towards the backscatter device (cf Figure 4.8). By having an SMA connector on
the backscatter board, we have been free in the choice of antenna, and could
therefore also experiment with different frequencies. A drawback of this design
choice is the large dimension of the system. For a production-level system, we
propose to print a patch antenna, which is cheap to manufacture, on the back of
the circuit board. Such an antenna needs a rectangular space of 1

4 to 1
2 of the

wavelength λ. For instance, a backscatter system with a patch antenna in the
2GHz range could have dimensions smaller than 4cm×4cm. In our measurement
(cf. Figure 4.8), the transmitter was fixed 3m from the backscatter device. The
distance to the receiver was gradually increased (step size 1m) up to 6m. The
measurements were repeated 10 times for each distance and antenna types:
semi-directional and omnidirectional. At 6m, the receiver could only capture
noise signals. Note that the measurement equipments employed in this scenario
was suitable to use in our experiment area. Their compact form limited them to
certain transmission capability such as frequencies and transmit power. Using
the same backscatter device, Badihi et al. [13] conducted the measurement of
working distances with a signal generator 3. In their experiment, they reported
a working distance up to 30m in an outdoor environment. Their research aimed
to evaluate the capability of this hardware prototype while ours concentrated on
assessing the proposed algorithms.

Next, we describe a case study on occupancy monitoring (dataset Indoors [27])
in an office with a network of backscatter sensor devices [13]. We employed
four devices, which represent sensing components (light, temperature, humidity,
and CO2). They broadcast their weighted sensed values (wixi) periodically
via Poisson-distributed burst sequences. The dataset comprises three subsets:
six-day (for training), two-day (testing), and seven-day (testing). According to
the authors [27], all samples were averaged over non-overlapping 60s windows
since each sensor had its own sampling rate. The ground-truth of occupancy
status was obtained through manual annotation of the videos captured by a
surveillance camera. The trained parameters wi were obtained through the
training process described in Section 4.1. Two Ettus N200 USRPs were used
as transmitter and receiver. Both were equipped with SBX daughterboards.
The transmission frequency was 868MHz and the sampling rate of the radio
devices 1MHz. Feeding sensor values from the INDOOR dataset, we achieved
accuracy of 0.89 (F1 score 0.88). For comparison, for logistic regression trained
via gradient descent on a desktop computer (Intel Core i5 1.8GHz, 8GB RAM,
with scikit-learn library version 0.20.1), we achieved an accuracy of 0.94 (F1

score 0.93).

3SMBV100A Rohde & Schwarz: https://www.rohde-schwarz.com/fi/product/smbv100a-
productstartpage_63493-10220.html [Accessed: June 08, 2020]4

72



Collaborative Inference based on Implicit Data Aggregation

Figure 4.8. Layout of our experiments on the
operating distance Figure 4.9. Signal-to-noise ratio (SNR) with

various distances

(a) Static-LoS (b) Static-non-LoS

(c) Interference-LoS (d) Interference-non-LoS

Figure 4.10. Layout of devices in the experiments on environmental variation

4.4.3 Effect of Environmental Changes

Human behaviour inside the monitored space can significantly affect the multi-
path condition of wireless signals [167]. For example, a person may block the
line-of-sight (LoS) between a backscatter device and the receiver (RX) or human
movement may distort the backscattered signal. This kind of noise might impair
the correct counting of bursts at the receiver. Hence, we investigated the impact
of four types of human interference with the layout shown in Figure 4.10.
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Experiment on the environmental effect

Participant : We recruited one male subject whose age was 32 years old
and height was 1.65m.

Materials : We employed one backscatter device and two USRP devices,
one as the transmitter (TX) and one as the receiver (RX).

Design : Three devices were located as in Figure 4.10. The distance
between TX and RX was fixed at 8m. The distance between TX
and the backscatter device was fixed at 3m. We varied the distance
between the backscatter device and TX at the step of 1m.

Procedure :

Static-LoS No person in the room or people sitting still and not
blocking the line-of-sight

Static-non-LoS A person blocks the line-of-sight between
backscatter device and RX)

Interference-LoS One person moves around in the room, not
blocking the line-of-sight

Interference-non-LoS One person moves around freely in the
room, occasionally blocking the line-of-sight between a
backscatter device and RX

In all cases, we varied the distance between the backscatter device and the
receiver from three to five metres (step size one metre). For each distance, we
controlled the backscatter device to transmit 50 distinct values (encoded into
burst sequences). These are humidity samples from the INDOOR dataset [27],
ranging from 16.7 to 39.1 with mean 25.7 and standard deviation 5.5. We ana-
lyzed the burst sequences at the receiver and recovered the transmitted values.
Then, we calculated the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE), which are shown in Figure 4.11. We observed that
the MAE was less than 3.5% when the backscatter device is within a radius
of 3 metres from the receiver, even in the case of movement not blocking the
line-of-sight. However, the error increased when the backscatter signal was
occasionally blocked. This issue can be addressed e.g. by locating backscatter
devices at positions higher than human height. When the backscatter device
was five metres or farther from the receiver, our algorithm could not reliably
detect burst sequences due to the weakness of the backscattered signal which
resulted in high error values.

4.5 Conclusion

This chapter introduced a distributed optimization procedure to train ma-
chine learning models for vertically-partitioned data from scattered resource-
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(a) Mean Absolute Error (MAE) of transmitted
and received values

(b) Mean Absolute Percentage Error (MAE) of
transmitted and received values

Figure 4.11. Evaluation of the burst detection algorithm with various environmental conditions

constrained devices. Our approach incorporates a computation offloading mech-
anism implicitly leveraging the interference of backscattered radio signals. It
therefore allows battery-free distributed learning, where each backscatter sensor
device learns its own set of model parameters, instead of training and storing a
model centrally. Each backscatter device senses and processes environmental
data, and broadcasts the weighted feature values wixi as Poisson-distributed
burst sequences to a coordinator by reflecting a carrier signal. Through super-
imposition of simultaneously transmitted burst sequences, the burst-encoded
weighted feature values wixi are aggregated as their weighted sum

∑
i wixi

when received by the coordinator. The coordinator extracted the weighted sum∑
i wixi to evaluate the models in training. It then issues binary feedback to

the sensors to guide the model optimization process. Hence, distributed devices
can update their optimal model parameters without sharing sensing informa-
tion with either their neighbouring sensors or the coordinator. To compare the
convergence of our scheme to centralized approaches, we extensively evaluated
and compared it to a traditional centralized approach. Our training technique
consumed less power than that of the centralized algorithm utilizing radio
transceivers. To further prove the practical feasibility of our approach, we have
implemented and evaluated it a backscatter sensor network. Our approach
extends applications of backscatter communication beyond data transmission:
distributed training and offloading a classification model over the wireless com-
munication channel. That is, it protected data transmitted in the many-to-one
relationship of networked devices in an efficient way. On the other hand, we are
aware that our approach is still vulnerable to such attacks as radio jamming,
sybil attacks, and compromised hardware. We consider the countermeasures as
a future direction of this dissertation.
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5. Proximity-based Secure
Communication using Vocal
Commands

Nowadays, smart devices with voice user interfaces (VUIs) such as Apple Siri
and Amazon Alexa can analyze users’ vocal commands to perform certain tasks.
We aim to leverage them to connect devices in a new environment. For example,
imagine a person arriving at a building, where she has not been before. Her
smart-phone, a personal device or PD, can connect to the local wireless network.
She would like to securely access a printer or connect to a projector she observes
in the same room with her. Since the location is new to the user, she does
not know the specific device name or identity. She would need to explicitly
ask for instruction to pair with local devices via Wi-Fi or Bluetooth. This
raises inconvenience from the user’s point-of-view. We propose to use contextual
information to establish the secure communication channel between the user’s
device and the share appliances. Specifically, our approach analyzes vocal
commands to select a specific device type and initiate the secure connection
between a personal device and shared appliances in a new environment, which
is an application of the ONE-TO-MANY device relationship.

5.1 Context-based Device Pairing

Sensor modalities suited for context-based device pairing include magnetism [77],
RF-signals [154, 82], luminosity [103], and audio [129]. Truong et al. [153] in-
vestigated the performance of four commonly available sensor modalities (Wi-Fi,
Bluetooth, GPS, and audio) for co-presence detection and found that Wi-Fi is
better than the rest. Also, they showed that, compared to any single modality,
fusing multiple modalities improved resilience while retaining a high level of us-
ability. Miettinen et al. [103] used co-presence and a continuous authentication
scheme to pair devices. Their underlying assumption stated that only devices
that were worn together or were located nearby would in the long run measure
the same luminosity or ambient audio. Another method of proximity-based
device pairing which required manual user interaction was presented in [9].
Their system used fuzzy cryptography to generate a shared secret on two devices
from correlated drawings on the displays of the devices [130].
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A conceptional challenge with all context-based authentication approaches
is that due to sensing inaccuracies, different hardware and noise, the recorded
signals are likely not identical but only similar. Fuzzy cryptography presents a
methodology to obtain identical keys from similar patterns [79]. In particular, by
mapping the patterns into the codespace of an error-correcting code, mismatches
can be mitigated without disclosing the pattern over a potentially insecure
channel. These approaches have been applied to various noisy data traces for
authentication, such as face biometrics [160].

