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Abstract—This paper describes the challenges raised from the
use of Unmanned Aerial Vehicles (UAVs) on the exploration of
inhospitable places that present limitations and risks to humans;
for instance, we describe the case of cave exploration. UAVs have
emerged as an attractive alternative for performing this task
in a safety and reliable manner. However, challenges regarding
control management, accurate positioning and navigation, and
reliable wireless connectivity need to be addressed in order to
achieve effective solutions. Herein, we address those challenges
and present possible solutions for enabling the use of UAVs in
harsh environments.

Index Terms—harsh environment, location and positioning,
multipath channels, Unmanned Aerial Vehicles.

I. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) is an aircraft that can
fly without any human input or supervision. Usually, they are
part of an Unmanned Aerial System (UAS) together with a
Ground Control Station (GCS) and the communication links
[1]. Historically, they were mostly employed in military appli-
cations, but have been gaining ground in civilian applications
such as precision agriculture, track monitoring, surveillance,
logistics, search-rescue missions, among others [2]. UAVs are
usually very resource-constrained, greatly impacting aspects
such as maximum flight time, communication efficiency and
data processing and storage. Energy-efficiency must be taken
into account in any UAV-based solution to maximize battery
life and flight time.

There is a growing interest on using UAVs as a low-
cost technology for providing connectivity in indoors environ-
ments, specially for industry applications. UAVs can also be
used to reach dangerous places where humans cannot access
in safety conditions [3]. However, missions over confined
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spaces, where absolute positioning signals and remote con-
trol are not available or sufficiently precise represent a very
challenging task. Particularly, UAV systems in confined envi-
ronments would need robust wireless communications, three-
dimensional trajectory data, precise control, and scheduling
(UAV’s control commands).

Regardless of their size or autonomy level, the state of UAVs
is required to be known by its controller or its automatic pilot.
Based on the acquired data, the UAV control system can com-
mand the actuators so the desired trajectory is met [4]. UAV
state comprise its position, velocity, altitude, airspeed, angle-
of-attack, sideslip angle, and rotation (pitch, roll, and yaw)
rates, which are acquired by an Inertial Measurement Unit
(IMU) and Global Positioning System (GPS) receiver. IMU
measurements present accumulated error over time, which is
compensated by the GPS location information [5].

When considering a harsh and confined environment, the
navigation and therefore UAV control can be seriously com-
promised. High-frequency waves cannot penetrate dense obsta-
cles, and in general the GPS system is not available. Therefore,
the UAV must either operate remotely within a Line of Sight
(LoS) or employ another navigation strategy for a GPS-denied
environment [6]. One of the strategies to compensate the lack
of GPS signals are fusing IMU and camera data, resulting
in a vision-based navigation strategy. Popular strategies for
vision-based navigation are the Simultaneous Localization and
Mapping (SLAM), which builds an environment map and
estimate the UAV position based on the acquired image, and
Visual Odometry (VO), which estimates the vehicle’s position
and orientation based on the sequence of images acquired
[5]. However, some environments may have no light to apply
a vision-based approach in UAV localization. The use of a
lightning source at all times would demand UAV power and
decrease its autonomy. Therefore, other localization techniques
are required that do not rely on computer vision.

In UAV applications, there is a predominance of decen-
tralized localization strategies based on distance, such as the
Received Signal Strength Indication (RSSI) and Time Differ-
ence of Arrival (TDOA). RSSI is a technique in which the
distance between nodes is estimated using the signal strength
and used to calculate the position [7]. This technique was
applied for UAVs in GPS-denied environments in [8]. TDOA



bases its measurement on the difference in the arrival times of
a signal coming from multiple sources. This technique, applied
in [9] is cost effective and less affected by radio reflection [7].
Ultra-wideband (UWB) technology has attracted interest as a
promising solution for accurate location and tracking due to its
ability on resolving multipath and penetrating obstacles [10].

