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Abstract: Supervisory control and data acquisition (SCADA) systems monitor and supervise our
daily infrastructure systems and industrial processes. Hence, the security of the information
systems of critical infrastructures cannot be overstated. The effectiveness of unsupervised anomaly
detection approaches is sensitive to parameter choices, especially when the boundaries between
normal and abnormal behaviours are not clearly distinguishable. Therefore, the current approach
in detecting anomaly for SCADA is based on the assumptions by which anomalies are defined;
these assumptions are controlled by a parameter choice. This paper proposes an add-on anomaly
threshold technique to identify the observations whose anomaly scores are extreme and significantly
deviate from others, and then such observations are assumed to be ”abnormal”. The observations
whose anomaly scores are significantly distant from ”abnormal” ones will be assumed as ”normal”.
Then, the ensemble-based supervised learning is proposed to find a global and efficient anomaly
threshold using the information of both ”normal”/”abnormal” behaviours. The proposed technique
can be used for any unsupervised anomaly detection approach to mitigate the sensitivity of such
parameters and improve the performance of the SCADA unsupervised anomaly detection approaches.
Experimental results confirm that the proposed technique achieved a significant improvement
compared to the state-of-the-art of two unsupervised anomaly detection algorithms.

Keywords: SCADA security; intrusion detection; unsupervised learning; Industrial Internet of Things
(IIoT); information-security; security threats; vulnerability measurement

1. Introduction

Supervisory control and data acquisition (SCADA) systems control and monitor the information
systems of industrial and critical infrastructure (such as electricity, gas, and water). Recently, there has
been an increase in attacks targeting these systems. Compromising the information systems of SCADA
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can lead to large financial losses and serious impacts on public safety and the environment. The attack
on a sewage treatment system in Maroochy Shire, Queensland, is an obvious example of the seriousness
of cyber attacks on critical infrastructure [1]. Therefore, securing and protecting these systems is
extremely important [2–4]. The new generation of intrusion detection systems (IDSs) will need to detect
ad-hoc SCADA-specific attacks that cannot be detected by existing security technologies [5]. Due to the
differences between the nature and the characteristics of traditional IT and SCADA systems, there is a
need for the development of SCADA-specific IDSs, and in recent years this has become an interesting
research area [6–8].

A SCADA system monitors and controls a series of process parameters. The values of these
supervised parameters can reflect the internal representation of the SCADA system. The values are
called ”SCADA data” which are found in [6,8–13] to be a good information source to monitor the
internal behaviour of the given system and protect it from malicious actions that are intended to
sabotage or disturb the proper functionality of the targeted system. Therefore, the monitoring of
the behaviour of SCADA systems through the evolution of SCADA data has attracted the attention
of researchers. In [9,10], a predefined threshold (e.g, minimum, maximum) is proposed to monitor
each process parameter individually, and any reading that is not inside a prescribed threshold is
considered as an anomaly. These approaches are good for monitoring one single process parameter.
However, the value of an individual process parameter may not be abnormal, but in combination
with other process parameters, may produce an abnormal observation, which very rarely occurs.
These types of parameters are called multivariate parameters, and are assumed to be directly
(or indirectly) ”correlated”.

In [11], the authors proposed an analytical approach to manually identify the range of critical
states for multivariate process parameters, and the identified ranges are then used to monitor the
critical state of the analysed process parameters. However, analytical approaches require expert
involvement, and this results in time-intensive processing that is prone to human error. To avoid
the aforementioned issues, purely ”normal” SCADA data are used to model the normal behaviours.
For example, Rrushi [12] applied probabilistic models to estimate the normalcy of the evolution of
multivariate process parameters. Zhanwei et al. [6] proposed a combination of a normal control
behaviour model and a normal process behaviour model to build SCADA data-driven detection
models to monitor abnormal behaviours in industrial equipment. Gao et al. [8] proposed a neural
network-based model to learn the normal behaviours for water tank control systems. Similarly,
Zaher et al. [13] proposed the same technique to build the normal behaviours for a wind turbine to
identify faults or unexpected behaviours (anomalies).

However, it is difficult to build the ”normal” behaviours of a given system using observations
of the raw SCADA data because, firstly, it cannot be guaranteed that all observations represent one
behaviour as either ”normal” or ”abnormal”, and therefore domain experts are required for the
labelling of each observation, and this process is prohibitively expensive; secondly, in order to obtain
purely ”normal” observations that comprehensively represent "normal" behaviours, this requires a
given system to be run for a long period under normal conditions, and this is not practical; and finally,
it is challenging to obtain observations that will cover all possible abnormal behaviours that can occur
in the future. Therefore, we strongly believe that the development of a SCADA-specific IDS that uses
SCADA data and operates in unsupervised mode, where the labelled data is not available, has great
potential as a means of addressing the aforementioned issues.

The unsupervised IDS can be a time and cost-efficient means of building detection models from
unlabelled data; however, this requires an efficient and accurate technique to differentiate between
the normal and abnormal observations without the involvement of experts, which is costly and
prone to human error. Then, from observations of each behaviour, either normal or abnormal,
the detection models can be built. Two assumptions must be made in unsupervised anomaly
detection approaches [14–16]: (i) the number of normal observations in the dataset vastly outperforms
the abnormal observations, and (ii) the abnormal observations must be statistically different from
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normal ones. Therefore, the performance of the proposed detection models relies mainly on the two
aforementioned to distinguish between normal and abnormal behaviours. The reporting of anomalies
in the unsupervised mode can be done either by scoring-based or binary-based techniques [17].

Anomaly scoring techniques are categorised into two broad classes: the distance-based and the
density-based scoring techniques. The basic idea of the distance-based technique is to distinguish an
observation as outlier on the base of the distance to its nearest neighbours, while in the density-based
one, an observation is considered as outlier when it lies in a low-density area of its nearest
neighbours [17]. All observations in a dataset are given an anomaly score, and therefore actual
anomalies are assumed to have the highest scores. The key problem is how to find the best cut-off
threshold that minimises the false positive rate while maximising the detection rate. On the one
hand, binary-based techniques [14] group similar observations together into a number of clusters.
Abnormal observations are identified by making use of the fact that abnormal observations will be
considered as outliers, and therefore will not be assigned to any cluster, or they will be grouped
into small clusters that have some characteristics which are different from normal clusters. However,
labelling an observation as an outlier or a cluster as anomalous is controlled through some parameter
choices within each detection technique. For instance, given the top 50% of the observations which
have the highest anomaly scores, these are assumed as outliers. In this case, both detection and
false positive rates will be higher. Similarly, labelling a low percentage of largest clusters as normal
in clustering-based intrusion detection techniques, will result in higher detection and false positive
rates. Therefore, the effectiveness of unsupervised intrusion approaches is sensitive to parameter
choices, especially when the boundaries between normal and abnormal behaviours are not clearly
distinguishable.

This paper proposes the global anomaly threshold to unsupervised detection (GATUD) that is
based on anomaly density-based technique because it is considered as one of the anomaly scoring
techniques in network anomaly detection [18]. The proposed GATUD approach can be used as
an add-on threshold technique to allow unsupervised anomaly scoring-based techniques to set the
value of the cut-off threshold parameter at a satisfactory level to guarantee a high detection rate,
while minimising the resulting high false positive rate. In addition, it can be used as a robust technique
for labelling clusters to improve the accuracy of clustering-based intrusion detection systems. Figure 1
shows that GATUD involves two steps: (i) establishing two small most-representative datasets, where
each dataset represents one-class problem (normal or abnormal) with high-confidence; and (ii) using
the established datasets to build an ensemble-based decision-making model using a set of supervised
classifiers.

