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ABSTRACT In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014,
has achieved great success. There have been increasing research achievements based on GAN in the
field of computer vision and natural language processing. Image steganography is an information security
technique aiming at hiding secret messages in common digital images for covert communication. Recently,
research on image steganography has demonstrated great potential by introducing GAN and other neural
network techniques. In this paper, we review the art of steganography with GANs according to the different
strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss
the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics.
Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential
future research topics are also forecasted.

INDEX TERMS Image steganography, generative adversarial nets, cover synthesis, generative model.

I. INTRODUCTION
Steganography is the art of hiding a secret message behind
the normal message. The term steganography is also known
as secret writing [1] As for cryptography, the distinct visi-
ble encrypted information, no matter how unbreakable, will
attract more attention of attackers. Steganography offers a
feasible alternative to encryption in oppressive regimes where
using cryptography might attract unwanted attention [2].
Classical steganography refers to the means of secret com-
munication used by people in ancient times, mainly including
invisible ink, Cardan grille, Tibetan poetry, and so on.Modern
steganography refers to the use of electronic communication
and digital technology to hide the message into digital media.
Every modern steganographic system consists of two essen-
tial components: the embedding and extraction algorithms.
The embedding algorithm accepts three inputs: the secret
message, the secret key, and the cover object, which will be
used to convey the message. The output of the embedding
algorithm is called the stego object. The stego object is
also presented as an input to the extraction algorithm for
producing the secret message. All concepts and methods
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presented in this paper are illustrated on the example of digital
images.

In modern steganography [1], three basic principles
for constructing steganographic methods are introduced.
a) Steganography by cover modification (CMO). Steganogra-
pher starts with a cover image and makes modifications to it
in order to embed secret data. However, the modification will
inevitably introduce some embedding changes into the cover
image. b) Steganography by cover selection (CSE), which is
similar to image retrieval. Steganographer selects a natural,
unmodified, normal image in an extensive database that can
extract messages as a stego image. Thismethod has a very low
payload so that it cannot be applied to practical applications.
c) Steganography by cover synthesis (CSY). Steganographer
creates a stego image containing secret messages. However,
about ten years ago, constructing a realistic digital image is
more a theoretical construct rather than a practical stegano-
graphic technique.

Fortunately, a generativemodel, generative adversarial net-
work, was proposed in 2014 [3]. The generator in the GAN
model is capable of synthesizing realistic images. There are
two main directions for the study of GAN. One trend is to
optimize the model of [4]–[7] from different aspects, such
as information theory [8] and an energy-based model [9].
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The other research direction is to try to apply GAN to more
research fields, such as computer vision (CV) [4] and natural
language processing (NLP) [10]. [11]–[13] reviews recent
GAN models and applications. However, But these review
papers do not focus on a specific application.

Recently, there are many pieces of research using GAN
to design steganography schemes [14]–[19]. In this paper,
we focus on GAN’s research progress in a particular field of
image steganography. The primary purpose of this paper is to
try to discuss the role of GAN in these image steganography
methods and point out the problems faced by GAN-based
image steganography. Current steganography methods using
GAN have covered the three traditional strategies, i.e., modi-
fication methods, selection methods, and synthesis methods.
Besides these GAN-based methods, there are some other
ways to design steganography schemes using deep neural
networks [20] or adversarial samples [21], which will be
mentioned briefly. To the best of our knowledge, this is the
first paper that attempts to review the applications of GAN in
image steganography.

In this paper, we start with the basic model, conventional
techniques, and security issues for steganography. After intro-
ducing the basic concept of GANs, we give a discussion of
the improvements and applications of GAN. Then, we focus
on the role of GAN in steganography. GAN-based steganog-
raphy is also divided into three categories. They are cover
modification (GAN-CMO), cover selection (GAN-CSE), and
cover synthesis (GAN-CSY). In GAN-CMO, GAN is used to
generate the cover image, learn modification strategy, or fool
a steganalysis classifier. In GAN-CSE, the generator trained
by GAN is used to build the mapping between the message
and the cover image. In GAN-CSY, GAN is used to gener-
ate a stego image. Furthermore, according to the different
dependence on the cover image when creating a stego image,
the GAN-CSYmethods can be divided into supervised meth-
ods, semi-supervised methods, and unsupervised methods.
This division enables us to have a better understanding of
GAN’s role in steganography by cover synthesis. Besides,
we also analyze the characteristics of the GAN-CSYmethods
and summarize some general rules in designing steganog-
raphy by cover synthesis. We also discuss some evaluation
criteria of the GAN-based steganography, including security,
steganographic capacity.

The rest of this paper is organized as follows, the classi-
cal steganography model, strategies, and security criteria are
introduced in Section II. A brief review of the implementa-
tion of traditional steganography schemes is given, focusing
on the characteristics and performance of these methods.
In Section III, we briefly review the basic concept and appli-
cations of GAN. Then In Section IV, we discuss several
methods in cover modification with GAN. In Section V,
a special cover selection method using GAN is discussed.
In Section VI, a detailed discussion is provided on the role
of GAN in steganography by cover synthesis. In Section VII,
we provide some evaluation metrics for image steganography

by GAN. A short conclusion and perspective with some
possible research directions are given in Section VIII.

II. STEGANOGRAPHY PRELIMINARIES
A. STEGANOGRAPHY MODEL
The classical steganographic model is the prisoner’s prob-
lem [22] with three participants, as illustrated in Fig.1. Both
Alice and Bob are held in separate cells. They are allowed to
communicate with each other, but all their communications
are monitored by the warden Wendy. In modern steganog-
raphy, every channel between Alice and Bob contains five
elements: cover source c, message embedding/extraction
algorithm Emb/Ext, a secret key k for embedding/extraction,
secret message m, and communication channel.

FIGURE 1. The prisoner’s problem model for steganography.

Using a data embedding method Emb(·), based on a spe-
cific cover image c or a set of cover images C, Alice needs
to design a scheme to construct a stego image s with an
embedding key kemb. The stego images s can be expressed
as:

s = Emb(c|C,m, kemb) (1)

For Bob, the stego image he receives can be expressed as s’.
He can recover a secret message m’ using an extraction
key kext , and message extraction operation Ext(·).

m′ = Ext(s′, kext ) (2)

The message extraction key and the embedded key can be
different from public key steganography [23]. In this paper,
we only focus on the symmetric steganographic algorithm,
where kemb = kext is assumed. When s’=s is guaranteed,
the steganographic channel is lossless. The above Eq. (1) and
Eq. (2) only describe the process of message embedding and
extraction. For the steganographic task, the core requirement
is that the stego image s must be indistinguishable from
the cover image c or the cover set C to realize the mission
of information hiding. Here we define an abstract distance
metric Ddistinguishable to represent indistinguishability:

Ddistinguishable(Ccover , Sstego) ≤ ε (3)

where Ccover and Sstego represent the cover set and the stego
set respectively, ε represents a quantifiable level of secu-
rity for indistinguishability, ε-security. The three expressions
indicate the goal of a steganographic algorithm. We called
them the necessary steganographic conditions (NSC).