In this paper, we discuss the challenges and potentials
technologies to address the use of UAVs in harsh environments
by considering the special case of cave exploration. Sec-
tion II describes our case study. Section III presents the main
challenges regarding communication, control, and positioning
issues. Finally, Section IV presents some final remarks.

II. CASE STUDY: CAVE EXPLORATION

Caves have been present in mankind History since the
prehistoric period, being used for shelter, economic activities,
storage and ritual purposes [11]. As an example, in Brazil,
there are around 6000 identified caves, many of them without
speleological studies. Cave surveying (or cave mapping) is
an attempt to accurately record the cave and its characteris-
tics [12]. Those maps detail the cave extension, layout and
passages, and are useful not only for cave research, but for
other knowledge areas such as archaeology, biology, geology,
and others [13]. Traditionally, cave mapping has been done
in a rudimentary manner, using tools such as compasses or
clinometers and taking notes that were used to draw the cave
maps [12]. The improvement of available tools such as 3D
sensors allowed speleologists to provide better mapping and
cave information [14]–[16]. All these strategies, however, still
depend on a person entering the cave, which can be hazardous
for the speleologist depending on the environment or even
impossible if the area to be mapped is unreachable by humans.

In [16], a mobile cave mapping with LiDAR is presented,
and in that work is suggested the use of an Unmanned
Aerial Vehicle (UAV) integrated to a LiDAR sensor for cave
mapping. Digital photogrammetry can also be deployed in
UAVs to help speleologists, as demonstrated in [17]. Even
though UAVs can bring many benefits to cave surveying due
to its access to dangerous and inaccessible sites, there are
some factors that hinder the use of those vehicles in these
environments. Indeed, non-maintained or natural subterranean
environments can be considered one of the most challenging
for robotic operations [6], since they can present limited
access, have water, gases and wildlife inside them, have no
illumination and greatly affected communication. Therefore,
robots or Unmanned Vehicles employed in such environments
must present higher reliability and robustness.

In general, inhospitable scenarios as those of caves present
different rock formations and environments and passages of
variable dimensions. In its interior can occur the total absence
of light, irregular ground and different kinds and sizes of obsta-
cles such as speleothems, besides the possibility of containing
bodies, water and cave fauna, especially bats. Those character-
istics represent a very difficult challenge for UAV navigation
and manoeuvres. Also, the irregular environment influences
the communication signals through reflection, diffraction and

scattering, making UAV operation very challenging in these
environments. Fig. II shows an example of a cave.

Fig. 1. Interior of the Pinheiro Seco cave, located in the municipality of
Castro, in the state of Paraná, Brazil.

III. CHALLENGES AND POTENTIAL DIRECTIONS

In this section, we describe the main challenges regarding
the control of UAVs inside the described environments, the
communications and positioning issues as well as the corre-
sponding possible solutions.

A. Challenges in Control

1) Communication Maintenance: Regardless of whether
the drone is autonomous or remotely controlled, the
flight control will depend heavily on the communication
link maintenance to keep the aircraft stable during flight
[18]. Communication disruption in remotely operated
UAVs can cause the operator to lose control of the
aircraft, which can become unstable and crash. In au-
tonomous UAVs, the autopilot is a key component of
the aircraft control system, receiving GPS positioning
data and controlling the UAV to follow reference paths,
avoid obstacles or navigate through waypoints. In GPS-
denied environments (cave scenarios) or if GPS signals
outages happens, the navigation system can deteriorate
rapidly due to the large sensor errors presented by the
low cost microelectromechanical sensors used in most
off-the-shelf autopilot systems [19].

2) Delay: In embedded systems, the network represents the
interconnections among components (sensors, actuators,
controller and ground station) [20]–[22]. Delays on the
network can greatly prejudice robust networked control
systems, which need reliable real-time information to
provide fast, accurate responses. An example can be
seen in [23], where network issues such as transmission
delay and packet loss can result in a significant threat
to the train stability and operation safety. Likewise,
delayed UAV information fed to the control system
can cause instability and the inability of returning to
the initial navigation point or avoiding obstacles inside
the environment. Therefore, reducing the delay is a big
challenge when working with critical embedded real-
time systems.