This paper is organised as follows. Section 2 presents an overview of related work. Section 3 introduces
GATUD. Section 4 presents the experimental set-up, followed by results and discussion in Section 5.
Section 6 concludes the paper.
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Figure 1. Overview of GATUD.
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2. Related Work

An intrusion detection system (IDS) is a main component in securing computer systems and
networks. In the case of SCADA systems, a number of tailored IDSs have been proposed (refer to a
survey paper [19]). There are two categories of IDSs: signature-based and anomaly-based. The former
detects only known attacks because it monitors the system against specific attack patterns. The latter
attempts to build models from the normal behaviour of the systems, and any deviation from this
behaviour is assumed to be a malicious activity. Both approaches have advantages and disadvantages.
The former achieves good accuracy, but fails to detect attacks that are new or the patterns of which are
not learned. Although the latter is able to detect novel attacks, the overall detection accuracy of this
approach is low.

This paper focuses on the anomaly detection techniques since they are able to address the problem
of the zero-day attacks. Rrushi [12] applied statistics and probability theory to estimate the normality
of the evolution of values of correlated process parameters. In the work of [20], the authors assumed
that communication patterns among SCADA components are well-behaved, and combined the normal
behaviour of SCADA network traffic with artificial intrusion observations to learn the boundaries of
the normal behaviour using the neural network technique. There are two types of anomaly detection
techniques: supervised and unsupervised modes. In the former mode, training data are labelled,
while in the latter, data are not labelled. In contrast to conventional information technology (IT),
the unsupervised mode has not been used much in SCADA systems. This is because SCADA security
research is relatively new compared with IT. In addition, the security requirements of such systems
require a high detection accuracy which this mode lacks.

Recently, machine learning techniques have been successfully applied in unsupervised IDS for
industrial control systems [21,22]. Bhatia et al [21] proposed an unsupervised model that uses deep
learning autoencoders based on artificial neural networks not for dimension reduction only, but for
classification to learn the benign network traffic. The key contribution of their proposed model is to
identify the minimal latent subspace that contains the essential characteristics of the benign traffic.
Similarly, in [22], the authors proposed unsupervised model that utilises the sparse and denoising
auto-encoder (DAE) to obtain the robust latent representations by introducing a stochastic noise to the
original data. In [23–25], unsupervised anomaly scoring approaches based on clustering techniques
were proposed to detect normal and abnormal behaviours of industrial control systems at network
and environmental parameters levels. Each observation is given an anomaly score, and therefore
actual anomalies are assumed to have the highest scores. However, the key problem is how to
find the near-optimal cut-off threshold that minimises the false positive rate while maximising the
detection rate. In order to overcome this issue, this paper proposes an approach inspired by the work
proposed in [26]. The authors assign an anomaly-scoring score for each observation in the unlabelled
data; the observations that have the highest anomaly scores are labelled as outliers, while the rest are
labelled as normal. They randomly selected a subset of normal data and combined it with outliers
to create labelled data. Afterwards, a supervised technique was trained with the labelled data to
build an outlier filtering rule that differentiates outliers from normal data. However, our approach
differs in that we learn the labelled data from data about which we have no prior knowledge, and
a set of supervised classifiers are used to build a robust decision-maker because each classifier can
capture different knowledge [27]. Finally, our approach is proposed as an add-on component (not an
independent technique) for unsupervised learning algorithms in order to benefit from the inherent
characteristics of each algorithm.

3. The Proposed GATUD Approach

We focus on improving the detection accuracy of unsupervised anomaly detection approaches.
This is because such approaches are able to detect (unknown) zero-day attacks. However, they suffer
from low accuracy. In this section, we present GATUD that is intended to address this problem.
We outline the various steps below.
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3.1. Learning of Most-Representative Datasets

In this step, two small, most-representative datasets are established from the unlabelled data,
where the first and second datasets approximately represent the normal and abnormal behaviours
respectively. In order to choose the most-representative datasets, two steps are followed:

3.1.1. Step 1: Anomaly Scoring

Since we have no prior knowledge about the normal and abnormal data, the k-nearest neighbour
notion is adapted to assign an anomaly score to each observation. The k-nearest neighbour notion is
chosen because it has produced significant results in anomaly scoring as proposed in [25], in cases where
normal data in n-dimension space form dense areas, and the abnormal data are sparsely distributed.
Unlike the previous approaches, we are concerned with the most relevant normal and abnormal data rather
than with the detection of all anomalies. However, the k-nearest neighbour algorithm is computationally
expensive and this issue has been addressed by the proposed the kNNVWC approach in [28], and therefore,
it is used to efficiently find k-nearest neighbours for each observation in a dataset. Let S be unlabelled
dataset of SCADA data with a multi-dimensional space, m× n matrix, where m and n represent the
numbers of observations and attributes in S respectively. Each dimension represents a distinct data
point (e.g., temperature, motor speed or humidity), while each observation xi is represented by values
of a set of attributes A = {a1, a2, a3, . . . , an}. Let d be the Euclidean distance between two observations
x1 = {x1,1, x1,2, . . . , x1,n} and x2 = {x2,1, x2,2, . . . , x2,n},

d(x1, x2) =

√
n

∑
i=1

(x1,i − x2,i)2 (1)

where n is the number of the attributes. Given B = {b1, b2, . . . , bk} be a set of k-nearest neighbours
of the observation xi where B ⊂ S, xi ∈ S, and xi /∈ B. Then the anomaly score of xi is computed
as follows:

ρ(xi, B) =
1
k

k

∑
j=1

d(xi, bj) (2)

The fast k-nearest neighbour algorithm in [28] is used here to find k-nearest neighbours. Algorithm 1
summarises the calculation steps of anomaly scores for each an observation xi.

Algorithm 1: Anomaly scoring calculation.
Input: S
/* A matrix of unlabelled SCADA measurement data consisting of m observations

and n attributes */
Input: k
/* A positive integer that specifies the number of nearest neighbours */
Output: AnomalyScoresList
/* list of Anomaly Scores sorted by rank in descending order */

1 AnomalyScoresList←− ∅;
2 foreach xi in S do
3 B←− knn(xi, k);

/* k -nearest neighbours of the observation xi */
4 Score←− ρ(xi, B);

/* Compute anomaly score as Equation (2) */
5 put Score in AnomalyScoresList;

6 return [AnomalyScoresList];
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3.1.2. Step 2: Selection of Candidate Sets

From the list of anomaly scores, which are produced by Algorithm 1, we establish two small,
most-representative datasets, where each dataset represents normal or abnormal behaviours with
high confidence. Based on the two previously-mentioned assumptions of normal and abnormal
behaviours in the unsupervised mode, we group the list of anomaly scores into three categories,
as illustrated in Figure 2: confidence area of anomalies, uncertain area, and confidence area of normality.
As shown in this figure, the extent of these areas is determined by the confidence thresholds β, α, and λ.
For instance, the smaller threshold β of the confidence area of anomalies, the greater the confidence that
the observations falling into this area are abnormal. This is true for the confidence area of the normality.
Therefore, the thresholds (β and λ) should be kept at a distance from the uncertain area because this
area requires a best cut-off threshold in order to judge an observation as either normal or abnormal,
especially when some actual anomalous observations have anomaly scores that are close to some
normal ones. Therefore, the most-representative datasets for normal and abnormal behaviours are
established from the following two categories: confidence area of normality and confidence area of anomalies
respectively. The most-relevant anomalies, AbnormalData, are defined by selecting observations
whose indices correspond to the top n of AnomalyScoresList, where n = β × |AnomalyScoresList|.
The most relevant normal observations, MostNormal, are defined by selecting observations whose
indices correspond to the bottom n of AnomalyScoresList, where n = λ × |AnomalyScoresList|.

βαλ

Confidence area of  anomalies

Confidence area of  normality

Uncertain area 

Anomaly scores

λ 
α
β

Figure 2. The categorization of unlabelled data after applying the anomaly-scoring technique.