To facilitate the transmission of secret information,
the embedded capacity of the steganographic system [24]
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should be high enough. There are already many evaluation
criteria for measuring message capacity, such as per-pixel
bits, the ratio of secret messages to cover image, and so on.

B. STEGANOGRAPHY SECURITY
Steganography security depends on the means of the attacker.
According toWendy’s work in examining the images, she can
be active or passive. When Wendy only checks whether the
stego image is natural or normal in the channel transmission,
she is called a passive warden. IfWendy could learn from pre-
vious attack experience and accumulate knowledge about the
stego-system, she is an activewarden. She could try to slightly
modify the communicated objects or detect the existence of
covert communication by extracting secret messages directly.
Many reviews of steganography focus on the passive warden
mode. In practice, it is common for Wendy to have both
active and passive responsibilities as a warden. According to
the Kerchhoffs’s principle [25] of security systems, Wendy
has complete knowledge of the steganographic algorithm that
Alice and Bob might use.
Active attack: In the case of an active warden, stegano-

graphic security is mainly concerned with the difficulty of
message extraction. The traditional realization of steganog-
raphy that lacks shared secrets is through obscure security
forms. Hopper [26] and Katzenbeisser and Petitcolas [27]
independently proposed the complexity theory definition of
steganographic security. In our recent work [28], a stego-
security classification is proposed based on the four levels of
steganalysis attacks:

a) Stego-Cover Only Attack (SCOA): In this case,
we assume that the steganalysis attacker can only access to
a set of stego-covers.

b) Known Cover Attack (KCA): In this case, being able
to perform SCOA, the attacker can also obtain some cover
images and their corresponding stego images., the number of
pairs is limited within polynomial complexity.

c) Chosen Cover Attack (CCA): In this situation,
an attacker can use the steganographic algorithm to perform
multiple message embedding and extraction operations with
a priori knowledge under KCA., The number of invocation
operations is limited within polynomial complexity.

d) Adaptive Chosen Cover Attack (ACCA): The ACCA
mode means that when the CCA mode challenge fails,
another CCA attack can be performed until the attack is
successful.

Under this definition, the steganalyzer does not need to
know the probability distribution of the cover, but only
assumes that Wendy can access to a black box to generate
the cover. She can sample the cover from the black box.
Meanwhile, steganographic security is established through
the adversarial game between warden and judges. This
method is based on the classification standard of security
level in cryptography. However, the difficulty of constructing
this black box limits the development of security based
on computational complexity in the case of active attacks.
Fortunately, the generative model provides a technique for

building this black box. Security evaluation criteria based on
complexity theory will play a more significant role in the
evaluation of steganographic security.
Passive attack: The key issue of steganography security is

the indistinguishability between the stego image and cover
image.The indistinguishability includes the imperceptibility
for the human visual and machine statistic analysis system.
Therefore, we have

Ddistinguishable(CCover, SStego)

= Dvisual(CCover, SStego)+ Dstatistical(pcover, pstego) (4)

where Dvisual(CCover , SStego) denotes the perceptibility by
human, and Dstatistical(pcover , pstego) indicates the statistical
distance between the distribution of cover images and the
distribution of stego images. In terms of human vision, most
current steganographymethods can achieve indistinguishable
between the stego image and the cover image, which can
be represented as Dvisual(Ccover, Sstego) = 0. Statistical
indistinguishability is the most studied area of stegano-
graphic security. Cachin [29] defined quantified security for
a steganography scheme by the relative entropy between the
cover distribution pcover , and stego distribution pstego:

Dstatistical(pcover, pstego)

= DKL(pcover||pstego) = Epcover[log
pcover
pstego

] (5)

Based on this definition, if DKL (pcover ||pstego ) ≤ ε,
the steganography system is called ε-security. If ε = 0,
the scheme is called perfectly secure. Although the definition
of security based on information theory is popular, it is an
ideal way to define security regardless of its implementation.
It requires the assumption that Wendy fully understands the
probability distribution of the cover and stego sets.

At the same time, there are other ways to define stegano-
graphic security. ROC performance is adopted as an alterna-
tive security measure [30]. Steganographic security is defined
with a functional performance by the steganalysis tools. The
maximum mean discrepancy (MMD) [31] is also be consid-
ered as a measure of steganographic security. The advantage
of the method is numerically stable, even in high-dimensional
space.

C. STRATEGY IMPLEMENTATION
In this paper, the embedding algorithm associates every mes-
sagem with a pair [s, π ], where s is stego image, and π is the
probability distribution for a specific embedding operation,
π (s)=P(S = s|m). Unlike the [32], in this paper, we do not
give the cover image c explicitly and treat image steganogra-
phy as a mapping process from message m to stego image s.

If Bob receives s, Alice could send up to

H(π) =
∑

s∈S
π (s)logπ (s) (6)

bits message on average. In this situation, the average distin-
guishability can also be denoted by:

Eπ [Ddistinguishability] =
∑

s∈S
π(s)Ddistinguishability(s) (7)
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where Ddistinguishability (s) is a metric indicating that the cover
image s is indistinguishable from the natural cover image c.
Similar to [32], the task of embedding can assume two forms:
Distinguishability-limited sender (DLS): In this mode,

the average payload will be maximized given fixed
indistinguishability:

argmax
π

H(π ) st. Eπ [Ddistinguishability] (8)

Although DLS corresponds to a more intuitive use of
steganography since images with different level of noise, it is
rarely used in practice. If we can find a procedure to create a
stego imagewith a fixed average distinguishability, maximize
the average payload will be the core aim. In the next section,
we will see that the cover synthesis steganography algorithm
can be realized with this form.
Payload-limited sender: In this mode, the indistinguisha-

bility metric is minimized, given the size of the transmitted
message.

argmin
π

Eπ [Ddistinguishability] st. H(π) = m (9)

The Payload-limited sender is commonly used in steganog-
raphy by cover modification, in which Ddistinguishability is
often replaced by a defined distortion function. Minimizing
Ddistinguishability indicates modification operation introduces
the least abnormalities in stego image.

A practical steganographic scheme can be divided into
three different fundamental architectures according to the
different ways of obtaining the stego image.

1) COVER MODIFICATION
There are mainly two types of approaches for steganography
by cover modification. One kind is to maintain the invariance
of a statistical model [31], and the other type of methods
implement embedding by minimizing a specific distortion
function. [32], as shown in Fig. 2.

FIGURE 2. Steganography with cover modification.

Cover modification strategy that maintains a specific
statistical model is not safe enough in the face of well-
designed steganographic features [33], [34]. Steganography,
based on minimizing distortion, is more straightforward and
attractive. It abandoned the need for statistical modeling
of the cover source and instead sought to reduce the dis-
tortion [32], [35], [36] introduced by the embedding. The
method based on minimizing distortion is state-of-art in
steganography with cover modification. This method has a
high embedding capacity and is convenient and straightfor-
ward to implement. The distortion function is usually a simple

additive distortion. Some improved distortion functions are
also proposed [37]–[39].