In our case, we propose to leverage audio rather than other modalities, since it
features better room-level recognition due to the longer wavelength and hence
less drastically changing environment of the channel. A vocal command is a
natural way to generate a pairing key to initiate the connection between devices
that support VUIs.

5.2 Audio-based Pairing Protocols

In order to connect a personal device (PD) with one appliance of a certain class
(e.g. smart screen with a VUI), a user would express the expectation by speaking
out the pairing intention. During this interaction, users are not restricted to
any format or convention but they need to mention the expected device class in
their request. We then utilize speech recognition in order to extract the device
class as the first unique identifier and, in addition, generate an implicit secure
key from the same spoken audio command as the second unique identifier. Only
the appliances in proximity and belonging to the correct device class match both
unique identifiers and are thus identified for secure pairing through a remote
device manager.

5.2.1 Audio-based Pairing Protocols and Application Scenarios

Our approach is represented in three protocols which correspond to three appli-
cation scenarios. Two of them can be implemented without a central authority
(e.g. a Device Manager). We describe these protocols as follows, within their
respective application scenarios.

• Scenario 1 (cf. Figure 5.1): Protocol 1. Key exchange and management
without a central authority. In case there is no central key distribution
authority, proximate devices can leverage contextual information to form
ad-hoc device groups. The registration and de-registration process (i.e.
joining and leaving a group) rely on context-based secret keys only.

• Scenario 2 (cf. Figure 5.2): Protocol 2. Device group formation based
on context. Our mechanism adds a fine-grained layer to the conventional
group key management framework. For example, the user’s smart-phone
S is connected with the printer P1 (in the corridor) and the printer P2 (at
the user’s office) in the local wireless network. That means S, P1, and P2
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share the group key. With our context-based key generation technique,
the framework can issue a new secret key only for S and P1 (based on
proximity). S does not need to leave the former group. Furthermore, if
attackers compromise P2, they can not access the new group formed by S
and P1.

• Scenario 3 (cf. Figure 5.3): Protocol 3. Context-based device discovery. A
user’s device U is in the same group with multiple local devices Li, which
may belong to different contexts (e.g. in different rooms). U wants to
access an unprecedented Li in the same room. It can obtain the device
information at a certain location, i.e. Li. After that, U can connect to the
specific Li.

Our proposed basic protocol (i.e. Protocol 1 in Figure 5.1) does not require a
central authority to distribute pairing keys and manage the secure connection.
We introduce the following scheme. A set of mobile devices are willing to
establish a common secret key extracted from ambient audio data. Each device
records a number of audio samples and then independently computes an audio
fingerprint [28]. These fingerprints are binary sequences that are designed to fall
into the code-space of a Reed-Solomon error correcting code. Audio fingerprints
generated from similar ambient audio resemble each other. However, due to
noise and inaccuracy in the audio-sampling process (i.e. caused by hardware and
software diversity), it is rarely that two fingerprints are identical. The devices
therefore utilize the capability of an error-correcting code to map fingerprints
to codewords. For two fingerprints whose Hamming distance is within the
configurable threshold of the error-correcting code, the codewords are identical
and then can be utilized as shared secret keys.

Implementing the aforementioned audio-based approach, we can establish a
secure communication session between a user’s device and a local device with
or without a central authority (which can be referred to as a Device Manager).
We assume that both partners are connected to the same wireless network, and
the approach increases the connection security with contextual information.
Our proposed mechanism ensures that the devices can instantiate a secure
session if they are in close proximity to each other (e.g. in the same room). We
denote KGF() as an audio-based key generation function which derives one
cryptographic key from an audio fingerprint of ambient sounds. Then, the user’s
device D establishes a secure session with the local shared appliance L according
to the following steps (cf. Figure 5.1):

1. D sends the initialization message to L to start the key generation process.

2. D and L start recording a sequence of ambient audio whose length is
specified a priori.

3. D and L locally compute the audio fingerprints fD and fL, respectively.

4. D transforms fD to the secret key KD = KGF( fD) while L transforms KL

to the secret key KL = KGF( fL). Using an error-correcting code (e.g. a
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Figure 5.1. Protocol for key exchange and management without a central authority

Figure 5.2. Protocol for device group formation based on context

Reed-Solomon code [120]), both partners can derive the same secret key
K if the Hamming distance between KD and KL satisfies a predefined
threshold t.

These protocols and scenarios are appropriate for Internet-of-Things devices,
including mobile and wearable appliances. They allow the users to freely se-
lect local shared devices which are equipped with VUIs. Furthermore, they
strengthen the conventional communication channels (e.g. Wi-Fi) in terms of
security and usability.

5.2.2 Security Analysis

We introduce a number of attacking strategies and discuss their severity. We in-
clude attackers of various technical competences, ranging from guessing attacks
to hardware-based attacks. An adversary device in the same context with the
user is a valid threat for our protocols. By adapting the loudness of spoken audio,
the user is able to implicitly control which devices are the recipients provided
that the user can observe where the suspicious eavesdroppers are. We analyzed
this attacking strategy in Section 5.5.
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Figure 5.3. Protocol for context-based device discovery

Guessing Attacks
Without any knowledge on the audio context, an attacker can try to guess an
audio fingerprint (i.e. a brute force attack) which is sufficiently close to those
generated by the user’s device and the local shared appliance. This must be
done when the user’s device and the local shared appliance is in the audio
fingerprinting step. Hence, the attacker is in a limited time frame. According
to Schürmann and Sigg [129], the success probability of a guessing attack is
1024−204 when we employed: 512-bit audio fingerprint, the Reed-Solomon code
RS(210,204,512), the set of words A = F204

210 , and the set of codewords C = F512
210 .

In addition, the proposed audio fingerprinting algorithm [129] was analysed for
its entropy and potential bias with respect to common weaknesses in pseudo
random number generators and no bias could be found after the DieHarder set
of statistical tests [25].

Impersonation Attacks
Our protocols are vulnerable to impersonation attacks on device identification
information. Without a remote trusted authority, the PD is not able to authen-
ticate device IDs according to the protocols. A possible way to prevent such
attacks is to employ a certified authority (e.g. a Device Manager in Figure 5.3).
It is unlikely for a device outside of the context (i.e. not in the same room with
the user’s device PD and the shared appliance SA), to impersonate a device
inside the context. This is due to the audio sequences generated by the PD and
the attacker’s device is not sufficiently similar [129].

Hardware-based Attacks
An attacker can fully or partly control the audio input observed by the user’s
device and the local shared appliances. It could further be possible to bypass
data acquisition and re-use recorded audio data. The adversary could place a
device to record audio near the user (e.g. attached to the owner of the PD) and
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relay the audio recordings to a remote device. This attack would be successful as
long as it satisfies the strict timing requirement controlled by the audio pairing
protocols: audio acquisition should start within at most 10ms delay. We conclude
that these attacking strategies are sophisticated and require access to either
facilities or hardware components of the user’s devices The attackers might
compromise either the VUIs (the user’s device PD and the shared local appliance
SA) or the device manager. Our protocols do not guard against such attacking
strategies.

5.3 Similarity of Audio Fingerprints in Different Vocal Commands

In order to verify and demonstrate the feasibility of the proposed use case, we
implement the protocol specified in Figure 5.3. We aim to answer the research
question: How to use implicit information in vocal commands to select shared
devices naturally and securely? The case study demonstrates that audio-based
device selection based on the verbal input of a user is feasible. For this, we
developed an Android application which extracted and compared audio finger-
prints of proximate devices. In particular, while the subjects specified appliances
they want to pair to using unconstrained free speech, the application recorded
voice and ambient audio, extracted audio fingerprints [129] and compared the
fingerprint similarity. As detailed by Schürmann and Sigg [129], fuzzy cryptog-
raphy can then be applied in order to correct bit errors in the generated binary
fingerprints.

For the experiment, two Android mobile phones running the audio-based ad-
hoc pairing application were placed in the same room at distances of at least
one metre. The subject then chose one out of a given five possible device classes
(printer, projector, monitor, speaker, TV) and spoke out a request containing the
name of the particular device (for instance, the command might be “I would
like to connect to the speaker” if a user wanted to pair a smart-phone with the
Bluetooth speaker in the room) while the Android application was running,
recording the ambient audio to generate the secure keys separately on the two
devices. The users were asked to issue natural voice commands. Spoken audio
sentences were in the order of 2-4 seconds depending on the speaking speed and
the length of each sentence. The users were located at two distinct locations
on a university campus: a meeting room and an office. The former had more
background ambient sounds than the latter. In each environment, the users
repeated the experiment 10 times for each device class. Table 5.1 shows the
results of the case study. The table depicts the similarity of audio fingerprints
generated for the various sentences containing different device classes and
conducted in different locations.
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Table 5.1. Average similarity (%) of audio fingerprints. Values in brackets are standard deviation.