Again, if the two assumptions [14] about the unlabelled data are met, the thresholds β and λ are
not difficult to determine. According to these assumptions, the anomalies are assumed to constitute
a small portion of the data, where this percentage is assumed to not exceed 5%. Since we are not
interested in finding all anomalies more than finding the fraction of anomalies with high confidence,
and also we are not supposed to approach the uncertain area, the value of β will be set to a value that
is smaller than 5%. As opposed to anomalies, the normal data is assumed to constitute a large portion
of the data; therefore, setting λ to a small value will result in a small dataset of the most-relevant
normal observations. However, this dataset might not approximately represent the large portion of
the normal data. To address this problem, we propose to set λ to a large value providing this value
does overlap with the uncertain area by, for example, 80%. This will result in a large dataset that is the
most-relevant normal. However, the computation time in the ensemble-based decision-making model
will be substantially higher.

In order to resolve the previous problem, we extract a small set of representative observations
from the most relevant normal dataset. In this step, we group the similar observations together in
terms of Euclidean distance, and take their mean as a representative observation for each group.
k-means clustering technique [29] is a candidate algorithm for this process because of its simplicity,
low computation time, and fast convergence. Moreover, the main disadvantages of k-means of
determining the appropriate number of clusters and forcing an outlier observation to be assigned to
the closest cluster, even if it is dissimilar to its members, will not be problematic in this step. This is
because we are not interested in finding specific clusters more than chopping the data into a number of
groups, and also the clustering data (the most-relevant normal dataset) are assumed to be outlier-free.
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Therefore, the number of clusters k will be set to a small value, where k� |D|. Algorithm 2 summarises
the steps involved in learning a small representative dataset of the most relevant normal observations.

The two small datasets (the learned normal and anomalous datasets) are combined in order to
form a labelled compressed representation of the unlabelled data. The concept of this compressed
dataset is slightly similar to the concept of the set of support vectors built by a support vector machine
(SVM) [30].

Algorithm 2: Learning a small, representative dataset of the most-relevant normal observations.
Input: k
/* A positive integer that specifies the number of clusters */
Input: NormalData
/* The observations that fall into the confidence area of normality */
Output: RepNormalData
/* small dataset that contains representative observations for the

most-relevant normal observations */
1 Initialise the cluster centroids C = {c1, c2, . . . , ck} ;
2 AssignmentList←− ∅;
/* list of tuples < observation, Cluster ID > */

3 while termination criterion is not met do
4 foreach observation in NormalData do
5 ClusterID ←− ClosestCluster(observation, C);

/* Find the closest cluster to this observation */
6 put < observation, ClusterID > in AssignmentList;

7 C ←− UpdateCentroids(AssignmentList);

8 RepNormalData←− C;
/* the centroids of clusters are used as representative observations for

most-relevant normal observations */
9 return [RepNormalData]];

3.2. Decision-Making Model

This section introduces the ensemble-based decision-making model (EDMM) used to calculate the
support anomaly score for each testing observation. As shown in Figure 1, EDMM is composed of a
set of supervised classifiers whose individual decisions are combined to form an ensemble decision.
This is because the combining of classifiers promised to be effective [31]. Each classifier ci is trained
with the labelled dataset to build a decision model mi. In GATUD, the number and the type of involved
supervised classifiers have been left open because the choice of a specific algorithm is a critical step.

Let C = {ci|1 ≤ i ≥ n} be a set of candidate supervised classifiers that build a set of decision
models M = {mi|1 ≤ i ≥ n}. Each decision model mi assigns binary-decision value (either “1” or “0”)
to a testing observation xi, mi(xi) : vi. When the binary value vi is “1”, the observation xi is judged as
anomalous, and otherwise is judged as normal. Then the calculation of the support anomaly score is
defined as follows:

support(xi) =
∑n

j=1 mj(xi)

n
(3)

where n is the number of decision models involved in the calculation of the support anomaly score.
The observation type (class), whether abnormal or normal, is defined by the following equation:

Class(xi) =

{
support(xi) ≥ τ Abnormal = 1
Otherwise Normal = 0

(4)
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where τ is the percentage of the accepted vote of the decision-models to judge a testing observation
xi as anomalous. For instance, when the threshold τ is set to 1, the testing observation will not be
considered as anomalous unless all involved decision models agree that the observation is an anomaly.

Illustrative Example

A simple example is given below to illustrate the process of the EDMM. Given five supervised
classifiers are selected, C = {c1, c2, c3, c4, c5}, and trained with labelled datasets that have been learned
at Section 3.1.2, to build the decision models, M = {m1, m2, m3, m4, m5}, and given a testing observation
xi whose status predicted by these in question models as shown in Table 1, then the support anomaly
score is computed as follows:

support(xi) =
1 + 1 + 0 + 1 + 1

5
=

4
5
= 0.80

Given the threshold τ set to 0.6, where the observation xi is considered as an anomaly, at least
three decision models have to assign it as anomalous. Therefore, from this example, the observation xi
will be considered anomalous.

Table 1. Prediction results for a set of decision models on a testing observation xi.

Decision Model m1 m2 m3 m4 m5 Sum

Is observation xi anomalous? 1 1 0 1 1 4

4. The Experimental Setup

To provide quantitative results for GATUD, we use seven labelled datasets, and the normalisation
is applied to all these datasets to improve the accuracy and efficiency of GATUD.

4.1. Datasets

Five datasets are publicly available [32,33] and two are generated by the proposed SCADA testbed
called SCADAVT in [25]. The simulated datasets consist of 12,000 objects, each being described by
113 features. Each feature represents one sensor or actuator reading in the water distribution systems.
Each dataset has 100 abnormal observations, where abnormal observations are generated by different
attacks. The simulated datasets will be denoted as SimData1 and SimData2.

The first real dataset comes from the daily measures of sensors in an urban waste water treatment
plant (referred to as DUWWTP), and it consists of 38 data points (attributes) [33]. This dataset consists of
approximately 527 observations, while 14 observations are labelled as abnormal. For more quantitative
results, we evaluated our approach on four real datasets that are collected from a real wireless sensor
network [32]. Each dataset consists of two attributes (e.g., temperature and humidity). Each dataset
has more than 4000 observations, and a tiny portion of abnormal observations. For simplicity, we refer
to these datasets as: multi-hop outdoor real data, multi-hop indoor real data, single-hop outdoor real
data, and single-hop indoor real data as MORD, MIRD, SORD, and SIRD.

4.2. Normalisation

To improve the accuracy and efficiency of the proposed approach, the normalisation technique
is applied to all testing datasets to scale features by a range 0.0 of 1.0. This will prevent features
with a large scale from outweighing features with a small scale. As the actual minimum/maximum
of features are already known, and because the identification process is performed in static mode,
min-max normalisation technique is used to map the values of features. A given feature A will have
values in [0.0, 1.0]. Let us denote by minA and maxA the minimum value and maximum value of A
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respectively. Then, to produce the normalised value of v (v ∈ A) using the min-max normalisation
method, which we denote as v́, the following formula is used:

v́ =
v−minA

maxA −minA
(5)

4.3. Choice of Parameters

As discussed in Section 3.1, four parameters are required in order to learn the most representative
labelled datasets.

• The k-nearest neighbours parameter is the influencing factor for the anomaly scoring technique.
However, this value is insensitive and can be heuristically determined based on the assumption
that anomalies constitute a tiny portion of the data. Therefore, the value of k-nearest is set to be
1% of the representative dataset, because this value is assumed to discriminate between abnormal
observations and normal ones in terms of the density-based distance.

• There are three parameters used for learning the most-representative datasets: (i) The extent
of confidence area of normality λ. (ii) The extent of confidence area of abnormity β. We set
the parameters λ and β to 70% and 1% respectively. Even though the assumption was that
the normal and abnormal data constitute larger percentages than the ones we have chosen, we
want to maintain some distance from the uncertain area. (iii) The number of clusters k required
for k-means in the candidate step. The purpose of this parameter is to reduce the number of
representative normal observations, not to discover specific clusters. Experimentally, the value of
k for several values such as 0.01%, 0.02%, 0.03%, and 0.04% demonstrated similar results, while the
larger the value of k, the longer the computation time in the anomaly decision-making model of
GATUD. Therefore, the value of this parameter is set to be 0.01% of the representative dataset.