However, the definition of distortion is too vague to detect
the differences introduced into a naturl imageby a mod-
ification accurately. Furthermore, stego s is highly corre-
lated with specific cover c, a well-trained classifier that
training on data set Ccover and Sstego can perform steganal-
ysis. Methods of cover modification always assume that
the modification can avoid the attention of human vision,
Dvisual (Ccover , Sstego) ≈ 0. However, modification inevitably
leads to the difference between the cover distribution and the
stego distribution.Dstatistical (pcover , pstego) 6= 0. In the case of
passive attacks, the relationship between distortion Ddistortion
and statistical distinguishability Dstatistical is far from clear.

2) COVER SELECTION
Cover selection methods can be divided into two ways. One is
to select a candidate image for modification [40]–[42]. These
methods look for a suitable cover in the database to imple-
ment the steganography by cover modification. Although
these methods are called cover selection, they are still essen-
tially a cover modification method. We do not treat these
schemes as cover selection steganography. The other is to
select a cover image as a stego image without modification,
as shown in Fig. 3.

FIGURE 3. Steganography with cover selection.

The essence of the cover selection method is to establish
the mapping rules between a message and a stego image.
Zhou et al. [43] introduce a cover selection steganography
scheme by using the bag of words model [44] (BOW) in
computer vision. Firstly, visual words from an image set are
extracted using a BOW model. Then a mapping relationship
between keywords in the message and visual words in the
image is established. According to the known message and
a set of rules, the selection method looks for the image
that can extract the message as a cover image in the image
dataset. This set of rules is essentially a secret key for cover
selection steganography. However, as the mapping relation-
ship between message and stego is fixed and the mapping
structure is usually quite simple, it is easier to deduce the
mapping rules between message and stego through some
observations under the active attack. Another problem is
that this simple mapping rule leads to low embedding rates,
which hinders the deployment of such algorithms in practical
applications.
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3) COVER SYNTHESIS
The third strategy is based on image synthesis. In this method,
Alice tries to create a new image to carry the required
secret information. If the synthesis image is real enough that
Dindistinguishable (Ccover, Sstego) = 0, then a secure stegano-
graphic system can be achieved theoretically. At present,
there are two kinds of steganographic methods with image
synthesis, as shown in Fig. 4.

FIGURE 4. Steganography with cover synthesis.

Since the realistic image synthesis is a difficult prob-
lem, the traditional cover synthesis method tried to
achieve steganography tasks via unnatural image syn-
thesis, texture image [45], and fingerprint image [46].
Otori and Kuriyama [47], [48] first try to combining
information hiding with pixel-based texture synthesis.
Wu and Wang [49] proposed a reversible texture image syn-
thesis for steganography. Qian et al. [50] propose a steganog-
raphy method in which secret messages are hidden in a
texture image during the process of synthesizing. [51], [52]
introduce a deformation-based texture for information hid-
ing. Li and Zhang et al. [53] propose a construction-based
steganography scheme which conceals a secret message into
a fingerprint image. The premise of texture synthesis for
steganography is to assume the stego object can be an image
without semantic information. Meaningless image limits the
application of texture synthesis steganography in a larger
field.

The other approach is to train a generator by a generative
model with a large amount of data. Stego images can be
obtained from the realistic image generator. A probability
distribution described by the generative model is pmodel or
pg. In some cases, the model estimates pmodel explicitly.
Furthermore, if the images obtained by the generative model
are treated as the stego images, the distribution of the gen-
erated samples can also be denoted by pstego. The maxi-
mum likelihood estimation used for estimating parameters
of the density function is computationally tractable. While
variational methods and sampling methods such as Markov
chain Monte Carlo are used for intractable density func-
tion, requiring the use of approximations to maximize the
likelihood. Because of the complexity and high dimension
of natural images, it is impossible using an explicit den-
sity function to describe the distribution of natural images.
Fortunately, the GAN model uses an indirect method to

obtain the distribution of real images, which does this by
generating samples rather than estimating the specific form
of the distribution. In Section VI, we will see how to design
the steganography method using an image generator, which is
obtained by training the GAN model. Some other generative
models can be used for designing steganography algorithms.
Chen et al. [124] discussed how to apply the VAE [122],
and flow-based generative models [123] in steganography.
Our paper mainly analyzes the application of GAN in
steganography.

D. SUMMARY ON TRADITIONAL STEGANOGRAPHY
Under passive attack, a steganographer tries to find an algo-
rithm satisfying steganography condition pstego = pcover . For
technical feasibility for steganographic security, Fridrich [1]
ignores the fundamental question of whether it is feasible to
assume that the distributions pcover and pstego can be estimated
in practice or even whether they are appropriate descriptions
of the cover-image source. Therefore, the choice of the spe-
cific form of pcover becomes the critical issue in designing of
steganography method. Traditional steganography research
has focused on methods based on the cover modification.

Most of the methods based on modification try to ensure
that the modification operation should keep the invariance
of a specific statistical characteristic, that is pcover 6=
pcover_specific, pcover_specific = pstego_specific. The disadvantage
is that the opponent can usually identify the statistic beyond
the selected model reasonably easily, which allows the reli-
able detection of embedded changes.

In the steganographic scheme of cover synthesis, the distri-
bution of the stego images pstego should be close enough to the
real distribution of the cover image preal . Although the actual
image of distribution can not be given explicitly, we can
approximate the real image distribution preal by describing
the distribution of existing data, preal ≈ pdata. As discussed
in the previous section, GAN allows us to train a generator
with an adversarial learning model. The distribution of the
samples sampled from the generator satisfies pg = pdata.
When we get the stego image directly from the genera-
tor, we can achieve statistical indistinguishability. When a
proper description of the cover images is obtained, both the
indistinguishability security and the Kerckhoffs’s principle
require further attention. To understand the characteristics
of GAN-based steganography methods clearly, the following
Section II will briefly discuss the basic principles and fea-
tures of GAN. As we will see, the underlying fundamental
questions which are neglected by traditional steganography
is what GAN wants to solve.

III. GAN PRELIMINARIES
A. CORE CONCEPTS
The basic idea of GANs is an adversarial game between two
players, as illustrated in Fig. 5. The task of generator G is
to transform the input noise z into a sample G(z). The dis-
criminatorD determines whether the generated fake sample is
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FIGURE 5. The general structure of GAN.

indistinguishable from the real sample. A generative modelG
is a neural network with parameters θ denoted as G(z; θ ).
The output of the generator can be viewed as a sample from
a distribution G(z; θ ) ∼ pg. With a lot of real data x from
pdata, the goal of generator training is to make the generator’s
distribution pg close to the real data distribution pdata.
Goodfellow et al. use a multilayer perceptron as a

generator. The objective function is shown in Eq. 10:

min max V(D,G)

= Ex∼pdata(x)[logD(x)]+ Ez∼pz(z)[log(1− D(G(z)))] (10)

They also show that the optimization process can be seen
as minimizing the Jensen-Shannon divergence (JSD) [3]
between real data distribution and generator distribution.
More importantly, if both generator and discriminator have
adequate capability, the game will converge to its equilibrium
with pg = pdata. In practice, the parameters for the two
networks will be updated in the parameter space.

B. IMPROVEMENTS AND APPLICATION
1) IMPROVEMENTS
The improvements of GANmodels can be classified into two
aspects: the architecture and the loss function. To be specific,
GANs are classified into different types, as shown in Fig. 6.

FIGURE 6. Improvements on GAN models.