Meeting room Office

Printer 68.2 (14.8) 60.4 (10.5)

Projector 74.6 (5.2) 67.6 (16.5)

Monitor 69.6 (7.6) 74.2 (4.4)

Speaker 75.0 (13.2) 75.4 (6.6)

TV 73.8 (8.8) 63.6 (9.1)

Experiment on command-specific audio

Participant : We recruited two male subjects (μage = 35), who were
fluent at English.

Materials : We implemented an Android application to generate the
audio fingerprints and installed it on two phones. We selected five
classes of common appliances (printer, projector, monitor, speaker,
TV) that are possible to equip VUIs. We emitted a pre-recorded
audio file of a meeting as background noise.

Design : We placed two phones in the same room at distance of one
metre. There are two rooms in our experiment: a meeting room and
a private office.

Procedure : In each room, the subjects repeated the vocal commands
10 times for each device class. The application captured their voice
and background sounds and extract the audio fingerprints.

We observe that the average similarity of audio fingerprints is 70%. Hence,
we suggest utilizing fuzzy commitment scheme to derive the secure keys for
device selection. For example, an error-correcting code such as the Reed-Solomon
code [120] can be used to correct 30% of the bits in the generated audio finger-
prints, as employed by Schürmann and Sigg [129].

5.4 Impact of SNR on Audio Pairing

In this experiment, we simulate a scenario in a small room with multiple
VUIs. In order to generate a setting that can be repeated and verified, we
utilized a phone broadcasting continuously speech recordings. Two phones
(the VUIs) were placed in d1 = 0.5 metres and d2 = {1.0,1.5,2.0} metres from
the audio source. This models a scenario with multiple VUIs scattered across
a room. We controlled the sound level of the office (i.e. the audio source) in
35− 45, 45− 55, and 55− 65dB, which correspond with verbal conversation
loudness (i.e. an individual raising or lowering her voice to intuitively adapt
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(a) Similarity of audio fingerprints with re-
spect to the distance between the personal
device (PD) and the shared appliance (SA,
VUI-supported)

SA VUI1 VUI2 VUI3

Initial (noisy)
Initial (silent)

(b) Similarity of audio fingerprints extracted
at the personal devices (PD), the shared ap-
pliance (SA), and other VUIs (VUI1, VUI2,
VUI3) in quiet and noisy environments

Figure 5.4. Similarity of audio fingerprints in our experiments

to the range of the restricted zone). For all combinations of these settings,
audio fingerprints [129] were then extracted according to the steps described in
Section 5.2. The similarity of audio fingerprints (based on Hamming distance) is
shown in Figure 5.4a.

The similarity of audio fingerprints decreases when the distance increases.
Hence, it is possible to configure a fuzzy cryptography scheme [129] to allow only
VUIs in a certain proximity (see Section 5.2)). The width of this zone can be im-
plicitly controlled by verbal conversation loudness as depicted in Figure 5.4a. At
extended distance, when the emitted sound becomes less audible, the similarity
approaches that of random sequences (i.e. 50%). We also performed an experi-
ment to measure the similarity of audio fingerprints collected at the personal
device (PD), the shared appliance (SA), and other VUI-supported devices. The
noisy environment is simulated using loudspeakers. Figure 5.4b shows that the
fingerprint similarity between the PD and SA is higher than that between the
PD and other VUIs. More details of this experiment are described in Section 5.5.
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5.5 Human and Hardware Eavesdroppers

Experiment on eavesdroppers

Participant : We recruited eight subjects (μage = 35), who were fluent
at English.

Materials : Five microphones were used to record audio from the sub-
jects and the environment.

Design : Two microphone were located by a distance of one metre. Three
microphones are placed in distances of one metres, two metres, and
three metres from the speakers but they were not in the direction
of speaking (i.e. they were not between the speakers).

Procedure : Each pair of subjects exchange spoken information to each
other by reading eight sentences from the Harvard set of phoneti-
cally balanced sentences [11].

Our solution relies on the capability of a human subject to control the loudness
of her voice accurately with respect to VUIs in proximity. We are interested
whether it makes a difference if the eavesdropper is another human or whether
it is a VUI. In this section, we describe an experiment conducted in an indoor
environment where two subjects exchange spoken information while we place
VUIs (represented by microphones) in their proximity. One subject with a per-
sonal device (PD) is talking (directionally) to a shared appliance (SA), separated
by a distance of 1m) while audio fingerprints are recorded at both locations. In
addition, three microphones are placed in distances of 1m, 2m, and 3m from the
speaker (but not in the direction of speaking). We repeated these experiment in
a quiet environment and in an another where we generated artificial background
noise from a crowd of people speaking in the distance. This background noise
was played back from a recording to generate approximately the same noise in
different repetitions of the experiment for comparison among the recordings.
The noise was generated by mixing 32 simultaneous speech sources extracted
from the TIMIT database [173]. The loudspeakers were located at one end of the
room pointing towards the wall in order to produce diffused noise. To simulate a
conversation between the speaker and listener in the scenarios, subjects were
asked to read eight sentences from the Harvard set of phonetically balanced
sentences [11]. Subjects were asked to adapt their voice loudness level such that
an eavesdropper (located at one of the locations of VUI1, VUI2, or VUI3) could
not overhear their conversation in each scenario (silent vs. noisy).

In total, we processed 418 audio recordings from eight subjects to evaluate
all fingerprints produced by our systems. We expected that the similarity of
audio fingerprints to decrease when the distance between the speaker and the
eavesdropping VUI (microphone) increased [129]. In the initial recording for
both quiet and noisy environments, the speaker was instructed to talk to the
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SA VUI1 VUI2 VUI3

VUI1 eavesdropping
VUI2 eavesdropping
VUI3 eavesdropping

Initial (noisy)
Initial (silent)

similarity while eavesdropping

potential threshold t 

(a) Similarity between audio fingerprints ex-
tracted at the location of PD (speaker) and
at the location of the (human) eavesdropper
(VUI1, VUI2, or VUI3) in the silent scenario

SA VUI1 VUI2 VUI3

VUI1 eavesdropping
VUI2 eavesdropping
VUI3 eavesdropping

Initial (noisy)
Initial (silent)

similarity while eavesdropping

potential threshold t 

(b) Similarity between audio fingerprints ex-
tracted at the location of PD (speaker) and
at the location of the (human) eavesdropper
(VUI1, VUI2, or VUI3) in the noisy scenario

SA VUI1 VUI2 VUI3

VUI1 eavesdropping
VUI2 eavesdropping
VUI3 eavesdropping

Initial (noisy)
Initial (silent)

similarity while 
eavesdropping

 threshold t 

(c) Similarity between audio fingerprints ex-
tracted at the location of PD (speaker) and at
the location of the (VUI) eavesdropper (VUI1,
VUI2, or VUI3) in the silent scenario

SA VUI1 VUI2 VUI3

VUI1 eavesdropping
VUI2 eavesdropping
VUI3 eavesdropping

Initial (noisy)
Initial (silent)

similarity while 
eavesdropping

 threshold t 

(d) Similarity between audio fingerprints ex-
tracted at the location of PD (speaker) and at
the location of the (VUI) eavesdropper (VUI1,
VUI2, or VUI3) in the noisy scenario

Figure 5.5. Similarity of audio fingerprints in the eavesdropping experiments
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second subject in her normal voice. We did not disclose to the speaker that the
microphones at 1m, 2m, 3m distance were eavesdropping on the conversation.
Figure 5.4b shows the similarity of fingerprints for these initial recordings. As
expected and already confirmed in the previous experiments, we observed that
the similarity in fingerprints decreases with increasing distance. Hence, it is
possible to define an error-correction threshold t in the error-correcting code of
our protocol, such that the respective restricted zone separates the two speaking
subjects and the VUIs.

5.5.1 Human Eavesdropper

Next, we were interested in the capability of the subjects to adjust the audio
loudness of their voice (i.e. volume level) in order to control the range in which
their personal and public devices can connect. To investigate this, a human
subject was located next to VUI1, VUI2, or VUI3 (3 separate configurations).
Only one eavesdropper was present during the experiment and the subject was
instructed to adapt the volume of their speech so that the eavesdropper was just
unable to overhear the conversation. This setting was repeated for each VUI
location (VUI1, VUI2, and VUI3) and for both scenarios (silent and noisy).

Figure 5.5a summarizes the results in the silent scenario. We observe that, as
expected, the similarity in audio fingerprints decreases with increasing distance
between the PD and the VUIs. The similarity is highest between the PD and SA
since the speech audio was directed towards the location of the SA. In addition,
notice that the similarity is lower than what we observed in the initial scenario
(cf. Figure 5.4b) for both the silent and noisy cases. The figure distinguishes the
fingerprint similarity for locations of VUI1, VUI2 and VUI3 while the human
eavesdropper was located at either of these locations.

The result shows that, with a proper threshold, it is possible to implement
the restricted zone such that a specific eavesdropper can be excluded from this
zone by the speaker. For instance, as depicted in Figure 5.5a, the similarity in
fingerprints has always been between 55% and 57% for the location where the
eavesdropper was located. At the location of the SA, the minimum similarity was
higher with roughly 64%. The results for the noisy environment are depicted in
Figure 5.5b. In contrast to the silent scenario, the fingerprint similarity rises
between the PD and SA but it also rises for VUI1, VUI2, and VUI3. However, a
threshold t = 68% will still keep the eavesdropping VUIs outside the restricted
zone. We conclude that a human speaker is able to control the range of a
restricted zone with her voice in both silent and noisy environments.