4.4. The Candidate Classifiers

As previously discussed, the type and the number of the supervised classifiers that are involved
in GATUD are left for the implementer. In this paper, a thorough investigation has been conducted of a
number of classifiers. We concluded with the most five efficient classifiers. Two are decision-tree based,
best-first decision tree (BFTree) [34] and J48 [35]; another two are rule-based, non-nested generalised
exemplars (NNge) [36] and projective adaptive resonance theory (PART) [37]; the fifth is a probabilistic
based, naive Bayes [38]. When using classifiers, we kept the default parameters of WEKA data mining
software [39].

5. Results and Discussion

Clearly, GATUD is intended to improve the accuracy of unsupervised anomaly detection systems
in general and our proposed SDAD approach [25] in particular. In this evaluation, we demonstrate how
GATUD can address the limitations that have been discussed in [25], where a global anomaly threshold
is required to work with all datasets that vary in distribution, the number of abnormal observations,
and the application domain, when the scoring-based technique is adapted. Furthermore, as mentioned
earlier, GATUD can be used as an add-on component to help improve the accuracy of the unsupervised
anomaly detection approach. We demonstrate its performance when it is used with k-means
algorithm [29] that is considered as one of the most useful and promising techniques that can be
adapted to build an unsupervised clustering-based anomaly detection technique [40,41]. The proposed
approach is intended to improve the accuracy of unsupervised intrusion detection systems. Therefore,
we evaluate the accuracy of the proposed approach on two types of unsupervised modes: scoring-based
and clustering-based intrusion detection techniques. In this evaluation, the precision, recall, and F-measure
metrics are used to quantitatively measure the performance of the proposed approach, because these
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metrics are not dependent on the size of the training and testing datasets. The metrics used are defined
as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F-measure = 2× precision× recall
precision + recall

(8)

where TP is the number of anomalies that are correctly detected, FN is the number of anomalies that
have occurred but not detected, and FP is the normal observations that are incorrectly flagged as
anomalies. The recall (detection rate) is the proportion of number of anomalies correctly detected to
the actual number of anomalies in the testing dataset. The precision metric is used to demonstrate the
robustness of the IDS in minimising the false positive rate. However, the system can obtain a high
precision score while a number of anomalies are being missed. Similarly, the system can obtain a high
recall score, while the false positive rate is higher. Therefore, the F-measure, which is the harmonic
mean of precision and recall, would be a more an appropriate metric to demonstrate the accuracy of
the proposed approach in this paper and ease the comparison with the other results, because it is the
weighted average of the precision and recall rates. Therefore, the F-measure metric takes both false
positives and false negatives into account.

5.1. Integrating GATUD into SDAD

The separation of the most relevant abnormal observations from normal ones in order to
extract proximity detection rules for a given system, is the initial part of the proposed data-driven
clustering technique (SDAD) in [25]. However, a cut-off threshold parameter η is required to be given,
and in fact this parameter plays a major role in separating the most relevant abnormal observations.
The demonstrated results were significant; however, various cut-off thresholds η for a number of
datasets have been used, where some datasets work with a small value of η, while others work with
large values. Therefore, we evaluate how the integration of GATUD into SDAD can help to find a
global and efficient anomaly threshold η that can work with all datasets, regardless of their variant
characteristics, such as distribution, the number of abnormal observations, and the application domain,
and meanwhile produces significant results.

It is well-known that the larger the value of the cut-off threshold η, the higher the detection
rate and the higher the false positive rate as well. This, however, will result in poor performance.
The determination of an appropriate cut-off threshold η that maximises and minimises the detection
rate and the false positive rate respectively, is the challenging problem. GATUD addresses this problem
by allowing the anomaly scoring technique to choose a large value of cut-off thresholds η in order to
ensure that the detection rate is higher, while minimising the false positive rate without degrading the
detection rate.

In the following, we demonstrate the separation accuracy results with/without the integration
of GATUD into SDAD. Then, we demonstrate how this integration has a significant impact on the
accuracy of the generation step of proximity detection rules, which is the second phase following the
separation process.

5.1.1. The Results of the Separation Process with/without GATUD

Tables 2–8 show the separation accuracy results with/without the integration of GATUD.
Clearly, as shown in the result tables, the larger the value of the cut-off threshold η, the higher
the detection rate of abnormal observations. This is because the observations are sorted by their
anomaly scores in ascending order and the consideration of the top large portion of the sorted list
increases the chance to obtain the actual abnormal observations. However, this will result in a large
number of normal observations existing in this portion, and this definitely increases the false positive
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rate. On the another hand, it can be seen that the use of GATUD can benefit from the larger value
of the cut-off threshold η in order to maximise the detection rate of abnormal observations and the
obtained list of the assumed abnormal observations is passed through the decision-making model
to rejudge whether each observation is abnormal or normal. This, as can be seen in the result tables,
nearly sustains the detection rate, and meanwhile minimises the false positive rate.

Table 2 shows that the better accuracy results of separation of abnormal observations without
the integration of GATUD are achieved when the cut-off threshold η is set to 2.0%, 2.50%, or 3.0%.
Moreover, it can be observed that the setting of η with larger values, such as 4.5% and 5.0%, has not
demonstrated any better results, even though the detection rates of the abnormal observations were
high. This is because, as demonstrated, the false positive rates were relatively high. On the other hand,
when GATUD was integrated, the high false positive rates were significantly reduced, and meanwhile,
the detection rates were sustained at significantly acceptable levels. Similarly, the remaining results
for each dataset (as shown in Tables 3–8) demonstrated that the integration of GATUD significantly
reduced the high false positive rates when larger values of η were used, and meanwhile maintained
the detection rates at a satisfactory and significant level. However, the results for the dataset MORD
in Table 7 were not significant whether GATUD was integrated or not. We would have expected
the integration of GATUD to produce significant results, if the cut-off threshold η was set to a value
that is greater than 0.05%. However, this value is assumed as the maximum percentage of abnormal
observations in an unlabelled dataset. Therefore, this dataset is considered to be an exceptional case.

Table 2. The separation accuracy of abnormal observations with/without GATUD on DUWWTP.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 14.29% 0.00% 100.00% 25.00% 14.29% 0.00% 100.00% 25.00%
1.00% 35.71% 0.00% 100.00% 52.63% 35.71% 0.00% 100.00% 52.63%
1.50% 50.00% 0.00% 100.00% 66.67% 50.00% 0.00% 100.00% 66.67%
2.00% 70.71% 0.02% 99.00% 82.50% 64.29% 0.02% 98.90% 77.92%
2.50% 79.29% 0.19% 92.50% 85.38% 71.43% 0.13% 94.34% 81.30%
3.00% 87.14% 0.39% 87.14% 87.14% 78.57% 0.13% 94.83% 85.94%
3.50% 92.86% 0.87% 76.47% 83.87% 92.86% 0.13% 95.59% 94.20%
4.00% 92.86% 1.30% 68.42% 78.79% 92.86% 0.28% 90.91% 91.87%
4.50% 94.29% 1.69% 62.86% 75.43% 92.86% 0.43% 86.67% 89.66%
5.00% 100.00% 2.17% 58.33% 73.68% 92.86% 0.54% 83.87% 88.14%

(1) η: top percentage of observations, which are sorted by anomaly scores in ascending order, are assumed as
abnormal. (2) DR: detection rate. (3) FPR: false positive rate. (4) P: precision. (5) F-M: F-measure. (6) Bold
value indicates the best F-Measure score.