FIGURE 7. Applications with GAN models.

The most famous model is DCGAN. [4], which performs
well in image synthesis in the early work of the research., dif-
ferent GAN such as CGAN [54], InfoGAN [8], ACGAN [55]
are proposed to control the generated result. Some methods
have been proposed for solving the model collapse problem
by designing a new loss function such as mini-patch fea-
ture [5], MRGAN [56], WGAN [6], and WGAN-GP [57].

2) APPLICATIONS
The application of early GAN was mainly concentrated in
the field of computer vision, such as image inpainting [58],
captioning [59], [60], detection [61], and segmentation [62].
GAN also has some applications in the field of natural lan-
guage processing, such as text modeling [10], [63], dialogue
generation [64], and machine translation [65].

Huang et al. [13] summarize main approaches in image
synthesis into three methods, i.e., direct methods, hierarchi-
cal methods, and iterative methods. Direct Methods such as
GAN, DCGAN, Improved-GAN [5], InfoGAN, f-GAN [66],
and GANINT-CLS [67], usually using one generator and one
discriminator. The hierarchical approach uses two generators
and two discriminators. This approach divides the image into
two different pieces of content, such as ‘‘style and structure’’
and ‘‘foreground and background.’’ Hierarchical methods
refer to themodel, which generates images from coarse to fine
using multiple generators with similar or identical structures.

On the other hand, depending on the source of the gen-
erated image, image synthesis can also be divided into
three different synthesis methods, namely noise-to-image,
text-to-image, and image-to-image. Text-to-image synthesis
is a research field with excellent prospects. It means that
machines can understand the semantic information of the text.
GAN provides us with a promising text-to-image synthesis
method, such as GAN-INT-CLS [67], GAWWN [68], Stack-
GAN [69], and PPGN [70]. The GAN-based approach so far
produces images that are sharper than any other generation
method. Image translation is related to style transfer [71],
which samples an image with specific content and style by
using a content image and a style image. The image-to-image
translation by GANs has also been successfully applied in
some image or video generation applications [72].

C. STEGANOGRAPHY BY GAN
In this section, we summarize the characteristics of GAN.
GAN’s features can be viewed from the following three
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aspects: an adversarial game, a generator, or a mapping func-
tion. These consistent with the classification of basic stegano-
graphic strategies, i.e., cover modification, cover synthesis,
and cover selection. The three main types of approaches
mentioned in this paper based on the above characteristics
are shown in Fig. 8.

FIGURE 8. The categories for steganography from the point of view
of GAN.

Under the first view, GAN is treated as an adversarial game
between generator and classifier; both generator and discrim-
inator are equally important. This kind of viewpoint pays
attention to the whole process of the adversarial game and
pays more attention to the positive effect produced by the dis-
criminator. In fact, there have been some studies on steganog-
raphy methods based on game theory before the GAN is
proposed, such as [73]–[75]. The family by modification-
based steganography takes advantage of the concept of
a game simulation between two-players: Alice-agent and
Eve-agent. Historically MOD [76] and ASO [77] were the
algorithms of this type. Recently some researchers take
advantage of the adversarial concept by generating a fool-
ing example (see for adversarial example [78]). Still, those
approaches are not an adversarial game between generator
and discriminator. However, unlike GAN using iterative and
dynamic game process, those approaches are not a dynamic
process, there is no dynamic adversarial game simulation.
They did not attempt to achieve a Nash equilibrium. These
methods considered the implications of steganalysis at the
beginning of designing steganographic schemes.

On the other hand, this traditional game strategy is more
of a theoretical analysis. The steganography based on GAN
can be used in creating a practical steganography scheme.
The game between steganalyser and steganographer is similar
to the generator and discriminator in GAN. Inspired by this
similarity, GAN is chosen to improve the performance of
the traditional steganography by cover modification. We will
discuss the specific process of this part in detail in Section IV.

The second view treats the generator training procedure in
GAN as a robust construction method of the mapping func-
tion. This mapping function maps a driving signal through a
neural network to an image that belongs to a specific image
set. It is an interesting idea to apply GAN in the cover selec-
tion steganography scheme for building the mapping between
message and cover. We will elaborate on the details of this
scheme in Section V.

The third view is to regard GAN as a method to construct
a powerful generator. As we know, this view treats the result

FIGURE 9. The categories for cover modification with GAN.

of the game process, a powerful generator, as the most suc-
cessful innovation of the GAN model. A much more exciting
approach using cover synthesis is to generate stego images by
the generator. The critical issue raises how to hide the mes-
sage in the synthetic image. A typical approach is to obtain
a stego image by introducing steganography constraints or
a loss term with message extraction. We will discuss some
recent researches in detail in Section VI.

IV. COVER MODIFICATION WITH GAN
GAN-based steganography by cover modification
(GAN-CMO) focuses on the adversarial game between
steganographer and steganalyer. These methods use a gen-
erator trained by GAN to construct various core elements
in the cover modification scheme. The first strategy is to
generate the cover image. The second strategy is to create
the modification probability matrix in the framework of
minimizing distortion, and the third is to directly use the
adversarial game among tripartite, such as Alice Bob and
Wendy, to learn a modification algorithm.

A. GENERATING COVER IMAGES
Volkhonskiy et al. [79] proposed the application of GAN to
steganography. They construct a special generator for creat-
ing cover-image, synthetic images produced by this gener-
ator are less susceptible to steganalysis compared to covers.
This approach allows for generatingmore steganalysis-secure
cover that can carry messages using standard steganog-
raphy algorithms such as LSB or STC. They introduce
the Steganographic Generative Adversarial Networks called
SGAN, which consists of three networks. A generator G,
a discriminatorD, and a steganalysis classifier S. Classifier S
determines if a realistic image is hiding secret information.
The workflow of SGAN is illustrated in Fig.10.

FIGURE 10. SGAN workflow diagram.
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SGAN trains G with D and S simultaneously. We can get
the game as follow:

L = α(Ex∼pd (x)[logD(x)]+ Ez∼pz(z)[log(1− D(G(z)))])

+(1− α)Ez∼pz(z)[logS(Stego(G(z)))

+log(1− SD(G(z)))] −→ min
G

max
D

max
SD

(11)

where parameter α [0; 1] denotes the weight between the
quality of the generated image against the steganalysis,
S(x) is the probability for x is stego image.

Similar to SGAN, Shi et al. [17] use the same strategy
that generates cover images for steganography with adver-
sarial learning scheme, named SSGAN. The SSGAN also
has a generative network and two discriminative networks.
Compared with the SGAN, WGAN is proposed for generat-
ing higher quality images and improving the training process.
A more complex network called GNCNN [80] is chosen as
the discriminator D and the steganalyser S.
Wang et al. propose another cover image generation

method [81], as shown in Fig. 11. Unlike SGAN and SSGAN,
a discriminator D determines whether the image is a stego
image. Stego(G(z)) and real image x are used as the input
for discriminator D. Such improvement make the distribu-
tion of the stego image closer to the real data distribution.
An interesting result of this scheme is that the images gen-
erated directly by the generator may not be realistic, and the
fidelity of the stego image is achieved after the modification
operation.

FIGURE 11. Stego-GAN workflow diagram.