3) Noise, Bit Errors, and the Risk of Instability: In
control systems with quantized feedback control val-
ues being transmitted from a controller to the sen-
sor/actuators over a noisy feedback channel, randomly
occurring bit errors will degrade the performance of the
system. This degradation will depend on a number of
factors, including the channel noise and whether the
control levels have been coded to deal with more than
a single bit error. With a noisy channel and frequent
bit errors, the performance in the close loop system can
evolve to the point of instability [24], [25]. When using
UAVs inside a cave, a control system instability could
represent the lost of the UAV or a possible damage to
the cave So it is important to reduce the channel noise
and prevent a system instability in order to reap the best
benefits from UAV usage.

B. Challenges in Communications

1) Channel Characterization: Appropriate characteriza-
tion of channel propagation effects is of paramount
importance for the design and analysis of UAV assisted
wireless communication networks. There has been a
great interest in the research community in measuring
and modelling air-to-ground and air-to-air wireless chan-
nels – the survey in [26] summarizes the main findings
in this area. For instance, fading, path loss, shadowing
and Doppler effect have been measured or modelled
considering different types of UAVs, carrier frequency
and communication technology [27]–[34]. Common to
these works is the conclusion that line-of-sight (LOS)
plays a great role and that the UAV altitude has a
direct relation to the amount of LOS, especially in
air-to-ground channels. Moreover, these works focus
basically on aerial or over the ground communications,
not in underground channels. Although not including
UAVs, there is a rich literature devoted to the wireless
characterization of tunnels and mines [35]–[38], but
the same cannot be said for the case of natural caves.
A recent exception is the experimental work reported
in [39], which characterizes the wireless channel inside
a touristic cave in Malaysia. Although a natural cave
differs in many ways from an underground mine, such
as depth, width of the paths, type of rocks, among other
points, the authors in [39] also report the severe impact
of non-line-of-sight (NLOS) conditions induced by the
irregular trajectory inside the cave, with several cor-
ners. Despite the differences, localization and tracking
schemes designed and deployed to work in underground
mines (e.g. [40]), should be adaptable to the particular
characteristics of wireless propagation inside caves.

2) Diversity and reliability enhancements: In harsh en-
vironments, the radio signal can be dramatically de-
gradedby diffraction, reflection and scattering due to
obstacles, resulting in several replicas with different am-
plitudes, delay and Doppler components. This leads to
destructive and constructive interference of the different

signal versions arriving at the receiver, which make its
detection extremely difficult. Diversity techniques such
as frequency or time diversity, spatial diversity with
the use of multiple antennas in multiple-input multiple
output (MIMO) schemes, and cooperative diversity can
be applied to improve the reliability of the signal in
multipath channels. For instance, cooperative relaying,
even with a single relay, can significantly improve the
performance of the system; however, harsh environments
would require the employment of numerous relays, and
their placements could drastically affect the system per-
formance, thus becoming a very challenging task [41].
Moreover, UAV relaying would present more complex-
ities in the sense that the air-to-air link and the air-to-
ground link are asymmetric and relaying happens in a
3D space. In [42], the use of multiple UAVs in relaying
is tackled by studying the optimum positions of UAVs
in relaying systems, equations for the best altitudes
and distances are derived by maximizing the end-to-
end SNR. However, the coordination of multiple UAVs
is also an intricate task. In [43], it was demonstrated
that multiple antennas on the UAV provide a more
robust radio channel in front of the antenna changes
of orientation when the UAV is maneuvering. On the
other hand, unlike narrowband channels, the UWB chan-
nel does not suffer from dense multipath propagation
due to the inherent frequency diversity. However, a
severe penalty in throughput and quality of service is
experimented beyond short distances, then high data-
rate UWB communications systems are range restricted.
Therefore, spatial diversity joint with UWB in UWB-
MIMO systems can lead to an increase signal-to-noise
ratio (SNR), which can help to extend the range, reduce
spatial power variations, and enable the use of high-level
modulation for higher data rates [44]. Indeed, UWB-
MIMO systems have the potential to deliver extremely
high data rates over short distances. However, even
though multiple antennas on UAVs can bring improve-
ments on coverage and diversity gains, it comes at the
expense of increased computational capabilities, space,
and power requirements.