Table 3. The separation accuracy of abnormal observations with/without GATUD on SimData1.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 40.78% 0.06% 88.51% 55.84% 40.78% 0.06% 88.51% 55.84%
1.00% 80.78% 0.13% 86.74% 83.65% 80.78% 0.13% 86.74% 83.65%
1.50% 98.04% 0.45% 70.42% 81.97% 98.04% 0.25% 80.91% 88.65%
2.00% 98.04% 0.95% 52.91% 68.73% 98.04% 0.41% 72.05% 83.06%
2.50% 98.04% 1.46% 42.19% 59.00% 98.04% 0.44% 70.87% 82.27%
3.00% 98.04% 1.97% 35.21% 51.81% 98.04% 0.46% 69.78% 81.53%
3.50% 98.04% 2.47% 30.21% 46.19% 98.04% 0.48% 68.82% 80.87%
4.00% 98.04% 2.97% 26.46% 41.67% 98.04% 0.50% 68.17% 80.42%
4.50% 98.04% 3.48% 23.47% 37.88% 98.04% 0.52% 67.48% 79.94%
5.00% 98.04% 3.99% 21.14% 34.78% 98.04% 0.52% 67.29% 79.81%
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Table 4. The separation accuracy of abnormal observations with/without GATUD on SimData2.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 46.50% 0.01% 98.94% 63.27% 46.50% 0.01% 98.94% 63.27%
1.00% 81.50% 0.14% 85.79% 83.59% 81.50% 0.14% 85.79% 83.59%
1.50% 100.00% 0.45% 70.42% 82.64% 100.00% 0.16% 86.88% 92.98%
2.00% 100.00% 0.95% 52.91% 69.20% 100.00% 0.19% 84.82% 91.79%
2.50% 100.00% 1.46% 42.19% 59.35% 100.00% 0.23% 82.10% 90.17%
3.00% 100.00% 1.97% 35.21% 52.08% 100.00% 0.26% 80.71% 89.33%
3.50% 100.00% 2.47% 30.21% 46.40% 100.00% 0.27% 80.06% 88.93%
4.00% 100.00% 2.97% 26.46% 41.84% 100.00% 0.28% 79.37% 88.50%
4.50% 100.00% 3.48% 23.47% 38.02% 100.00% 0.29% 78.43% 87.91%
5.00% 100.00% 3.98% 21.14% 34.90% 100.00% 0.31% 77.40% 87.26%

Table 5. The separation accuracy of abnormal observations with/without GATUD on SIRD.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 17.09% 0.00% 100.00% 29.20% 17.09% 0.00% 100.00% 29.20%
1.00% 34.19% 0.00% 100.00% 50.96% 34.19% 0.00% 100.00% 50.96%
1.50% 51.28% 0.00% 100.00% 67.80% 51.28% 0.00% 100.00% 67.80%
2.00% 68.38% 0.00% 100.00% 81.22% 68.38% 0.00% 100.00% 81.22%
2.50% 85.47% 0.00% 100.00% 92.17% 85.47% 0.00% 100.00% 92.17%
3.00% 100.00% 0.08% 97.50% 98.73% 100.00% 0.08% 97.50% 98.73%
3.50% 100.00% 0.59% 83.57% 91.05% 100.00% 0.52% 85.21% 92.02%
4.00% 100.00% 1.09% 73.58% 84.78% 100.00% 0.85% 78.10% 87.71%
4.50% 100.00% 1.60% 65.36% 79.05% 100.00% 0.97% 75.73% 86.19%
5.00% 100.00% 2.12% 58.79% 74.05% 100.00% 0.99% 75.24% 85.87%

Table 6. The separation accuracy of abnormal observations with/without GATUD on SORD.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 71.88% 0.00% 100.00% 83.64% 71.88% 0.00% 100.00% 83.64%
1.00% 90.94% 0.35% 64.67% 75.58% 90.63% 0.35% 64.59% 75.42%
1.50% 93.75% 0.84% 44.12% 60.00% 90.63% 0.59% 52.06% 66.13%
2.00% 93.75% 1.77% 27.27% 42.25% 90.63% 0.70% 47.93% 62.70%
2.50% 93.75% 2.00% 25.00% 39.47% 90.63% 0.72% 47.15% 62.03%
3.00% 96.88% 2.33% 22.79% 36.90% 90.63% 0.72% 47.08% 61.97%
3.50% 96.88% 2.84% 19.50% 32.46% 90.63% 0.72% 47.08% 61.97%
4.00% 96.88% 3.35% 17.03% 28.97% 90.63% 0.72% 47.08% 61.97%
4.50% 96.88% 3.84% 15.20% 26.27% 90.63% 0.72% 47.08% 61.97%
5.00% 96.88% 4.35% 13.66% 23.94% 90.63% 0.72% 47.08% 61.97%

Table 7. The separation accuracy of abnormal observations with/without GATUD on MORD.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 36.21% 0.00% 100.00% 53.16% 36.21% 0.00% 100.00% 53.16%
1.00% 72.41% 0.00% 100.00% 84.00% 72.41% 0.00% 100.00% 84.00%
1.50% 86.03% 0.31% 79.21% 82.48% 75.86% 0.00% 100.00% 86.27%
2.00% 86.21% 0.84% 58.82% 69.93% 75.86% 0.00% 100.00% 86.27%
2.50% 86.55% 1.34% 47.36% 61.22% 75.86% 0.00% 100.00% 86.27%
3.00% 87.41% 1.83% 39.92% 54.81% 75.86% 0.00% 100.00% 86.27%
3.50% 87.93% 2.33% 34.46% 49.51% 75.86% 0.00% 100.00% 86.27%
4.00% 87.93% 2.83% 30.18% 44.93% 75.86% 0.00% 100.00% 86.27%
4.50% 88.45% 3.33% 27.00% 41.37% 75.86% 0.00% 100.00% 86.27%
5.00% 89.31% 3.82% 24.55% 38.51% 75.86% 0.00% 100.00% 86.27%
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Table 8. The separation accuracy of abnormal observations with/without GATUD on MIRD.

Without GATUD With GATUD

η DR FPR P F-M DR FPR P F-M

0.50% 21.00% 0.00% 100.00% 34.71% 21.00% 0.00% 100.00% 34.71%
1.00% 42.00% 0.00% 100.00% 59.15% 42.00% 0.00% 100.00% 59.15%
1.50% 63.00% 0.00% 100.00% 77.30% 63.00% 0.00% 100.00% 77.30%
2.00% 85.00% 0.00% 100.00% 91.89% 85.00% 0.00% 100.00% 91.89%
2.50% 100.00% 0.15% 94.34% 97.09% 97.00% 0.00% 100.00% 98.48%
3.00% 100.00% 0.65% 78.74% 88.11% 97.00% 0.00% 100.00% 98.48%
3.50% 100.00% 1.16% 67.57% 80.65% 97.00% 0.00% 100.00% 98.48%
4.00% 100.00% 1.67% 59.17% 74.35% 97.00% 0.00% 100.00% 98.48%
4.50% 100.00% 2.18% 52.63% 68.97% 97.00% 0.00% 100.00% 98.48%
5.00% 100.00% 2.71% 47.17% 64.10% 97.00% 0.00% 100.00% 98.48%

5.1.2. The Results of Proximity Detection Rules with/without GATUD

As mentioned previously, the generation process of proximity detection rules comes after and
relies on the separation process. Therefore, the robustness of these proximity detection rules is
influenced by the accuracy of the separation process, and as shown earlier, the integration of GATUD
demonstrated significant results in the separation process even with large cut-off thresholds η.
Therefore, the detection accuracy results of the proximity detection rules, which are extracted from the
abnormal and normal observations that were separated using such these large cut-off thresholds η,
are expected to be significant. Tables 9–15 show the detection accuracy results.

Each table represents the results of the detection accuracy results for each individual dataset,
and also they are divided into two parts: the first part shows the results of the proximity-detection
rules that were extracted by separating abnormal from normal observations where GATUD was not
integrated in the separation process. The second part shows the results obtained after the integration
of GATUD. The result tables show that the integration of GATUD into the separation process helps to
generate robust proximity-detection rules even with large cut-off thresholds η.

Overall, Table 16 highlights the acceptable thresholds η through which the extracted proximity-
detection rules demonstrated significant detection accuracy results, where GATUD was integrated
into the separation process of abnormal and normal observations. From this table, the determination
of the near-optimal value of a cut-off threshold η will not be problematic because the value of η can be
set to 0.05, which is assumed as the maximum percentage of abnormal observations in an unlabelled
dataset. The resultant high positive rate that might result from this large value can significantly be
reduced by the integration of GATUD.