B. LEARNING DISTORTIONS
Tang et al. [82] proposed an ASDL-GAN model to learn a
distortion function automatically. This scheme follows the
state-of-art steganography by minimizing an additive distor-
tion function [32]. The change probabilities matrix P can
be obtained by minimizing the expectation of the distortion
function [83]. The generator G in their scheme is trained to
learn the change probabilities P for an input image.
As illustrated in Fig. 12(a), the discriminator D in

ASDL-GAN framework adopts the Xu’s model architec-
ture [84]. The embedding simulator (TES), is used as the
activation function in the training procedure. The reported
experimental results showed that ASDL-GAN could learn
steganographic distortions.

It is inspired by ASDL-GAN, UT-SCA-GAN [14] pro-
posed by Yang et al. with the same component modules as

FIGURE 12. (a) Architecture of the ASDL-GAN framework [82]. (b) The
structure for TES activation function.

ASDL-GAN: a generator, an embedding simulator, and a dis-
criminator. Compared with the ASDL-GAN, Tanh-simulator,
an activation function, is used for the propagating gradient.
Besides, a more compact generator based on U-Net [85] has
been proposed. The experimental results show that this frame-
work can improve security performance. At present, there
is no guarantee [86] that the probability map obtained will
defeat the security performance of HILL or S-UNIWARD
with STC in practice. It is also unclear whether the loss of the
generator must incorporate terms related to safety and terms
of payload size.

C. EMBEDDING AS ADVERSARIAL SAMPLES
Some researchers have also designed steganography with the
idea of adversarial examples [87]. However, merely adding
perturbations directly to a stego image can also result in
instability of message extraction. Tang et al. [88] proposed
an adversarial embedding (ADV-EMB) method, which tries
to modify the cover image for message hiding while fooling
a steganalysis classifier. The ADV-EMB scheme is illustrated
in Fig. 13.

The pixels of candidate stego image is divided into two
groups, one group of pixels is used for modification-based
embedding, and a tunable group of pixels is used for per-
turbation as an adversarial sample to resist steganalysis.
ADV-EMB adjusts the cost of modification operation with
back-propagation on the gradient of the steganographic ana-
lyzer. Their experiments show that ADV-EMBachieves better
security performance.
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FIGURE 13. The model architecture of ADV EMB scheme [88].

Similar to [88], Ma et al. [89] modify the image pixel
following the adversarial gradient map while embedding. The
adversarial gradient map is the matrix generated from the
neural network model and has the same size as the cover
image. Each element of the adversarial gradient map is the
gradient value that make the steganalyzer tend to have a false
classifying result.

D. SUMMARY ON COVER MODIFICATION
SSGAN [17] construct a special cover-image generator; they
can use standard steganography algorithms such as LSB or for
information hiding. [82] and [14] train a generator of modifi-
cation probabilities matrix for minimizing a suitably defined
additive distortion function. [15], [78], [88], [89] learn a
whole cover modification steganographic algorithm using
GAN. They focus on the adversarial game between steganog-
raphy and steganalysis. They both introduce a steganalyzer
against the steganography either explicitly or implicitly.

Although these methods have achieved better anti-analysis
capability than traditional steganography methods, these
methods are still faced with traditional security threats when
Wendy can get all the information on the algorithm to obtain
stego and cover. In theory, these methods can’t resist more
powerful steganalysis tools, since the embedded operation
will inevitably cause some abnormal changes.

V. COVER SELECTION WITH GAN
GAN-based steganography by cover selection (GAN-CSE)
aims to establish the mapping relationship between message
and cover. As far as we know, there is very little literature on
this subject that attempts to use GAN to design the steganog-
raphy scheme, Ke et al. [16] made a preliminary attempt on
this subject.

A. COVER FIRST GENERATIVE STEGANOGRAPHY
Ke et al. [16] proposed generative steganography by the cover
selection that meets Kerckhoffs’ principle (GSK). The idea
is that the sender establishes a mapping relationship using
a generator between the message and the selected image.
For the receiver, the message is directly generated by the
selected image. In [28], this method is also called cover
first generative steganography (CFGS). The essence of this
method is to establish a mapping relationship between the
cover image and secret message so that a cover image will
naturally turn to be a stego image. The statistical stegano-
graphic analysis does not work because there is no operation
for cover modification. Ke et al. establish a mapping relation
between message and cover image using GAN. To ensure the
security, Kerckhoffs’ principle is also introduced in their GSK
method.Fig. 14 shows the three message extraction scenarios
under this framework.

As for the receivers (Fig.14c): Case 1, the only k is
received corresponding to a failed message extraction, only

FIGURE 14. The model architecture of GSK method [16].
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noise can be recovered. Case 2, only I is received corre-
sponding to an intercept from attackers. There is also noise
output for the attacker. Case 3, when I and k are both
obtained, the message s could be recovered. Two mapping
relationships between the key k and the message s and the
relationship between the cover I and the message s are
constructed by a Message-GAN and Cover-GAN, respec-
tively. Message-GAN, which implement by InfoGAN [8],
is to use feature codes to control the output. Cover-GAN,
which is similar to Abadi and Andersen [90]method for cryp-
tology, is used to determine the generation of the message s.

B. SUMMARY ON COVER SELECTION
There are few studies on cover selection steganography based
on generative models. This type of approach treats the gener-
ator as a mapping between a message and an existing natural
image. The advantage of [16] is that the image is 100%
natural due to no modification. For the moment, the low
embedding capacity of cover selection steganography is still
a bottleneck to its development.

VI. COVER SYNTHESIS WITH GAN
GAN-based steganography by cover synthesis (GAN-CSY)
usually creates stego images by generator trained by GAN.
In our opinion, the key to steganography by image synthesis is
that the stego image should be obtained directly from a black
box, such as a generator. Since the most significant advantage
of GAN is the ability to generate realistic natural images,
we will see in this section how to use generators to create
stego images.

A. SUPERVISED STEGO IMAGE SYNTHESIS
Similar to Abadi and Andersen [90], Hayes and Danezis [15]
try to use a neural network to learn a steganography algo-
rithm with adversarial training. In their framework, the three
players, Alice, Bob, and Eve, are neural networks. θA, θB, θC
denote the parameters for the networks, respectively. The full
scheme is depicted in Fig.15.

FIGURE 15. 3-PLAYERS GAME for steganography by GAN [15].

In Fig.15, Alice uses a cover image, C , and a secret mes-
sage, M to generate a stego image C ′, Bob tries to recover
the message M ′ from C ′. Eve outputs a probability P to
indicate the likelihood of a secret message in the image. Alice
hopes to learn a steganography scheme in which Eve outputs
P = 1/2.A(θA,C,M )B(θb,C ′) andE(θE ,C, C ′) are output for
Alice, Bob, and Eve, respectively. To design a steganographic

algorithm, three loss-functions LA, LB, and LE are given as
the loss of Alice, Bob, and Eve.