5.5.2 VUI Eavesdropper

The potential threat of a human eavesdropper is common, especially when
attackers are familiar with users in their day-to-day situations (e.g. speaking in
meetings or public gatherings). A more typical situation for a human subject
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during speech communication is to lower her voice towards a suspected human
eavesdropper. However, VUI-equipped appliances are, due to their size, easily
ignored during communication.

We repeated the experiment in a setting where no human subject was present.
Figure 5.5c illustrates our results in a silent environment. We observe that,
indeed, this scenario is more difficult to control for the human subject (speaker)
at the location of the PD, since the similarity of the fingerprint at the PD and
VUI1, VUI2 and VUI3 is higher than in the previous section. However, the
similarity for the eavesdropping VUI is still beneath 65%, while the similarity
of the fingerprints recorded by the PD and SA is exceeding 72% at least, so that
a human speaker could again actively exclude a specific eavesdropping VUI.

Likewise, the situation for the noisy scenario is depicted in Figure 5.5d. This is
the most difficult scenario since the similarity between the audio fingerprint at
the PD and one of the VUIs (namely VUI1) reaches even 70%. However, despite
the increased loudness of the subject’s voice, this is still lower than the similarity
to the PD, which is roughly 75%.

5.6 Conclusion

Using vocal commands and environmental sounds, we presented three context-
based implicit pairing protocols and described how these can be integrated into
secure communication of distributed IoT devices. In the protocols, free-form
spoken interaction is interpreted by speech recognition to identify the device
class to pair with while audio-fingerprints are generated from the same spoken
interaction in order to generate secure keys via fuzzy cryptography. Both the
device class and the secure key are then utilized as a unique identifier to pair
a personal device with a proximate appliance of the requested class. We per-
formed a case study in which users select partner devices through natural vocal
commands and two attack settings with human and hardware eavesdroppers.
We conclude that our proposed approach can establish a secure communication
key between new devices in a restricted zone while preventing attackers from
obtaining the key. The scenarios studied in this chapter cover the ONE-TO-
MANY relationship between a personal device and shared appliances in a new
environment.
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Recent decades have witnessed the proliferation of computers in compact forms
that can be carried by users: smart-watches, mobile phones, tablets, laptops,
etc. These devices can spontaneously form a network for data exchange, which
is a representation of the MANY-TO-MANY relationship. We propose a secure
pairing protocol which is based on the surrounding context of partner devices.
Device pairing [61] is the procedure to establish a secure connection between
devices that have previously never been in contact with each other. However,
this protocol relies either on a PIN-code explicitly verified by users or a fixed PIN
code, which can be cracked due to its short length [132]. We proposed pairing
mechanisms which analyze the surrounding context of partner devices to derive
secret keys. Our approaches offer twofold advantages: non-obtrusiveness and
continuous pairing (including automatic de-grouping of devices). We introduced
key generation algorithms based on gait and heartbeat information in Section 6.2
and Section 6.3, respectively. The former was suitable for ambulatory activities
such as walking and running while the latter was applicable in resting postures.

6.1 Device Pairing

The communication capability of mobile devices enables them to interact with
each other to exchange data or collaborate in a shared task [63]. Their interac-
tion is often spontaneous [31] with a varying number of connected devices and
implicit dis-connection. Users demand convenient yet secure methods in order
to determine the trust between these devices. This procedure is often deployed
over a wireless communication channel, such as Near Field Communication
(NFC) [1], Bluetooth [61], ZigBee [4], Wi-Fi [33], or Wi-Fi Direct [3]. Traditional
device-pairing mechanisms (such as Bluetooth [61]) are performed with three
assumptions [142, 14, 58]:

• Communication channel: The two devices have access to a common wire-
less communication channel but there is no assumptions about the security
of this channel.
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• User interaction: The two devices are both monitored by either a single
user or a pair of users who trust each other.

• User interface: Both devices have a means to input or output, e.g. they
have at least a keypad or a display. If a device does not have a keypad,
then it must at least have an input, e.g. a button, allowing the successful
conclusion of a procedure to be indicated to the device. Similarly, if a
device lacks a display, then it must at least have an indicator to signal
the success or failure of a procedure (e.g. red and green lights or a sound
output).

Currently, novel mechanisms have been developed to implement device pairing
that leverage built-in sensors to fulfil the following requirements:

• Implicit and continuous device pairing: the protocols do not require explicit
user interaction and the secret keys are continuously updated.

• Automatic unpairing (i.e. de-grouping of devices): when a device leave the
protected area, it can not decrypt the group’s message since the secret key
is updated.

• Support devices with limited user interface, such as e-textile: these ap-
proaches utilize sensor data to generate the secret keys for pairing instead
of using a user’s input or verification.

Our proposed approaches address the above requirements through using be-
havioural (gait) and physiological (heart-beat) data to secure the communication
of on-body devices that have not previously been connected.

On-body device pairing has been implemented using acceleration data collected
from shaking movements [56] and human gait [108]. The latter is well suited
in wearable scenarios since the gait information can be extracted at any body
location and it is confined to a individual person [84]. Recently, several authors
have considered acceleration or gait for the pairing of devices co-present on the
same body [141, 65, 107]. In particular, these approaches exploit correlation in
acceleration signals when devices are worn on the same body [87, 34] or shaken
together [55, 56]. These device-pairing protocols execute quantization on one
or more devices at the same time to generate similar bit sequences. In contrast
to user authentication, these sequences are not matched against a template
database. Instead, they are used to authenticate a key agreement procedure
between all participating parties.

The ShakeUnlock protocol [55, 56] unlocks a mobile device when it is shaken
simultaneously with a worn smart-watch. This approach relies on the compari-
son of acceleration sequences to compute correlation and has to be done within
an pre-established secure communication channel. On the other hand, there
exist approaches that do not require any already-established secure connection.
For authentication based on arbitrary co-aligned sensor data, Mayrhofer [100]
proposes the candidate key protocol, whose advanced variant was implemented
in SAPHE [62] to solve the issue of low-entropy input data. It uses hashes from
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acceleration sequences as short secrets and concatenates those with matching
hashes to form the key.

Human gait, being used as biometrics for a long time [78, 37], has been applied
in device pairing recently. The Inter-Pulse-Interval (IPI) between consecutive
steps has been utilized for secret key generation from gait sequences [149]. The
protocol uses acceleration data along the z-axis and concatenates IPIs as key
sequences. Its security depends on the speed of consecutive steps and the step
length. This protocol was verified with gait data captured by devices on the
torso of subjects (lower back, upper right arm and right ear). Xu et al. [166]
presented Walkie-Talkie, which leveraged correlated acceleration sequences
from human gait. The authors use individual samples for key bits if they deviate
more than a threshold comparing to the mean gait. One extended version is
Gait-Key [165] providing a higher bit-rate by applying multiple thresholds. In
another scheme by the same authors [121], acceleration data on all three axes is
used as a random source to generate a group key. This key is locked in a fuzzy
vault using a secret set based on the acceleration along gravity direction. Other
wearable devices can unlock the vault if they can obtain a secret set which is
sufficiently similar to the original one. Instead of using all three acceleration
axes, the BANDANA protocol [128] utilizes acceleration along the z-axis only.
It fingerprints human gait from the difference between instantaneous gait and
mean gait at each body location. Remaining errors in the binary fingerprints are
corrected with fuzzy cryptography exploiting BCH codes [71, 21]. In an extended
version [127], the required key length has been reduced from 64-bit to 16-bit
through using a Password Authenticated Key Exchange (PAKE) [125].

6.2 Gait-based Pairing of On-body Devices

Smart devices have continued reducing their size to fit in wearable gadgets,
such as wristwatch, glass frame, or even e-textile. These compact appliances are
equipped with computational, sensing, and communication capability. They can
collect contextual data using microphones, accelerometers, gyroscopes, cameras,
etc. Some of these devices have limited user interfaces, which cause difficulty
to establish the secure connection with other appliances. One common solution
is to rely on a fixed PIN code to initiate the communication, which can be
cracked [132]. We propose to implement a continuous pairing mechanism of
on-body devices by extracting gait information from an accelerometer and a
gyroscope. In the next section, we introduce our approach, called BANDANA or
Body Area Network Device-to-device Authentication using Natural gAit.
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1. Collect acceleration readings
from the z-axis

2. Correct rotation wrt gravity (gy-
roscope)

3. Bandpass between 0.5Hz and
12Hz

4. Resampling (40 samples/gait)
and gait detection

5. Compute mean gait

6. Difference between mean and
instantaneous gait translates to
binary sequence

7. Calculate reliability of bits, dis-
regard least reliable

8. Share reliability ordering and
create fingerprint

9. Fuzzy cryptography: Get key
from fingerprint

Figure 6.1. BANDANA device pairing protocol based on gait information

6.2.1 Body Area Network Device-to-device Authentication using
Natural Gait

An on-body device pairing protocol is required to generate keys with high similar-
ity between different locations on the same body (intra-body) and low similarity
between different bodies (inter-body). We propose to use the deviation of an
instantaneous gait cycle to the mean cycle as implicit information to generate
gait-based keys. In our case, the mean gait is accumulated over a few consec-
utive gait cycles. This can be obtained independently at most positions on the
human body, using accelerometers. The comparison between instantaneous and
mean gait at a particular body location serves as a normalization procedure.
The offset to the mean gait has a better correlation across different body parts
than comparing absolute acceleration values. Our proposed scheme covers both
upper and lower parts of the body, including extremities, in contrast to related
work such as [166], which only considered upper body parts.