Table 9. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD in the separation process on DUWWTP.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.7506

62 2 14.29% 0.00% 100.00% 25.00% 62 2 14.29% 0.00% 100.00% 25.00%
1.00% 59 5 35.71% 0.00% 100.00% 52.63% 59 5 35.71% 0.00% 100.00% 52.63%
1.50% 57 7 50.00% 0.00% 100.00% 66.67% 57 7 50.00% 0.00% 100.00% 66.67%
2.00% 54 10 70.71% 0.00% 100.00% 82.85% 55 9 64.29% 0.00% 100.00% 78.26%
2.50% 52 12 79.29% 0.00% 100.00% 88.45% 54 10 71.43% 0.00% 100.00% 83.33%
3.00% 51 14 87.14% 5.85% 80.26% 83.56% 53 11 78.57% 0.00% 100.00% 88.00%
3.50% 48 16 92.86% 0.78% 97.01% 94.89% 52 12 84.29% 0.00% 100.00% 91.47%
4.00% 46 18 92.86% 0.97% 96.30% 94.55% 52 12 84.29% 0.00% 100.00% 91.47%
4.50% 44 20 94.29% 9.75% 72.53% 81.99% 51 13 85.71% 0.19% 99.17% 91.95%
5.00% 41 23 100.00% 11.70% 70.00% 82.35% 49 15 89.29% 0.58% 97.66% 93.28%

(1) η: top percentage of observations, which are sorted by anomaly scores in ascending order, are assumed as
abnormal. (2) w: the cluster width parameter. (3) NC: the number of the produced normal clusters. (4) AC: the
number of the produced abnormal clusters. (5) DR: detection rate. (6) FPR: false positive rate. (7) P: precision.
(8) F-M: F-measure. (9) Bold value indicates the best F-measure score.
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Table 10. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD in the separation process on SimData1.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.1456

316 39 40.78% 0.06% 98.58% 57.70% 316 39 40.78% 0.06% 98.58% 57.70%
1.00% 286 68 80.78% 0.13% 98.33% 88.70% 286 68 80.78% 0.13% 98.33% 88.70%
1.50% 265 92 98.04% 0.46% 95.42% 96.71% 272 81 98.04% 0.28% 97.18% 97.61%
2.00% 252 104 98.04% 1.11% 89.69% 93.68% 269 82 98.04% 0.42% 95.79% 96.90%
2.50% 242 116 98.04% 1.73% 84.75% 90.91% 269 82 98.04% 0.44% 95.60% 96.81%
3.00% 238 131 98.04% 2.49% 79.43% 87.76% 268 85 98.04% 0.48% 95.24% 96.62%
3.50% 234 138 98.04% 3.08% 75.76% 85.47% 267 85 98.04% 0.56% 94.52% 96.25%
4.00% 225 144 98.04% 3.64% 72.52% 83.37% 267 85 98.04% 0.58% 94.34% 96.15%
4.50% 219 151 98.04% 4.24% 69.40% 81.27% 266 85 98.04% 0.59% 94.25% 96.11%
5.00% 211 157 98.04% 4.75% 66.93% 79.55% 267 85 98.04% 0.59% 94.25% 96.11%

Table 11. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD in the separation process on SimData2.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.1476

307 42 46.50% 0.01% 99.79% 63.44% 307 42 46.50% 0.01% 99.79% 63.44%
1.00% 279 71 70.00% 0.14% 97.90% 81.63% 279 71 70.00% 0.14% 97.90% 81.63%
1.50% 262 90 100.00% 0.51% 94.97% 97.42% 268 78 100.00% 0.17% 98.23% 99.11%
2.00% 255 102 100.00% 1.18% 89.05% 94.21% 268 78 100.00% 0.20% 97.94% 98.96%
2.50% 243 112 100.00% 1.72% 84.82% 91.79% 268 78 100.00% 0.26% 97.37% 98.67%
3.00% 239 120 100.00% 2.42% 79.87% 88.81% 268 78 100.00% 0.26% 97.37% 98.67%
3.50% 231 130 100.00% 3.05% 75.93% 86.32% 268 78 100.00% 0.26% 97.37% 98.67%
4.00% 228 139 100.00% 3.63% 72.57% 84.10% 268 78 100.00% 0.28% 97.18% 98.57%
4.50% 222 146 100.00% 4.19% 69.64% 82.10% 268 78 100.00% 0.31% 96.90% 98.43%
5.00% 216 147 100.00% 4.71% 67.11% 80.32% 268 78 100.00% 0.37% 96.34% 98.14%

Table 12. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD in the separation process on SIRD.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.0124

63 17 17.09% 0.00% 100.00% 29.20% 63 17 17.09% 0.00% 100.00% 29.20%
1.00% 45 35 34.19% 0.00% 100.00% 50.96% 45 35 34.19% 0.00% 100.00% 50.96%
1.50% 36 44 51.97% 0.00% 100.00% 68.39% 36 44 51.97% 0.00% 100.00% 68.39%
2.00% 31 49 67.61% 0.00% 100.00% 80.67% 31 49 67.61% 0.00% 100.00% 80.67%
2.50% 24 57 72.65% 0.00% 100.00% 84.16% 24 57 70.09% 0.00% 100.00% 82.41%
3.00% 17 63 100.00% 0.42% 98.48% 99.24% 17 63 100.00% 0.42% 98.48% 99.24%
3.50% 15 64 100.00% 0.77% 97.26% 98.61% 16 63 100.00% 0.65% 97.66% 98.82%
4.00% 15 64 100.00% 1.58% 94.51% 97.18% 16 63 100.00% 0.84% 97.01% 98.48%
4.50% 15 64 100.00% 6.98% 79.59% 88.64% 16 63 100.00% 0.93% 96.69% 98.32%
5.00% 15 65 100.00% 8.14% 76.97% 86.99% 16 64 100.00% 0.93% 96.69% 98.32%

Table 13. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD in the separation process on SORD.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.0152

73 20 71.88% 0.00% 100.00% 83.64% 73 20 71.88% 0.00% 100.00% 83.64%
1.00% 67 27 90.94% 0.28% 95.41% 93.12% 67 27 90.63% 0.28% 95.39% 92.95%
1.50% 64 32 93.75% 0.90% 86.96% 90.23% 67 28 90.63% 0.60% 90.63% 90.63%
2.00% 62 33 93.75% 1.32% 81.97% 87.46% 67 28 90.63% 0.72% 88.96% 89.78%
2.50% 61 35 93.75% 2.02% 74.81% 83.22% 67 28 90.63% 0.74% 88.69% 89.64%
3.00% 57 37 96.88% 2.38% 72.26% 82.78% 67 28 90.63% 0.74% 88.69% 89.64%
3.50% 55 41 96.88% 3.03% 67.10% 79.28% 67 28 90.63% 0.74% 88.69% 89.64%
4.00% 55 42 96.88% 3.83% 61.75% 75.43% 67 28 90.63% 0.74% 88.69% 89.64%
4.50% 54 41 96.88% 4.19% 59.62% 73.81% 67 28 90.63% 0.74% 88.69% 89.64%
5.00% 54 42 96.88% 4.59% 57.41% 72.09% 67 28 90.63% 0.74% 88.69% 89.64%
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Table 14. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD on in the separation process MORD.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.0093

74 14 36.21% 0.00% 100.00% 53.16% 74 14 36.21% 0.00% 100.00% 53.16%
1.00% 55 34 72.59% 0.00% 100.00% 84.12% 55 34 72.59% 0.00% 100.00% 84.12%
1.50% 53 38 77.59% 0.56% 94.54% 85.23% 55 34 77.41% 0.00% 100.00% 87.27%
2.00% 53 39 86.21% 1.10% 90.74% 88.42% 55 34 77.41% 0.00% 100.00% 87.27%
2.50% 52 39 86.55% 1.68% 86.55% 86.55% 55 34 77.41% 0.00% 100.00% 87.27%
3.00% 50 40 87.41% 2.20% 83.25% 85.28% 55 34 77.41% 0.00% 100.00% 87.27%
3.50% 49 41 87.93% 2.72% 80.19% 83.88% 55 34 77.41% 0.00% 100.00% 87.27%
4.00% 48 42 87.93% 3.00% 78.58% 82.99% 55 34 77.41% 0.00% 100.00% 87.27%
4.50% 48 43 88.45% 3.39% 76.57% 82.08% 55 34 77.41% 0.00% 100.00% 87.27%
5.00% 46 44 89.31% 3.99% 73.68% 80.75% 55 34 77.41% 0.00% 100.00% 87.27%

Table 15. The detection accuracy of the proximity-detection rules that have been extracted with/without
the integration of GATUD on in the separation process MIRD.