3) Resource allocation and networking Maintaining con-
nectivity of autonomous objects is crucial for suitable
performance of the targeted tasks. Therefore, the com-
munication between UAVs and between UAV and the
infrastructure needs to be reliable in order to support
the exchange of control messages, data offloading form
sensors to UAVs, then among UAVs, and finally to the
infrastructure [45]–[47]. Authors in [46] have evaluated
a deployment composed of several UAVs, from which
one is elected leader, and then aggregates the traffic
from remaining UAVs and relays to the infrastructure
or control center, while clusters members only connect
to each other. Authors propose an resource subchannel
allocation scheme which is shown to be NP-hard in
urban environments. In a similar setting, [45] propose a



solution in which spectrum sharing between UAV trans-
missions is allowed thus enhancing spectral efficiency
(e.g. high data rates). In both works urban scenarios are
assumed, hence we expect that under harsh conditions
such allocation schemes might not be feasible, thus
demanding dedicated resources form the network, or
even dedicated architecture.

C. Challenges in Sensor Fusion and Positioning

As aforesaid, the proposed solution aims at autonomously
flying UAVs, while still maintaining reliable wireless con-
nection to edge servers to forward sensory data and offload
computation. The target deployment scenario (caves) imposes
difficult technological challenges due to its radio propagation
features and harsh (inaccessible) environment for humans. In
such situations, cyber physical systems which perform in-
tended tasks autonomously based on current state and sensing
with limited or even without human intervention are favored
[48], [49]. To achieve that, the autonomous systems under
investigation rely on information about network dynamics
and environment features. Actually, it is necessary to si-
multaneously acquire, combine, and process large data base
from various heterogeneous sources and then infer meaningful
events and patterns to assist in the drone flight control and
operation. It is also important to develop new positioning
techniques for accurate 3D localization and reliable navigation
of such unmanned vehicles.

Multidimensional sensor fusion combines sensory data from
various heterogeneous sources so that the aggregated infor-
mation offers more certainty than each component separately
would [50]. This module has pivotal role for the overall
solution as it acquires and processes information of many
heterogeneous sources from non- and communication domains
(e.g., laser technologies, video cameras, inertial measure-
ment units and available transducers). For instance, UWB
communication systems provide centimeter accuracy, strong
multipath resistance and a good material penetration capa-
bility, which can be useful under Non-Line-of-Sight (NLoS)
conditions due to its very large bandwidth. However, the
transmission of information can be severely degraded un-
der strong scattering conditions. Alternatively, radar systems
implementing pulse compression techniques can significantly
improve the range measurement precision if the effective
bandwidth of the received signal is increased while keeping
its energy constant [51], [52]. For combining such large and
multidimensional data inside the sensor fusion component,
the recursive Bayesian estimation approach (also known as
Bayesian filtering) has been receiving a lot of attention lately
[53], [54] as a viable solution to combine multidimensional
data and enable positioning and tracking tasks, for example,
Authors in [55]–[60] successfully applied these techniques in
various deployment scenarios. A particularly useful approach
is to combine Bayesian filtering with other machine learning
models such as Gaussian processes [61], [62].