We summarized our proposed protocol to extract gait-based secret pairing
keys from acceleration data in Figure 6.1. Due to body movement, acceleration
data collected at different positions changes their orientations dynamically
and independently. Hence, we transformed the data in such a way that one
of the three axes follows the opposite direction of gravity through Madgwick’s
algorithm [96]. We then applied a Type II Chebyshev bandpass filter to retain
the frequency between 0.5 Hz and 12 Hz due to the characteristics of human
body movement [128]. The result of these two steps is a sequence of n z-axis
acceleration values z= {z1, . . . , zn}, which is the input for the gait cycle detection
algorithm. Next, we detected gait cycles inside the pre-processed data. The
un-normalized length of a gait cycle is the time interval between two consecutive
steps. To identify repetitions in the input signal, we estimated the discrete
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auto-correlation at the time lag k:

Acorr
(
k
)= 1

(n−k)σ2

∑
t∈Z

zt+k z̄t (6.1)

where z̄t is the conjugate of zt at time t ∈ [1,n]. The output auto-correlation
values a = {a1, . . . ,an}. Then we found m local maxima in a as ζ = {ζ1, . . . ,ζm}.
Next, we calculated the mean of difference between consecutive local maxima:

δmean =
⌈∑m−1

i=1 ζi+1 −ζi

m−1

⌉
(6.2)

We then found the indices of local minimum in z limited to the range of δmean

with a correction factor τ to account for small deviations in gait cycle length:

μ= {μ1, . . . ,μm−1}

μi = argmin(zζi−τ, zζi−τ+1, . . . , zζi+δmean+τ)
(6.3)

The set of indices μ are used to separate z into gait cycles:

Z= {Z1, . . . , Zq}

Zi = {zμ i
2
, . . . , zμ i+1

2
−1}

(6.4)

where i ∈ {2,4, . . . , q}.
After the aforementioned pre-processing and gait cycle detection steps, we

generated gait fingerprints as binary sequences and used them to derive secret
keys for device pairing. Our quantization algorithm leveraged the deviation be-
tween a current and the mean gait sequence. The mean sequence is continuously
updated as:

A= {A1, . . . , Ap}

A j =
∑q

i=1 Zi j

q

(6.5)

The mean gait cycle A j was then overlapped with each instantaneous gait cycle
Zi to derive the binary fingerprint:

f̂= { f̂ 11, . . . , f̂ 1 p
q
, . . . , f̂ b1, . . . , f̂ b p

q
}

f̂ i j =
{

1, if δi j > 0

0, otherwise

δi j =
p
q∑

k=0

Ai+k −Zi+k, j

(6.6)

The values of δ were sorted in the descending order of |δi j| to form the relia-
bility vector r= (r1, . . . , rM). Between two devices A and B, the independently-
generated vectors rA and rB were exchanged. The one with the higher hash
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Figure 6.2. Conceptual view of the protocol with attack vectors (blue line depicts device boundary,
dashed lines indicate communication between the devices)

value (e.g. SHA-256) was selected on both devices. We then removed the least
reliable bits so that the first N bits formed the fingerprint on each device. The re-
maining mismatches in the fingerprints were corrected with an error-correcting
code to produce binary keys k for secure device pairing. We proposed to use
BCH code with two parameters (K , N) in which K and N are the length of a
fingerprint f and its corresponding key k, respectively. To derive a binary key k
of length K , we transformed a gait fingerprint into the message-space f Decode−−−−−→k.
This decoding function could correct up to u = �N−K

2 � errors. After the decoding
step, two binary keys of a pair of on-body devices should be identical. Based on
the required key length in bits and the threshold u for a successful pairing (i.e.
devices are on the same body), the required fingerprint length was N = K

2u−1 .
Later, k could be used to derive a share secret s through a key agreement
protocol.

6.2.2 Security Analysis

We visualize the attack vectors of the gait-based device-pairing protocols in
Figure 6.2. These protocols have the same flow: the devices with built-in sensors
collect motion data, perform pre-processing steps, quantize the data to bit
sequences, apply error-correcting codes, and agree on a secret key. We discuss
the potential attacks according to the attack vectors annotated as A - G labels
in Figure 6.2. Especially, we dedicate Section 6.4.2 for the gait-reconstruction
attack based on video analysis (G).

One-Shot Guessing Attacks
Without knowledge about the user’s gait, an attacker can perform a brute
force attack (C) to facilitate a Man-in-the-Middle attack (E) or an imperson-
ation attack (G). Since we continuously generate the communication keys when
the user is walking, the brute force attack becomes a one-shot guessing at-
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tack. In our proposed protocol (see Section 6.2.1), a gait fingerprint is a 48-bit
sequence. In each sequence, 16 bits are discarded to amplify the reliability.
Then, using BCH codes, up to eight bits can be corrected, resulting in 16-bit
keys. Thus, the success probability of a single randomly-drawn fingerprint is:∑8

k=0

(
32

k

)
/232 =

∑8
k=0

( 32!
(32−k)!·k!

)
232 ≈ 0.0035.

Gait Mimicry Attacks
Muaaz and Mayrhofer [109] showed that even professional actors could not
mimic the observable gait of the users with similar physical characteristics (age,
weight, height, shoe size, and upper leg length). However, by walking next to a
user, one out of five attackers was able to reach sufficient similarity in the gait
acceleration sequences captured by the sensors (A). The assumed reason was
that the users instinctively adapted their walking styles to synchronize with
those of the attackers.

Hardware-based Attacks
An adversary can force the user to walk in a certain way (e.g through manip-
ulating the walking surface) in order to control the motion data captured by
the sensors (A). It is possible to feed the sensors with data from the past or
synthetic data (B). However, these attacking strategies are sophisticated and
require access to either facilities or hardware components of the user’s devices
(i.e. compromised devices).

6.3 Representation Learning from Ballistocardiography Data

The aforementioned gait-based algorithms depend on repetitive movements of
users to derive keys continuously. We proposed to use heartbeat data collected by
highly-sensitive accelerometers to pair on-body devices during resting activities
(such as standing, sitting, and lying). We presented a learning model to extract
the keys from the acceleration data. Our model combined Siamese networks [24]
and de-noising auto-encoders [156]. Although the architecture was applied in
other domains such as signature verification and face authentication, ours is
the first attempt to employ it for device pairing based on heart-beat data. Our
proposed approach is a general paradigm that can handle different types of
diverse sensor data.

6.3.1 Ballistocardiography

The heart is a muscular organ which circulates blood throughout the whole
body. In a single heartbeat, the ejection of blood into the great vessels produces
subtle and repetitive motions. This is physiological information that can be
captured by non-invasive devices from the surface of the body. Ballistocardio-
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graphy (BCG) [143] is the field that measures and analyzes this signal. With
the development of sensing technology, BCG can be performed through an ac-
celerometer in contact with human bodies [86], for example the one in a typical
smart-phone [68].

The BCG signal has proven its usefulness in user authentication [157] and
activity recognition [68]. In the former, Vural et al. [157] investigated the iden-
tification of individuals with an accelerometer placed on the sternum. In their
study, the subjects were instructed to sit stably. A three-axis accelerometer was
placed over the chest to record tiny movements of the body caused by heartbeats.
For feature extraction, the authors split each heartbeat into two regions, then
computed the spectrogram matrix of each region before concatenating them.
Fifty bins with the highest relative entropy were selected as features for individ-
ual identification. A Gaussian mixture model was trained for each subject and
a background model was generated to detect impostors. In the field of activity
recognition, Hernandez et al. [68] demonstrated that wearable motion sensors
could identify wearers and recognize their still body posture (sitting, stand-
ing, and lying). They attached commercial off-the-shelf devices (smart-phones
and smart-glasses) to two body locations (head and wrist) for movement data
collection. From each 10-second windowed data, the features were extracted:
raw amplitude, 200-bin histogram of amplitude values, and shape descriptors
(angles and distances between five descriptive points of each heartbeat). A linear
Support Vector Machine was trained and tested in a cross-subject manner.

6.3.2 Heart-beat Detection

We implemented an algorithm to extract heartbeat regions in acceleration data
(see Algorithm 4). Our algorithm analyzes a window of acceleration values to
find a potential heartbeat. There are two tunable parameters: window length
and heartbeat distance. First, the input sequence is segmented into fixed-length
windows and overlapping is possible. Then, the minimum value is located, which
can be considered at the centre peak in a heartbeat. After that, a region is
expanded to cover the whole beat. This algorithm returns a list of starting and
ending locations.