Without GATUD With GATUD

η w NC AC DR FPR P F-M NC AC DR FPR P F-M

0.50%

0.0135

62 13 20.10% 0.00% 100.00% 33.47% 62 13 20.10% 0.00% 100.00% 33.47%
1.00% 44 31 42.00% 0.00% 100.00% 59.15% 44 31 42.00% 0.00% 100.00% 59.15%
1.50% 37 38 63.00% 0.00% 100.00% 77.30% 37 38 63.00% 0.00% 100.00% 77.30%
2.00% 26 49 70.00% 0.00% 100.00% 82.35% 26 49 70.00% 0.00% 100.00% 82.35%
2.50% 20 55 100.00% 0.20% 99.11% 99.55% 22 54 96.90% 0.00% 100.00% 98.43%
3.00% 18 57 100.00% 0.87% 96.15% 98.04% 22 54 96.90% 0.00% 100.00% 98.43%
3.50% 18 58 100.00% 1.29% 94.43% 97.13% 22 54 96.90% 0.00% 100.00% 98.43%
4.00% 18 59 100.00% 6.54% 76.92% 86.96% 22 54 96.90% 0.00% 100.00% 98.43%
4.50% 15 61 100.00% 7.63% 74.07% 85.11% 22 54 96.90% 0.00% 100.00% 98.43%
5.00% 16 65 100.00% 8.28% 72.46% 84.03% 22 54 96.90% 0.00% 100.00% 98.43%

Table 16. The acceptable thresholds η that produce better accuracy results of the separation of abnormal
observations on each dataset when GATUD was integrated

η
Data Sets # of Agreement

DUWWTP SimData1 SimData2 SIRD SORD MORD MIRD

0.50% 0
1.00% 1
1.50%

√ √ √ √
4

2.00%
√ √ √ √

4
2.50%

√ √ √ √ √
5

3.00%
√ √ √ √ √ √ √

7
3.50%

√ √ √ √ √ √
6

4.00%
√ √ √ √ √ √

6
4.50%

√ √ √ √ √ √ √
7

5.00%
√ √ √ √ √ √ √

7

(1) η: top percentage of observations, which are sorted by anomaly scores in ascending order, are assumed as
abnormal. (2) # of agreement: the number of datasets that agree on each separation threshold η, where the
agreement is judged by better accuracy results when GATUD was intergraded.

5.2. Integrating GATUD into Clustering-Based Technique

Here we show how GATUD can be integrated not only with the scoring-based intrusion detection
technique, but also with the clustering-based technique. The k-means algorithm, which is considered
as one of the most useful and promising techniques for building an unsupervised clustering-based
intrusion detection model [40,41], is chosen to demonstrate the integration effectiveness of GATUD
with an unsupervised clustering-based intrusion detection technique. This is because this algorithm
already has been adapted by Almalawi et al. [25] to build the unsupervised anomaly detection
model to detect abnormal observations, and the results were compared with SDAD [25]. Therefore,
it is interesting to demonstrate detection accuracy results with/without the integration of GATUD.
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For more details about how this algorithm can be adapted to build an unsupervised anomaly detection
model, see [25].

In the adaptation of k-means for building an unsupervised anomaly detection model, anomalies
are assumed to be grouped in clusters that contain percentages, θ, of the data. Let C = C1, C2, . . . Cn be
the sets of clusters that have been created. Then, the anomalous clusters are defined as follows:

Ć = {Ć1, Ć2, . . . Ćb} =
n

∑
i=1
|Ci| ≤ θ (9)

The remaining clusters C − Ć are labelled as normal. In this evaluation, we assume the real
anomalous cluster is the cluster where the majority of its members are actual abnormal observations.
Assume that the number of abnormal observations ≥ |Ći|/2. Therefore, the labelling accuracy of the
assumed percentage θ of the data in anomalous clusters is measured by the Labelling Error Rate (LER)
for clusters:

LER =
# o f clusters incorrectly labelled

# o f All identi f ied clusters
(10)

When integrating GATUD to label the clusters, the members of each individual cluster pass
through the decision-making model to be labelled as either normal or abnormal. Then the cluster is
labelled according to the label of the majority of its members. The labelling of clusters by GATUD is
given as follows:

L(Ci) =
|Ci |

∑
j=1

Class(xj) (11)

where L(Ci) is the number of abnormal observations, which are judged by the decision-making model,
in the cluster Ci. Then the anomalous clusters are defined as follows:

Ć = {Ć1, Ć2, . . . Ćb} =
n

∑
i=1

L(Ci) ≥ ε× |Ci| (12)

where ε is the percentage of the abnormal observations in a cluster Ci to be labelled as abnormal. In this
evaluation, it is set to 0.5.

We evaluate the integration of GATUD as an add-in component with k-means, where this
component is only used to label the produced clusters as either normal or abnormal. The k-means
requires two user-specified parameters k and θ to build the unsupervised anomaly detection model
from unlabelled data. k is the number of clusters, and θ is the percentage of the data in a cluster to
be assumed as malicious. However, the parameter θ is not required when GATUD is integrated. In
this evaluation, we demonstrate the detection accuracy of k-means as an independent/dependent
algorithm. In the independent use, k-means is used to cluster the training dataset and labels each
cluster using an assumption of the percentage of the data in a cluster to be assumed as malicious [40,41].
While in the dependent use, GATUD is used as a labelling technique for the produced clusters by
k-means. The parameters k and θ are set to the same values that have been used in paper [25]. This is
because the same datasets are used.

Tables 17–23 show the detection accuracy results of two parts: The first part (without GATUD)
shows the detection accuracy results of k-means. As shown, the the detection accuracy results of five
values of θ are demonstrated. For example, in the Table 17, the dataset, which was referred to as
DUWWTP, was clustered into 50, 60, 70, 80, 90, and 100 clusters using k-means algorithm; then, when
θ was set to 0.01 the generated clusters that constitute an overwhelmingly large portion (≥99%) of the
training dataset are labelled as normal clusters, and otherwise labelled as malicious ones. As see in the
Table 17, the labelling error rate (LER) when 50 clusters generated is 12.40% which means the average
percentage of the clusters that were incorrectly labelled in 10 fold cross validation. This is because
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their respective labels are not the same as the labels of the majority of their respective members. In the
second part (with GATUD), the detection accuracy results of k-means when GATUD were integrated to
label the clusters instead of the assumption that assumes normal clusters constitute an overwhelmingly
large portion, as shown. We show only the results of F-measure, as they are the interesting results to
compare. Clearly, the detection accuracy results of k-means in detecting abnormal observations were
very poor for all datasets when GATUD was not integrated. On the other hand, significant results for
some datasets are obtained when GATUD is integrated to label the produced clusters. It is obvious
from the results that GATUD can be a promising technique to improve the accuracy of an unsupervised
anomaly detection approaches, not only with our SDAD approach proposed in [25], but also, it can be
integrated with unsupervised clustering-based anomaly detection models.