LB(θA, θB,M ,C)

=d(M ,B(θB,C ′))+d(M ,B(θB,A(θA,C ′,M )))+d(M ,M ′)

(12)

LE (θA, θE,C,C ′)

= −y log(E(θE, x))− (1− y) log(1− E(θE, x)) (13)

LA(θA,C,M )

= λAd(C,C ′)+ λBLB + λELE (14)

where y = 0 if x = C ′ and y = 1 if x = C , d(C, C ′) is the
distance between the C and C’, and hyperparameters λA, λB,
λE ∈ R define the weight for each loss term.
Zhang et al. [91] propose an end-to-end model, called

STEGANOGAN, for image steganography. They use
adversarial training to solve the steganography task and
treat the messages embedding and extraction as encoding
and decoding problems, respectively. The architecture of
STEGANOGAN consists of three sub-modules, as shown
in Fig. 16, the image encoder uses the cover image and the
message to generate a stego image; a decoder is going to
recover the message with a stego image, and an auxiliary
Critic network evaluates the quality of the stego image.

FIGURE 16. The architecture for STEGANOGAN model [91].

The training process is divided into two parts. Three losses:
the cross-entropy loss Ld for message decoding accuracy, the
similarity loss Ls between stego and cover, and the fidelity
loss Lf of the stego image using the critic network. The
training objective is to

minimize Ld + Ls + Lf . (15)

They minimize the Wasserstein loss to train the critic
network.

In [92], Zhu et al. also trained encoder and decoder
networks to implement message embedding and extraction.
They introduce various types of noise between encoding and
decoding to increasing robustness but focuses only on the set
of corruptions that would occur through digital image manip-
ulations. Similar to [92], Tancik and Ren [93] achieve robust
decoding even under ‘‘physical transmission’’ by adding a
set of differential image corruptions between the encoder
and decoder that successfully approximate the space of
distortions.

60584 VOLUME 8, 2020



J. Liu et al.: Recent Advances of Image Steganography With GANs

Although the above algorithms generate stego images
through neural networks, it should be emphasized that the
ideas of these methods are substantially dependent on a spe-
cific cover image, and we call it the steganography by super-
vised cover synthesis (SSCS). The stego image generated by
a neural network is highly correlated with the cover image,
so those algorithms are similar to the steganography by cover
modification.

B. UNSUPERVISED STEGO IMAGE SYNTHESIS
1) STEGANOGRAPHY WITHOUT EMBEDDING
Hu et al. [19] proposed a stego-image synthesis method with-
out embedding (SWE). In our opinion, a more appropriate
term would be ‘‘steganography without modification’’, since
embedding operations should be a general term for infor-
mation hiding operations and should include modification,
selection, and synthesis. In their method, the secret messages
are mapped into a noise vector is sent to the generator as
input to produce a stego image. In Hu’s method [19], stego
images are generated with the noise in an unsupervised man-
ner. We call this the steganography by unsupervised cover
synthesis (SUCS). The proposed SWE framework consists
of three phases, as illustrated in Fig. 17.

FIGURE 17. The framework of SWE method [19].

The generator G is trained with a dataset in the first phase.
After this phase, the generator that can create realistic fake
images is obtained. During the second phase, an extractor E
is trained by a message extraction loss function. The goal of
this phase is to recover the message from the generated stego
image. The loss of extractor training is illustrated as follow:

L(E) =
∑n

i=1
(z− E(stego))2

=

∑n

i=1
(z− E(G(z)))2 (16)

In the secret communication phase, the sender builds a rela-
tionship between noise and message, in their scheme, both
secrete message m and vectors z are segmented for mapping.
The receiver can uses E to recover noise vector z, and then
the secret message is obtained by the mapping relationship.

The highlight of this paper is training a special extractor for
noise (message) extraction.

2) STEGANOGRAPHY BY WGAN-GP
Inspired by Hu’s method, Li et al. [94] propose a new
framework that trains the message extractor and stego image
generator at the same time. WGAN-GP instead of DCGAN is
adapted to generate a stego image with higher visual quality.
In their method, Generator G is trained in a mini-max game
to compete against the Discriminator(D) and Extractor(E),
as illustrated in Fig.18. The objective function for training
this model is as follows:

minmaxmin J (D,G,E)

= {Ex∼pdata(x)[D(x)]− Ez∼pz(z)[DG(z)]

+λEx̂∼pdata(x̂)[∇x̂
∥∥D(x̂)∥∥2 − 1]}

+β{Ez∼pz(x̂)[log(z− E(G(z)))} (17)

where β is a positive number that balances the importance of
realistic images and correct extraction rate of noise z. The sec-
ond term on the right-hand side is the objective function of
WGAN-GP [57]. The parameter λ is the gradient penalty
coefficient.

FIGURE 18. The framework of the WGAN-GP [94].

C. SEMI-SUPERVISED STEGO IMAGE SYNTHESIS
1) STEGANOGRAPHY BY ACGAN
To allow for semi-supervised learning a steganographic
scheme, we can add the task-specific auxiliary network in
the original GAN. Inspired by ACGAN, Liu et al. [95] first
proposed a stego-image generation method by ACGAN. This
method establishes a mapping relationship between the class
labels of the generated images and the secret information,
both class labels and noise put into the generator for stego
image generation directly. We call it the steganography by
semi-supervised cover synthesis (Semi-SCS). The receiver
extracts the secret information from the hidden image through
a discriminator.
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The ACGAN-based cover synthesis method attempts to
establish a correspondence between image categories and
secret information. ACGAN for generating the stego image,
as illustrated in Fig.19.

FIGURE 19. The framework of steganography with ACGAN.

At themessage extraction phase, the stego image is fed into
a discriminator for getting the pieces of secret information.
Hu’s method [19] and Li’s [94] methods are necessarily the
same as Liu’s method [95], all of which attempt to create a
mapping between the input vector of the generator and the
secret message. The former establishes the mapping between
noise z and the message, while the latter utilizes the auxiliary
control information, such as labels.

2) STEGANOGRAPHY BY CONSTRAINT SAMPLING
Liu et al. [18], [96] proposed generative steganography by
sampling (GSS). In this scenario, the steganographic embed-
ding operation becomes an image sampling problem. They
treated stego image generation as an optimization problem of
minimizing the distribution distance between the data image
and the cover image:

Gen(m, k) = argmin
y∼pstego

DJS (pstego, pdata) (18)

st.Ext(y, k) = Cky, (19)

where Gen(·) is an image generator, and Ck is the secret key k.
The stego image, y, does not depend on any specific cover,
which follows the distribution pg, y = G(z).
To implement this solution, they train an image generator

by DCGAN, as illustrated in Fig. 20(a). The goal of training
is to be able to get realistic fake images. Ideally, it reaches an
equilibrium state, pstego = pdata.
Then, constrained sampling of the image is achieved by

defining a message extraction loss constraint, as shown
in Fig. 20(b). More specifically, The process of finding a
cover image y can be regarded as an optimization problem
as follows:

ẑ = argmin
z

(Lm(z|m, k)+ λLp(z)) (20)

where ẑ is the ‘‘closest’’ encoding of stego image, and
Lm and Lp denote the message loss and the prior loss. Back-
propagation to the input noise z is introduced for solving
this optimization problem. Under the guidance of this frame-
work, they implemented a digital Carden grille steganography
scheme using image completion technology [58].

FIGURE 20. Workflow for GSS (a) Training a image generator; (b) finding a
stego image with constraints.