6.3.3 Representation Learning Model Architecture

We would like to combine Siamese networks [24] and de-noising auto-encoders [156]
to learn an optimal representation for sensor-based device pairing. The Siamese
architecture encourages the discrimination of devices worn by different users
while an auto-encoder acts as a fingerprint extraction algorithm. The network
architecture is pictured in Figure 6.9, which is called a regularized Siamese
network [30].

The Siamese network was presented by Bromley et al. [24] to verify hand-
written signatures. It includes two neural networks that share identical weight
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Algorithm 4: Algorithm of finding heartbeats in acceleration data
Input: a sequence of z-axis acceleration data x, window length l, and beat

distance d
Output: a list l of starting and ending positions (si, ei) of found heartbeat

regions
while not at end of x do

extract a window w at the current position c;
find position p of the minimun value in w;
if beat found then

extend around p to obtain (si, ei);
append (si, ei) to l;
jump to the next position c = c+d;

else
slide the window;

end
end

parameters. Given two inputs x1 and x2, these networks produce two corre-
sponding outputs o1 = f (x1) and o2 = f (x2), respectively. The parameters are
trained in such a way that the distance d(o1,o2) reflects a similarity relation.
In each branch of a Siamese network, the ouput is not a vector of posterior
probabilities as in classification problems, but it is considered as a feature vec-
tor. Let C = {C1, ...,CK } be the set of K classes in the data, o1 the output of a
reference sample x1 of Ci, o2 the ouput of another sample x2 of the same class,
and o3 the ouput of a sample x3 from any C j where i �= j. The goal of training a
Siamese network is to maximize the dissimilarity of inter-class samples while
minimizing that of intra-class ones. For example, if x1 and x2 are signature
images of the same person while x3 is that of an attacker, d(o1,o2) < d(o1,o3)
and d(o1,o2) < d(o2,o3). In the training process, instead of using individual
samples, positive and negative pairs of samples are required. Positive pairs
contain two samples of the same class while negative ones include samples of
different classes.

An auto-encoder [156] is an unsupervised learning technique in which a feed-
forward non-recurrent neural network is trained to reproduce an input. It maps
an input vector x to a hidden representation o = f (x) = s(Wx+b), where W is
the weight matrix, b is the bias vector, and s is the activation function. Then,
the resulting representation o is reconstructed to x∗ = g(o) = s(W′x+b′). It is
possible that W′ =WT . The parameters W, W′, b, and b′ are optimized through
minimizing the reconstructed error: W,W′,b,b′ = argmin 1

n
∑n

i=1 L(x(i),x∗(i)),
where n is the number of training samples and L is the loss function. The
principle motivates that auto-encoders can be applied to extract features from
sensing data. We trained a standard auto-encoder as described above to encode
heartbeat acceleration data. The auto-encoder can reduce noise while amplifying

97



Continuous Secure Device Pairing

peaks, which is useful for fingerprint generation.

6.3.4 Security Analysis

The pairing protocol based on heart-beat information follows a procedure similar
to that of the gait-based pairing protocols (see Section 6.1): the devices with
built-in sensors collect motion data, perform pre-processing steps, extract the
fingerprints from the Siamese auto-encoder, apply error-correcting codes, and
generate secret keys. Hence, it exposes to similar vulnerabilities under guessing
attacks and hardware-based attacks (see Section 6.2.2). In our approach, the
outputs of the auto-encoder f (x) (where x is the input acceleration data) is
used as the heart-beat fingerprints. They are mapped onto the key-space of
an error correcting code, where t bits can be corrected. This process, while
mitigating errors in the fingerprints, might boost the success probability for
a one-shot guessing attack. Assuming |c|-bit fingerprints of which t bits are
corrected to result in |c|− t-bit keys, the success probability of a single randomly

drawn sequence is then only:
∑t

i=0

(
|c|
i

)
/2|c| =

∑t
i=0

(
|c|!

(|c|−i)!·i!
)

2|c| . Although the

heart-beat information is less observable than the gait, we are aware that there
are sophisticated methods to reconstruct the heart-beat information from afar
such as using radio-frequency signals [90]. Lin et al. [90] could reconstructed
fiducial-based descriptors of heart-beats. Their system was applied in user
authentication with the minimum authentication time of 1s, which may be
not suitable for continuous device pairing. The timing restriction is one of the
different requirements between authentication and pairing. We can exploit it
to prevent the heart-beat reconstruction attack. Next, we then analyze two
attacking strategies that are specific to our proposed approach.

Attacks on Our Learning Model
Adversaries can exploit the Siamese auto-encoder, which is similar to pattern
classifiers used in biometric authentication, to facilitate various attacking strate-
gies such as model evasion during testing (to cause misclassification), data
poisoning during training (to control the model behaviour with certain samples),
and spoofing attacks [18]. The arm race between attacks and countermeasures
has even initiated a new research direction called adversarial machine learn-
ing [113]. Years of work in this direction have shown that model evasion and data
poisoning attacks could be prevented through building another classification
model to detect adversarial samples. On the other hand, the uniqueness of living
traits in human cardiac motion can be leverage against spoofing attacks [90].

Heart-beat Synchronization Attacks
Although heart-beat synchronization (or imitation) is less feasible than gait
mimicry, there exist special scenarios that make it probable. Ferrer et al. [53]
showed that the heart rates of a man and woman could be synchronized if they
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Figure 6.3. Similarity of intra-body and inter-body gait fingerprints produced by BANDANA.
Each value in the intra-body region is defined by the similarity of fingerprints
extracted from two different locations on the same body (all possible combinations
within each body). Each value in the inter-body region is defined by the similarity of
fingerprints from different bodies at the same location.

were a couple. However, we have not found any research that investigates the
similarity of couples’ heart-beat shapes (i.e. fiducial descriptors) as represented
in BCG data. Hence, we consider this attacking strategy as a future extension
of this dissertation.

6.4 Experiments

In this section, we implemented and evaluated our proposed approaches to
answer the research question: How to continuously generate secret keys for
device pairing from implicit information? We evaluated two techniques: gait
fingerprinting in Section 6.4.1 and heart-beat fingerprinting in Section 6.4.3.
Section 6.4.2 covered the video-based attack that reconstructed human gait
using a surveillance camera.

6.4.1 Evaluation of Gait Fingerprints

This experiment was performed using walking data recorded by Sztyler et
al. [150] 1. The dataset includes data captured from 15 subjects (age 31.9±12.4,
height 173.1±6.9, weight 74.1±13.8, eight males and seven females). The data
acquisition devices were smart-phones with built-in accelerometers and were
attached at seven different body locations (sampling rate: 50Hz): chest, forearm,
head, shin, thigh, upper arm, and waist.

A gait fingerprinting scheme for secure device pairing has two essential char-
acteristics. First, the generated fingerprints on different body parts of the same
subject (intra-body) are more similar than those extracted from different subjects
(inter-body). Second, the generated fingerprints are sufficiently-unpredictable

1Human Activity Recognition Dataset: http://sensor.informatik.uni-mannheim.de [Ac-
cessed: June 08, 2020]
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Figure 6.4. Distribution of p-values achieved for fingerprints after 20 runs of the DieHarder
set of statistical tests. The tests are: (1) birthdays, (2) operm5, (3) rank32x32, (4)
rank6x8, (5) bitstream, (6) opso, (7) oqso, (8) dna, (9) count-1s-str, (10) count-1s-byt,
(11) parking, (12) 2D circle, (13) 3D sphere, (14) squeeze, (15) runs, (16) craps, (17)
marsaglia, (18) sts monobit, (19) sts runs, (20) sts serial[1-16], (21) rgb bitdist[1-12],
(22) rgb minimum distance[2-5], (23) rgb permutations[2-5], (24) rgb lagged sum[0-
32], (25) rgb kstest, (26) dab bytedistrib, (27) dab dct 256, (28) dab fill tree, (29) dab
fill tree 2, and (30) dab monobit 2.

bit sequences because they are used to derive cryptographic keys. We imple-
mented BANDANA on the aforementioned dataset [150] to evaluate these two
characteristics. The similarity between gait fingerprints extracted at all seven
body parts is depicted in Figure 6.3. The proposed approach achieves similarity
above 75% for all location pairs on the same body (intra-body). It is able to reduce
the chance of the attacker (inter-body) to random guess. Hence, we can config-
ure an error-correction code to eliminate the remaining 25% of difference for
the intra-body devices. Next, to test randomness of the generated fingerprints,
we ran the DieHarder statistical tests [25] on the generated gait fingerprints.
Figure 6.4 displays the p-values produced by 20 runs of the DieHarder test suite.
BANDANA provides a stable distribution of p-values. A slight bias is associated
with the squeeze test (14), which employs a chi-square test for the number of
multiplication between 231 and random floats on (0,1) to reduce 231 to 1. These
results show that our proposed gait fingerprinting scheme is suitable to generate
secret keys for on-body device pairing.
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Figure 6.5. Experimental setup for video-based attack on gait-based pairing

6.4.2 Video-based Attack on Gait-based Device Pairing

Experiment to reconstruct gait information from videos

Participants : We recruited five subjects (μage = 31) and one of them is
female. Their height is from 1.63m to 1.95m (μheight = 1.76m).