Table 17. The detection accuracy of k-means clustering algorithm with/without GATUD on DUWWTP.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M

50 12.40% 69.65% 29.30% 59.98% 43.73% 50.50% 53.80% 44.22% 60.92% 39.86% 6.00% 79.37%
60 20.17% 62.36% 39.08% 53.36% 53.11% 44.37% 61.92% 39.03% 67.63% 35.62% 7.17% 74.14%
70 23.57% 62.95% 46.43% 48.73% 59.76% 40.56% 67.39% 36.05% 72.20% 33.17% 6.71% 79.36%
80 33.75% 57.08% 54.63% 44.19% 66.25% 37.23% 72.75% 33.28% 76.73% 30.91% 5.88% 79.42%
90 40.44% 58.62% 62.17% 42.73% 71.96% 35.87% 77.17% 32.26% 80.27% 30.10% 7.11% 80.28%

100 47.60% 51.52% 67.10% 38.56% 75.63% 33.01% 80.08% 30.13% 82.74% 28.39% 6.40% 72.13%

(1) LER: labelling error-rate. (2) F-M: F-measure. (3) θ: the percentage of the data in a cluster to be assumed as
malicious. (4) K: the number of clusters. (5) Bold value indicates the best F-measure score.

Table 18. The detection accuracy of k-means clustering algorithm with/without GATUD on SimData1.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M

50 10.40% 50.56% 33.40% 30.82% 50.00% 23.74% 61.10% 19.79% 68.48% 17.67% 0.60% 72.59%
60 18.50% 37.04% 42.67% 24.17% 58.83% 19.06% 68.46% 15.51% 74.37% 14.23% 0.00% 68.50%
70 28.86% 26.97% 55.29% 18.66% 68.81% 15.02% 76.00% 13.32% 80.51% 12.44% 0.29% 64.13%
80 40.88% 30.68% 64.69% 20.10% 75.58% 16.30% 81.19% 14.51% 84.68% 13.39% 0.13% 98.11%
90 41.67% 24.61% 67.56% 17.29% 77.93% 14.50% 83.14% 12.69% 86.20% 11.94% 0.00% 86.28%

100 53.90% 21.15% 75.05% 15.34% 82.90% 13.22% 86.88% 11.96% 89.28% 11.35% 0.40% 86.77%

Table 19. The detection accuracy of k-means clustering algorithm with/without GATUD on SimData2.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M
50 10.80% 74.79% 31.70% 48.40% 48.60% 36.25% 59.95% 29.58% 67.24% 25.49% 0.60% 99.71%
60 21.00% 52.54% 44.58% 33.94% 59.89% 26.06% 69.17% 21.77% 74.80% 19.17% 0.33% 99.61%
70 25.86% 43.87% 52.07% 28.49% 66.67% 22.10% 74.29% 18.80% 78.89% 16.80% 0.14% 99.80%
80 35.88% 33.18% 61.56% 22.04% 73.17% 17.76% 79.25% 15.55% 82.98% 14.19% 0.13% 99.80%
90 45.56% 25.24% 68.28% 17.73% 78.00% 14.83% 82.97% 13.33% 86.04% 12.42% 0.56% 99.22%

100 52.20% 22.03% 73.40% 15.79% 81.37% 13.51% 85.50% 12.33% 88.04% 11.62% 0.30% 99.41%

Table 20. The detection accuracy of k-means clustering algorithm with/without GATUD on SIRD.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M

50 13.20% 80.09% 32.30% 62.74% 45.87% 52.44% 55.35% 45.76% 61.68% 41.40% 2.80% 94.09%
60 22.17% 71.64% 43.00% 53.86% 55.28% 45.25% 63.75% 39.72% 68.83% 36.34% 3.17% 93.82%
70 27.57% 64.89% 49.36% 48.09% 60.95% 40.33% 68.21% 35.97% 72.86% 33.23% 2.29% 94.77%
80 37.50% 56.39% 56.06% 43.16% 67.04% 36.51% 72.88% 32.95% 76.70% 30.72% 2.38% 94.43%
90 45.33% 49.58% 63.17% 38.59% 71.41% 33.45% 76.33% 30.51% 79.56% 28.77% 2.33% 94.18%

100 52.00% 42.35% 68.10% 34.20% 75.47% 30.16% 79.48% 28.01% 81.84% 26.71% 2.10% 94.44%
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Table 21. The detection accuracy of k-means clustering algorithm with/without GATUD on SORD.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M

50 18.00% 42.53% 36.40% 28.45% 50.27% 21.83% 60.60% 18.01% 67.52% 15.64% 2.00% 78.90%
60 22.67% 37.43% 44.50% 24.32% 58.83% 18.62% 68.04% 15.49% 73.50% 13.62% 1.67% 80.01%
70 33.00% 26.69% 54.86% 17.91% 66.81% 14.15% 73.75% 12.16% 78.06% 10.93% 2.29% 79.88%
80 43.00% 20.41% 63.69% 14.05% 73.58% 11.52% 79.16% 10.17% 82.53% 9.34% 1.50% 81.96%
90 48.67% 17.01% 68.61% 12.15% 77.63% 10.14% 82.19% 9.11% 85.04% 8.49% 1.44% 81.07%

100 58.40% 14.07% 74.20% 10.54% 81.03% 9.07% 84.75% 8.31% 87.04% 7.84% 1.50% 83.16%

Table 22. The detection accuracy of k-means clustering algorithm with/without GATUD on MORD.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M

50 8.20% 72.61% 30.80% 48.03% 47.07% 36.94% 57.00% 31.08% 64.12% 27.23% 0.20% 91.53%
60 15.17% 56.72% 40.83% 37.64% 56.28% 29.59% 65.29% 25.16% 71.03% 22.42% 0.30% 90.55%
70 24.14% 44.26% 48.93% 30.09% 62.48% 24.24% 70.57% 20.99% 75.37% 19.04% 0.20% 91.67%
80 33.13% 37.11% 57.19% 25.44% 68.79% 20.90% 75.22% 18.52% 79.13% 17.05% 0.10% 92.84%
90 42.11% 29.29% 64.39% 21.18% 74.22% 17.97% 79.39% 16.27% 82.58% 15.26% 0.50% 89.82%

100 49.50% 24.53% 69.45% 18.61% 77.73% 16.16% 81.83% 14.91% 84.46% 14.15% 0.30% 91.84%

Table 23. The detection accuracy of k-means clustering algorithm with/without GATUD on MIRD.

Without GATUD With GATUD

θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

K LER F-M LER F-M LER F-M LER F-M LER F-M LER F-M

50 9.80% 84.02% 28.90% 61.31% 42.27% 49.73% 52.35% 42.47% 59.60% 37.69% 0.25% 99.31%
60 14.50% 75.38% 36.67% 53.65% 51.17% 43.10% 60.71% 36.99% 66.67% 33.19% 0.25% 99.41%
70 23.57% 63.42% 47.71% 44.59% 61.00% 36.16% 68.61% 31.70% 73.17% 28.97% 0.25% 99.51%
80 33.13% 53.07% 56.13% 38.25% 67.50% 31.78% 73.72% 28.35% 77.50% 26.25% 0.25% 99.70%
90 40.33% 45.60% 61.61% 33.55% 71.67% 28.50% 77.00% 25.84% 80.18% 24.25% 0.25% 99.11%

100 51.90% 37.75% 70.35% 28.72% 77.97% 25.19% 81.75% 23.38% 84.10% 22.28% 0.25% 99.70%

6. Conclusions

This paper proposed an innovative approach, called global anomaly threshold to unsupervised
detection (GATUD), which is used as an add-on component to improve the accuracy of unsupervised
intrusion detection techniques. This has been done by initially learning two labelled small datasets
from the unlabelled data, where each dataset represents either normal or abnormal behaviour. Then,
a set of supervised classifiers were trained with question datasets to produce an ensemble-based
decision-making model that can be integrated into both unsupervised anomaly scoring and
clustering-based intrusion detection approaches. In the former, GATUD is used to mitigate the
sensitivity of anomaly threshold, while in the latter, it is used to efficiently label the produced clusters
as either normal or abnormal. Experiments show that GATUD demonstrates significant and promising
results when it was integrated into a clustering-based intrusion detection approach as a labelling
technique for the produced clusters.
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