In this scheme, the image completion technology makes
the scheme closer to the idea of Cardan grille. At the same
time, the method becomes a semi-supervised cover syn-
thesis (semi-SCS) method. Image completion technology is
not necessary, that is to say, this scheme can be converted
into an unsupervised manner, and extended to more image
synthesis applications. In this framework, cover synthesis
becomes an optimization problem that satisfies both message
loss constraint and image perceptual constraint. Unlike Hu’s
method [19], the GSS framework provides an alternative way
to cover synthesis using generators. In Hu’s paper, after the
message-noise map and well-trained extractor are ready, the
cover image can be obtained by using noise once. In contrast,
in GSS scheme [96], the stego image is achieved via an
iterative sampling method step by step.

3) STEGANOGRAPHY BY CYCLE GAN
In addition to using noise, labels, and corrupted images
to generate stego images, some researchers treat the cover
synthesis as an image-to-image translation problem. The
image-to-image translation is a transformation that converts
one type of image to another. A very famous model for
image translation is CycleGAN [97]. Although CycleGAN
lacks the supervision of the pairing example form, it can
take advantage of the supervision at the collection level.
CycleGAN is able to convert an image from class X to a
class Y by a transform F . It can also convert it back to class X
by transforming G. CycleGAN trains transforms F and G by
minimizing the adversarial loss LGAN and cycle consistency
loss Lcyc. Chu et al. [98] first claim that CycleGAN can
be viewed as an encoding process for information hiding.
By treating CycleGAN’s training process as a generator of
training adversarial examples and demonstrating that cyclical
consistency losses cause CycleGAN to be particularly vulner-
able to adversarial attacks.
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Since CycleGAN’s image transformations have some
reversible properties, Di et al. [99] proposed a cover synthesis
scheme by cycleGAN with reversible properties. Inspired by
Hu’s framework, they introduced cycleGAN into the new
framework and used it for the reversible recovery of the cover
image, which is generated by a noise vector. Similar to [100],
the transformed image can also be regarded as a special
encrypted image. In addition, a new extractor is trained to
extract the secret data, which also makes the data hiding
framework reversible. The illustration of Di ’s method has
been shown in Fig. 21.

FIGURE 21. The workflow of the method [99].

In phase 1, a generatorG1 and a restorer F are generated by
CycleGan. With two discriminators D1 and D2, two transfor-
mations achieved G1: X -> Y and F : Y -> X , where X and Y
are image collections. In Phase 2, a generatorG2 is generated
by the DCGAN method with the help of discriminator D3.
In Phase 3, based on the two discriminators G1 and G2,
we can get the transformation from random noise to stego
image set Y. Then, a new extractor E is trained with a neural
network, which ensures that the generated output Z2 is the
same as the input Z1 as closely as possible. Before data
hiding, the sender sends extractor E and restorer F to the
receiver. Both sides learn a mapping from secret data M to
noise Z . The image generated by G1 and G2 can be regarded
as a cover image and marked image. Then, the sender sends
the marked image G1G2(Z ) to the receiver. At the receiver
side, a recover image can be obtained, and the embedded data
can be extracted.

D. SUMMARY ON STEGO IMAGE SYNTHESIS
Although there’s not a lot of literatures on generating stego
images with generators, some of them are attractive and rep-
resentative. In this section, we will further analyze the charac-
teristics of these methods and summarize some general rules.

We also regard image synthesis steganography as generative
steganography. It refers to the means of directly obtaining a
stego image by a generator without a specific cover image.

1) SENDER MODE
With GAN’s generator, realistic images are sampled from
the distribution of a dataset. Sampling a stego image from
a generator makes the steganography problem a sampling
process. Steganography, by cover synthesis, also has two
implementation strategies.
Payload-limited

Sender: In practice, it is difficult to achieve the optimal,
which satisfies pg = pdata. In the case that the message length
is limited to m bits, the cover synthesis can be regarded to
minimize the distance between pstego and pdata:

Emb(m, k) = argmin
y∼pstego

D(pstego, pdata) (21)

st. Ext(Emb(m, k), k) = m, ∀m ∈ {0, 1}m

(22)

Distance-limited Sender: Due to the randomness of
the images generated by the generator, when the distance
between the distribution of the cover image and the real data
distribution is within an acceptable range, the steganography
by cover synthesis can also be regarded as an optimization
problem to maximize the capacity of the message:

Emb(m, k) = argmax
y∼pstego

|Ext(Emb(m, k), k)|m (23)

st. D(pstego, pdata) < ε (24)

where | · |m denotes the length of message m. The goal of
steganography by cover synthesis is to increase the capacity
under the premise of satisfying a metric.

The distance-limited sender by cover synthesis has three
differences compared to the mode adopted by the mini-
mizing distortion. First, this scheme directly minimizes the
distribution distance rather than the distortion caused by
modifying operation. Second, the scheme is straightforward
to introduce a secret key, making the scheme meet the
Kerckhoffs’ principle. Third, the algorithm by minimizing
distortion usually adopts the Payload-limited sender method
to design the steganographic scheme. The more intuitive
use of steganography should be the Distance-limited Sender
mode. The distance-limited mode is similar to the mode
with distortion-limited, but there is a fundamental differ-
ence in steganography security. The relationship between
distortion and steganography security is ambiguous. The pro-
cess of training a generative model is theoretically reducing
the distribution distance, which makes the distance-limited
mode more perceptive. All of these methods, including
the ACGAN-based method [95], SWE method [19], [94],
cycleGAN-based method [99], and GSS method [96],
adopt the distance-limited sender mode. They introduce
message-noise mapping or message loss constraints after the
generator is trained. The trained generator represents that a
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fixed distribution distance, and the message mapping or mes-
sage loss constraint aim to improve the embedding capacity.

2) MESSAGE EMBEDDING AND EXTRACTION
The goal of cover synthesis is to generate realistic images
while hiding messages. Traditional GANs focus on finish-
ing the realistic image generation task. For steganographers,
the most critical mission is how to embed and extract mes-
sages correctly. Interestingly, we will see that, in contrast
to traditional steganography schemes, which focus on the
design of embedding operation, including modification and
selection. In the steganography by cover synthesis based on
the generator, message extraction and embedding procedures
combine in an integral whole. In some circumstances, we will
paymore attention to the extraction strategy of messages. The
task of information hiding becomes the challenge of whether
the message can be extracted correctly.

Under the framework of cover synthesis, image steganog-
raphy becomes the task of the space mapping between
message space M and stego image space S. The embed-
ding process can be regarded as a message-stego mapping.
In contrast, the message extraction can be viewed as a stego-
message mapping, as shown in Fig. 22. Because of the ran-
domness of generating stego images based on the generator,
the mapping relationship between message and the stego
image may be one-to-many, and the goal of steganography
is to seek the mapping relationship satisfying the constraints
of message loss and fidelity loss.

FIGURE 22. A framework for messages embedding and extraction in
cover synthesis by GAN.