Equally important, modern radio access technologies such
as 5G New Radio with large bandwidth, high carrier frequency,

densely deployed base stations, and antenna arrays enable
machine type communication in such a way that accurate
positioning is provided by the radio network itself [63]–[65].
Hybrid strategies using heterogeneous sources of information
and exploiting various metrics (such as time of flight, received
signal strength, direction of arrival and combinations thereof)
are of interest. As previously mentioned, the envisaged mech-
anisms rely on modern network architecture wherein commu-
nicating nodes offload not only sensory data, but also high
demanding computational tasks to more capable edge servers
that then estimate the target node position after gathering
measurements and prior history [65], [66].

In the same way [67] addressed the prospects and key
enabling technologies for highly efficient and accurate device
positioning and tracking in 5G radio access networks. Building
on the premises of ultra-dense networks as well as on the
adoption of multicarrier waveforms and antenna arrays in the
access nodes (ANs), the authors formulate extended Kalman
filter (EKF)-based solutions for computationally efficient joint
estimation and tracking of the time of arrival (ToA) and
direction of arrival (DoA) of the user nodes (UNs) using uplink
reference signals. Then, a second EKF stage was proposed in
order to fuse the individual DoA and ToA estimates from one
or several ANs into a UN position estimate. The computing
complexity and energy consumption at the UN side were kept
to a minimum. In results they demonstrated that by using their
methods, sub-meter scale positioning and tracking accuracy
of moving devices is indeed technically feasible in future 5G.
Positioning is a key enabler for new services in the upcoming
wireless communication systems, for example, transportation,
logistics, healthy care, animal husbandry, environmental mon-
itoring and even wearables [58], [66], [68]. In the scenarios
under consideration, access points, supporting localization
units and low computation power terminals may also offload
their computation to nearby edge server that actually estimate
the target node position based on heterogeneous metrics and
achieve better accuracy. Bayesian networks are employed here
to capture the qualitative relationships between the random
quantities aiming at obtaining valid posterior estimates for
the unknown varieties of interest. The Markov Chain Monte
Carlo (MCMC) method (a powerful generic computational
approach) can be employed to approximately sample from
arbitrary distributions [69]. Thus, we also resort to Bayesian
probabilistic models to develop our collaborative localization
procedure [70], [71]. In particular, the Hamiltonian Monte
Carlo approach may be employed to carry out the MCMC
method in a computationally efficient manner [54], [72].

IV. CONCLUDING REMARKS

UAVs are becoming an attractive technology for various
civil and military applications. However, indoor environments
usually comprise passive objects that cause performance
degradation, anomalous scattering, path loss, multipath fading,
and interference effects. In this paper we present challenges
and possible solutions for the use of UAVs in inhospitable
environments by exemplifying the case of cave exploration.



Although UAVs offer great opportunities for several sec-
tors of our society through civil, commercial and military
applications, their widespread adoption and seamless operation
are still hindered by daunting technological challenges. As
addressed in Section III-B, the target (indoor) deployment
scenario imposes strong scattering conditions rendering an
aggressive radio channel which limits the set of wireless
radio access technologies capable of operating in such harsh
circumstances. Therefore, further development is still needed
to identify valid metrics (even non-communication based) to
allow localization, mapping and navigation tasks. Typically,
autonomous systems have limited computational and hardware
capabilities, as well as limited power resources. Therefore,
energy-efficient routing algorithms and network structure for
sensory data an computation offloading in order to save battery
time are needed, as well as effective charging techniques.
In such applications, sensory data is crucial for proper au-
tonomous system operation, so both real-time and stored
data (from previous events and already discovered patterns)
need to be properly combined to achieve accurate positioning
and decision making, mainly in mission-critical applications.
Moreover, the UAV popularization is still limited by the
adoption of affordable materials and efficient technologies so
as to reduce overall costs. Finally, UAV regulation by national
aviation authorities may limit applications and deployment
scenarios owing to mainly safety issues.

The addressed challenges provide unique guidelines that
allow future researches in this field to continue looking for
effective solutions, once UAVs are expected to be an important
tool to improve the human quality of life.
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