Materials : We used a smart-phone with built-in accelerometer and
gyroscope to capture the inertial data and a high-speed GoPro
camera to record the videos.

Design : The smart-phone was attached to the right ankle of each subject.
Each subject walked in a straight line of 10m. The camera was
located at the distance of 8m perpendicular to the walking route.

Procedure : Each subject was instructed to jump, walk 10m, and jump
in order to synchronize the inertial data and the videos. We anno-
tated the videos manually to extract the acceleration data, which
was then aligned and compared to the inertial data from the smart-
phone.

Video-capturing devices are omnipresent these days, for example surveillance
cameras, personal camcorders, or mobile phones. The quality of captured videos
is sufficient to discriminate subtle movements. An adversary with camera-
support might therefore be able to extract pairing keys from recorded videos. In
this section, we investigate the threat of video-based side-channel attacks (G).
We investigate how accurate the gait can be estimated by tracking movement of
body parts from videos.

For our experiment, we captured the movement of a subject simultaneously
with a wearable inertial measurement unit (embedded in a smart-phone) and
with a high-speed GoPro camera. The smart-phone was attached to one leg. Five
subjects (4 male; height: 1.63-1.95m; μ = 1.76m) walked in a straight line at
approximately 8m distance to the camera (1080p resolution; 90fps) mounted
on a tripod (cf. Figure 6.5). Acceleration data was sampled at 50Hz. For
synchronization between the video and inertial sensor, a single jump both at the
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Figure 6.6. Gait cycles extracted from shin and waist.

beginning and at the end framed the walking segment. Each subject conducted
the experiment twice. We utilized Tracker2 to manually track the location of the
smartphone on the recorded video. Although human pose estimation [101] is able
to estimate leg movements, we manually marked locations of the smart-phone
on the video frames.

For gait-based on-body pairing, the attacker is free to estimate gait according to
the most easy to attack body location, since the protocols are inherently designed
to pair acceleration sequences from arbitrary body location pairs. Spearman’s
coefficient (1: perfect monotonically increasing relationship; 0: non monotonic
relationship; -1: perfect monotonically decreasing relationship) [139] for gait
sequences extracted at waist and shin in the dataset [150] is 0.44, which reflects
their moderate increasing monotonic association. For instance, the correlation
between gaits extracted from these locations can be observed in Figure 6.6.

From the tracked trajectory we estimated the acceleration of the smart-phone.
We calculated the velocity in horizontal and vertical directions before computing
the acceleration. The obtained result was smoothed by a Gaussian filter to
reduce annotation noise. This estimated acceleration sequence was then re-
sampled to match the 50Hz sampling rate of the inertial sensor. Note that we
estimated the movement orthogonal to the ground since any rotation is implicitly
corrected by the pairing scheme (Figure 6.7a).

To estimate the pairing performance and noise from video-extracted acceler-
ation, in the dataset [150], we estimated the mean μv = 2.09213 and standard
deviation σv = 6.0210 of disparity values between optimally synchronized4 gait
acceleration sequences (estimated and recorded) in our experiment. These val-
ues were then used as parameters for noise distributions, which we added to
the walking data recorded by the dataset in [150]. We generated Gaussian,
Laplacian, and uniformly distributed noise5.

We then generated noisy acceleration signals with N (μv, σ2
v) (noise observed

from video-based acceleration estimation), N (μv
2 , σ2

v
4 ) (low noise) and N (2 ·μv, 4 ·

2http://physlets.org/tracker/
3From the amplitude estimation error due to inaccurate distance measurement between
camera and walking subject.
4We refined the synchronization between the estimated and recorded acceleration
sequences by shifting both sequences until a minimum root mean squared error is
achieved
5 pn(n)= 1�

πσ2 e
(n−μ)2

−σ2 ; pn(n)= 1�
2σ

e
�

2|n−μ|
−σ ; pn(n)= 1
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�
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(a) Alignment of acceleration sequences
from smart-phone and video

(b) Acceleration sequence augmented with

low noise level (N (μv
2 , σ2

v
4 ))

(c) Acceleration sequence augmented with
video noise level (N (μv, σ2

v))
(d) Acceleration sequence augmented with

high noise level (N (2 ·μv, 4 ·σ2
v))

Figure 6.7. Acceleration signals featuring different noise levels

σ2
v) (high noise) as illustrated in Figure 6.7 for Gaussian additive noise. Other

noise models were treated similarly.
Figure 6.8 details the similarity for intra-body, inter-body, and video-based

acceleration sequences with three noise levels. We assessed the effectiveness
of video-based attacks on the four quantization schemes. We could use gait
information reconstructed with videos to generate fingerprints which were
sufficiently similar to the ones actually recorded in acceleration sequences.
Hence, this video-based attack can break the gait-based pairing protocols for all
three noise distributions considered. Walkie-Talkie [166] is the most vulnerable
protocol under the video-based attacks. On the other hand, SAPHE [62] is the
most secure protocol against video-based attacks (cf. Figure 6.8).

6.4.3 Evaluation of Heartbeat Fingerprints

In this section, we performed the experiment on a 14-subject dataset collected
by Jähne-Raden et al. [75]. The subjects were reported to not have any cardio-
vascular disease. They were students from the medical school. Their age range
was from 21 to 34. Five of the subjects were female. Each subject was instructed
to lie stably on a bed. Sensor arrays were attached to three body positions: chest,
neck (right carotid), and wrist (left radial artery).
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(a) SAPHE (b) Walkie-Talkie

(c) BANDANA (d) IPI

Figure 6.8. Attacks using Video-based impersonation: Similarity of gait-fingerprints with differ-
ent noise levels over four pairing schemes

Figure 6.9. Siamese auto-encoder to ex-
tract fingerprints from heart-
beat acceleration data

Figure 6.10. Similarity of heartbeat finger-
prints on the same user and on dif-
ferent users

Using Keras 6 and Theano 7, we implemented a Siamese network with auto-
encoders on heartbeat acceleration samples. In case of the first model, its
branches are multilayer perceptrons (32 hidden units and rectified linear unit
activation function). We split the pairwise data into training and testing set (75%
and 25%, respectively). Other hyperparameters included: Euclidean distance
as the distance function, RMSProp as the optimization algorithm, contrastive
loss function, batch size 16, and 40 epochs. For the second model, we trained the
model on wrist data and then evaluated it using neck data. Its hyperparameters
are: 32 hidden units, the sigmoid activation function, the Adam optimization
algorithm, the mean squared error loss function, batch size 128, and 1000 epochs.

6Keras: keras.io
7Theano: deeplearning.net/software/theano/
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In the task of identifying whether two sensors are on the same human body
or not, our Siamese network achieved the following results: precision of 0.74
(training data) and 0.61 (testing data) and recall of 0.81 (training data) and
0.67 (testing data). We used the trained auto-encoder to extract fingerprints
from the heartbeat acceleration data on three body locations. Each fingerprint
vector f was then transformed into a binary sequence fb. The transformation
was: fb(i) = 1 if f(i) > mean(f) and fb(i) = 0 otherwise. This process could be
performed independently for each wearable device. For evaluation, we computed
the fingerprint similarity based on the Hamming distance between f on the
same user (three locations) and on different users. Figure 6.10 displays the
average similarity in both cases, along with standard errors. From the figure,
the heartbeat fingerprints of the same user is more similar than on different
users. It shows that an error correcting code technique can be applied to derive
the secret key for secure on-body device pairing, for example Reed-Solomon
code [120] as employed in [128].

6.5 Conclusion

In this chapter, we investigated two implicit information sources to implement
natural and continuous pairing of on-body devices: human gait, and heartbeat
data. We studied the use of human gait information to generate pairing keys
for on-body device communication. We proposed a scheme that leveraged the
deviation of instantaneous and temporary mean gait cycles to derive keys. We
discussed the threat of a video-based attack on gait authentication and pairing.
We concluded that a sophisticated attacker assisted with high-resolution video
capture and real-time gait estimation is able to break the studied gait-based
pairing approaches. While the gait-based approach is suitable for ambulatory
activities with repetitive movements, our heartbeat-based method is applied
in scenarios of resting postures. We presented a model based on Siamese
networks and auto-encoders to learn a fingerprinting scheme in device pairing
with heartbeat acceleration data. If two devices are on the same subject, the
learned fingerprints promotes similarity of collected data. Otherwise, it aims
to separate the data extracted from different users. With our two proposed
methods, we covered device pairing in on-body settings during stationary and
ambulatory activities, using implicit information extracted from contextual data.
Hence, they provided solutions for establishing secure communication in the
many-to-many relationship of devices.
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7. Conclusions and Future Work

In this chapter, we summarize our contributions and discuss potential extensions
for our proposed security mechanisms. This dissertation investigated methods
to extract implicit information from sensor data. Then, based on it, we proposed
novel security mechanisms applied at different device-to-user and inter-device
relationships: one-to-one, many-to-one, one-to-many, and many-to-many. We,
first, considered a scenario in which one smart device authenticates its owner.
We introduced a log-in mechanism utilizing ever-changing image-based pass-
words. Our proposed approach personalized authentication challenges for each
user and implicitly updated passwords during different log-in attempts (see
Chapter 3). Second, a team of networked devices can collaborate to infer situa-
tions of an observed area without exchanging sensitive data. We leveraged the
interference of wireless signals to hide sensor data while partially offloading
computation to the communication channel. We designed an algorithm to train a
classification model whose parameters were scattered across networked entities
(see Chapter 4). Third, we proposed an audio-based method to establish a secure
connection between a personal device and shared appliances in a new environ-
ment. Our approach analyzed users’ vocal commands to detect appliance types
and generate secret keys for device-to-device communication (see Chapter 5).
Fourth, we broadened the configuration to more than one devices aiming to
establish a secure connection with each other in on-body settings. Our approach
processed sensor data to extract secret information for secure device pairing.
The proposed methods unobtrusively generated and implicitly updated pairing
keys over time (see Chapter 6).

7.1 Discussion

The emergence of smart devices has gradually improved our life in terms of
functionality and comfort. From a scientific perspective, these devices become
valuable instruments with capability of computation, communication, and data
collection. Multi-modal data recorded by these devices gives opportunities to
nurture a new research direction: utilizing implicit information in sensing
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data to enhance security mechanisms. Next, we discuss our contributions
based on four types of devices: inertial measurement units, wearable cameras,
microphones, and RF devices.

The inertial measurement units have been used in transport and construction,
as well as in human sensing for sport and healthcare. Nowadays they are exces-
sive in quantity after being integrated into such devices as smart-phones and
smart-watches. Their popularity has made them good candidates to implement
a security mechanism that securely connects themselves: motion-based device
pairing. When multiple smart devices with built-in inertial sensors are carried
by a user, they simultaneously capture two characteristics of the user: gait and
heart-beat. We leverage those characteristics to generate shared secret keys:
using gait during ambulatory activities and using heart-beat in resting postures.

Wearable cameras have been used to capture recreational activities from
their wearers’ point-of-view. The first-person-view videos could be analyzed
for activity recognition and motif discovery. The motion signature extracted
from these videos could be used to identify the users. We saw that the diverse
details captured in these videos might benefit the generation of personalized and
transient passwords. Hence, we proposed a method that generated image-based
authentication challenges using users’ memory on the chronological order of
images. These challenges mitigated shoulder-surfing and smudge-based attacks.

VUIs appear more and more frequently as virtual assistants integrated in
smart-phones and smart-homes. We introduced and evaluated a system that
employed natural vocal commands to initiate the secure connection between
two smart devices. In particular, we extracted audio fingerprints from both
devices independently and used a fuzzy commitment scheme based on an error
correcting code to generate a secret key.

All these aforementioned devices are capable of wireless communication, which
may cause signal interference and consume much energy. Backscatter commu-
nication has emerged as a solution to reduce the energy consumption. We
presented a custom stochastic gradient descent algorithm to train a classifier
in an online manner across vertically-partitioned sensor data. Our technique
encoded transmit values as burst sequences following Poisson distributions.
Because multiple devices transmit data simultaneously (via backscattering), the
technique becomes an implicit data perturbation method based on the binomial
mechanism.

On the other hand, sensor data can expose users to obscure security threats.
Especially, video and audio data have been considered to be critical attack
vectors. The advance of camera technology has allowed adversaries to capture
videos of users at high resolution and high speed. These videos can be used to
reconstruct gait information or even heart-beat data. In this dissertation, we
showed the effectiveness of video-based attacks on several gait-based device
pairing protocols. The popularity of VUI-equipped smart devices has made them
potential eavesdroppers. We investigated the awareness of users to these types of
eavesdropping and showed that it was more effective than human eavesdroppers
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because the users are often overlook these devices.
This dissertation has shown that conventional data analysis techniques could

be applied on sensor data to reveal implicit information, which in turn was
leverage either to serve or attack users. Hence, when collecting and analysing
data from one sensor or combining (i.e. fusion) data from multiple sensors to
reveal implicit information, one should consider the impact in two aspects: new
capabilities and potential vulnerabilities.

7.2 Always-fresh Authentication Challenges

Chapter 3 introduced the use of first-person-view videos to generate ever-
changing graphical passwords for user authentication. We explained the process
of selecting appropriate images to form authentication challenges in two differ-
ent formats based on time frame. A combination of video analysis techniques
including visual descriptor extraction, segmentation, and clustering selected
suitable images to form passwords that conformed a chronological order. A
prototype was implemented to evaluate our approach using web and mobile
applications. We experimented with the system to quantify the security and
usability of both password designs. Using our implementation, we were able to
extract implicit information from video data: the chronological order of images.
Based on that, we could form authentication challenges that varied over time for
different users. Unlike using fixed passwords registered by users, our schemes
created graphical authentication challenges from ever-changing videos. We
released users from the burden of changing passwords regularly and reduced
the success chance of shoulder-surfing attacks. We believe that our approach can
be enhanced by designing alternative password formats. For example, picking
multiple images at the same time can improve the security and usability of our
schemes.

7.3 Collaborative Inference based on Implicit Data Aggregation

Chapter 4 presented our approach to allow a team of networked entities to train
a logistic regression model in a collaborative manner. Instead of mitigating
the signal interference we could exploit it to implement computation offloading.
Based on that, a custom stochastic gradient descent could be realized to train a
logistic regression model over vertically-partitioned data. In our setting, sensor
data was collected separately in different sites. The networked entities aimed
to collaborate in learning a classification model without exposing their sensed
information. The model parameter was distributed across networked entities
instead of being stored in a single central server. Our implementation facilitated
secure sharing and aggregation of data via signal interference in a wireless
communication channel. We used only minimal binary feedbacks to guide the
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optimization of model parameters. Hence, our approach can be deployed within
energy-efficient sensor networks, such as those comprised of backscatter devices.

Our work can be extended in terms of hardware implementation that inte-
grates energy harvesting and backscatter communication. It can also be deployed
in a network that contains active and passive radio nodes, which increase both
data rate and power efficiency.

7.4 Proximity-based Secure Communication using Vocal
Commands

In Chapter 5, we introduced a system to allow connecting a personal device and
shared appliances using vocal commands and ambient audio. Vocal commands
which were widely used in human-computer interaction systems could be lever-
aged to securely select devices in an intuitive way. The process was initialized
through a natural vocal command stating the device class. The proposed system
supported both deployments with and without a central authority to manage
all partner devices. We performed security evaluation in both scenarios when
the adversaries were human and hardware. We observed that users could use
directional verbal conversations to securely select devices to establish the con-
nection. In the presence of eavesdroppers, the users tried to control their voice
in the existence of eavesdroppers and they acted differently with human and
hardware eavesdroppers.

7.5 Continuous Secure Device Pairing

Chapter 6 introduced the extraction of secret keys from data acquired with
on-body sensors. Our approach supported continuous key update and automatic
device disconnecting in device-to-device communication. When a user was
moving, we leveraged gait information to continuously generate secret keys to
pair devices on the same body. Our method could work with all sensor positions
on the human body, including upper and lower parts. During resting postures,
heartbeat information was utilized through a feature-learning model to form
the keys. The capability of accelerometers to capture human heart motion in
resting positions was a complement to gait-based device pairing protocols, which
could only work when the users moved. We found that Siamese auto-encoders,
which had been used for such applications as signature verification and face
authentication, were useful for device pairing. In addition, we experimentally
proved that the video-based reconstruction attack was effective to gait-based
pairing protocols.

One potential extension of our approach is sensor fusion. Multiple sensing
modalities can be combined to form more secure keys. We can also pro-actively
select appropriate sensors based on the context to balance the trade off between
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security and usability.

7.6 Future Work

In this section, we offer possible extensions that can be developed from the
contribution of this dissertation. The future work aims to improve our current
systems not only in functionality but also in security and efficiency. For example,
we can add recent advances in physical layer security to further protect the
information hidden in burst sequences while still ensuring the aggregation of
transmitted data. Energy harvesting from ambient sources such as light and RF
signal is another component that can be attached to our systems to compensate
the energy used for collecting and pre-processing the data.

In Chapter 4, the information is encoded into burst sequences instead of
explicitly using encryption algorithms since we leveraged the interference to
hide confidential data and enhance privacy. Physical layer security can be an
approach to improve the confidentiality of our mechanism, such as injecting
Gaussian noise data into the carrier signal to prevent eavesdroppers from ex-
tracting confidential data [122]. Then, we can analyze the information-theoretic
perspective of our computation scheme through extending the formulation of
secure transmission over wireless channels [19]. In future, we can leverage
backscatter signals as an implicit information source to establish a secure
connection between resource-constrained devices. We aim to generate secret
keys for device-to-device communication (see Chapter 5 and 6) from multi-path
propagation signatures of IoT [93] and wearable [94] devices.

Energy harvesting from ambient electromagnetic signals can support wireless
sensor nodes [118] and on-body devices [170] for sensing, information dissemi-
nation, and data reception. Battery-free devices powered from Wi-Fi [111] and
GSM [10] bands have also been implemented. Our next step is to integrate
energy-harvesting components into our devices to realize long-term autonomous
operations. We aim to implement the proposed security mechanisms on battery-
free devices.
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