Similar to the spatial domain and transform domain
steganography, the locations of messages in the stego image
are different. When the message constraint directly acts on
the space domain, cover synthesis can be regarded as spa-
tial domain steganography, such as Liu’s method [96]. The
secret message is hidden behind the generated pixels of the
image. When the message constraint acts on the transform
domain, cover synthesis can be regarded as a transform
domain steganography scheme. In Hu’s method [19], they
hide themessage in noise and need to be recovered by a neural
network extractor. Similar to [19], [95] hides the message
by the semantic labels. These methods are all steganography

schemes in the transform domain. When the deep neural
networks are treated as an encoder, they convert data into
a feature space, such as [93]. This method can be regarded
as a steganography method in the transform domain. One of
the advantages of transform domain steganography is that
the encoded messages can contain resistance various image
distortions. Although robustness is not the goal of traditional
steganography, in some specific situations, it is a practical
requirement.

Therefore, in the case of using a neural network or gen-
erator, the steganography is converted into an optimization
problem of defining a total loss function,

Ltotal = λf Lfidelity + λmLmessage
+λroLrobustness + λreLreversible (25)

where Lfidelity and Lmessage represent the concerns of tradi-
tional steganography: the accurate extraction of the message
and the natural properties of the stego image. Lrobustness and
Lreversible represent some other properties such as robustness
or reversibility in steganography. These Loss weights λs
indicate the proportion of each performance requirement in
different application scenarios.

3) STRATEGY: FROM SUPERVISED TO UNSUPERVISED
According to the various information received by the
generator, when generating the stego image, we divide
the cover synthesis method into supervised, unsupervised,
semi-supervised in Section VI. The semi-supervised manner
can be regarded as a general framework for stego image
generation. Both supervised and unsupervised modes can be
seen as a particular case of a semi-supervised way.

As shown in Fig.23, we can relatively easily grasp the
commonalities of these three strategies. In the unsupervised
method [19], no cover image can be treated as 100% cor-
ruption. Therefore, it is necessary to construct a stego image
by utilizing the mapping relationship between message and
noise. The message loss constraint is based on noise extrac-
tion accuracy. In a semi-supervised method [96], with image
completion techniques, secret messages are embedded in
uncorrupted image regions, and message loss constraints
are built into a portion of the image. In the supervised
method [15], [78], due to the existence of the cover image,
the constraints of the message loss are based on the dif-
ference between the generated stego images and the cover

FIGURE 23. A general framework for stego image generation.
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images. It should be pointed out that the terms, such as super-
vised, semi-supervised, and unsupervised, are mainly defined
according to the dependence on an explicit cover image,
which is not the same as those used in machine learning.

4) TRAINING MODE OF THE GENERATOR
The mechanism of obtaining the synthetic stego image
depends on the training mode of the generative model, which
can be divided into two implementation strategies. The first
strategy is to train a generator with message loss constraint
and prior constraint simultaneously, namely parallel con-
straint synthesis (PCS) mode, as shown in Fig. 24. After
the generator is trained, the cover image can be sampled
directly from the generator. However, because the message
is relevant to the generator. You need to repeatedly prepare
a new generator when a new message needs to be hidden.
Currently, due to the high cost of training generators, this
strategy has significant limitations in practice. To the best of
our knowledge, Li’s method [94] follows this framework that
utilizes parallel constraint synthesis mode.

FIGURE 24. Constraint parallel training mode for the cover synthesis.

The second strategy is to satisfy the prior constraint and
message constraint through two subsequent schemes, namely
sequential constraint synthesis (SCS), as shown in Fig. 25.
First, a real image data set is used to train a generator that
satisfies the fidelity loss constraint, LFidelity(s). Then, we can
design a generation scheme that meets the message extraction
loss constraint, such as Lmesage(mext |s, k). The character of
this scheme is that the limitations of message loss and prior
loss can be separated, that is, when training the generator,

FIGURE 25. Separate serial constraint mode for the cover synthesis.

we only need to pay attention to how to make the generated
sample distribution approximate to the real data distribution.
After training, the generator is used to construct the candidate
stego image, and the final stego image is obtained by using a
message constraint. The separability of constraint conditions
will make the design of cover synthesis more practical and
straightforward. This separation is a specific implementation
scheme of the payload-distance sender mode. All of these
methods, such as [19], [95], [96] adopt this serial mode.

VII. EVALUATIONS METRICS ON GAN-BASED
STEGANOGRAPHY
In this section, we evaluate GAN-based steganography on
three axes: secrecy, the difficulty of detecting stego images;
capacity, the number of message bits that can be hidden in the
stego image; and robustness, the degree to whichmethods can
succeed with some image distortions. All mentioned methods
are divided into three types, such as cover modification,
selection, and synthesis as before.

A. SECURITY
Steganographic security mainly includes the indistinguisha-
bility and computational complexity of obtaining the embed-
ded message. In this section, we start with an image quality
evaluation. Then, we compare the statistical indistinguisha-
bility of these methods via data-driven steganalysis tools.

1) IMAGE QUALITY
First of all, it should be noted that the cover selection
steganography [16] only selects a cover image as a stego
image. We assume that the image quality of this method
is perfect. Our discussion is mainly on the practices of
constructing stego images by a generator, which includes
cover modification and synthesis. We report the experimental
results from qualitative and quantitative comparisons.
Qualitative comparisons In Table 1, we present the gen-

erators used in the different cover modification methods and
the image datasets, as well as the visual effects of the stego
images obtained by these methods. As can be seen from the
table, those steganographic methods, such as [17], [79], [81],
that use the generator to generate the cover image, the result-
ing stego image quality is not good. This is mainly due to
the stego image quality depending on the performance of the
generator. And those methods, such as [14], [82], use the
GAN to learn a modification probability matrix have higher
visual effects because they rely on the cover image.

Table 2 shows the synthesis methods for generating a
stego image using a generator without relying on a specific
cover image. From these methods, it can be seen that the
visual quality of the stego image is entirely dependent on
the performance of the generator. The generators used by
these methods are relatively simple, so the resulting effects
are not sound. The one exception is that in CycleGAN-based
steganography [99], BEGAN is used to generate images, so it
has a higher visual quality.
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TABLE 1. Comparisons of images for cover modification with GANs.

Quantitative analysis One widely-used metric for mea-
suring the quality of images is the peak signal-to-noise
ratio (PSNR) and Structural similarity index (SSIM) [108]
between the cover image and the sego image. Since
GAN-based cover modification uses LSB-like [109], [110] or
minimizes distortion [32] in the modification strategy, it has

TABLE 2. Comparisons of images for cover modification with GANs.

been shown that these methods make the PSNR value large,
and the image quality difference is small compared with
the cover image. The SteganoGAN method [91] reports the
PSNR and SSIM in their work, where the PSNR values fall
between 35-41, and the SSIM values are above 0.9. However,
for a method of directly generating a dense image using
a generator, there is no one-to-one pixel correspondence.
Metrics like PSNR are not suitable to evaluate the stego
image. Quantitative indicators for the GAN model often
use Fréchet inception distance (FID) [111] and incep-
tion score (IS) [5]. Other evaluation criteria include Mode
Score [56], Kernel MMD [112], Wasserstein distance, and
1-nearest neighbor (1-NN)-based two data tests [113]. These
indicators are still an ongoing important research area.

2) STATISTICAL STEGANALYSIS
Steganographic security is often evaluated using a classifier
to distinguish between cover and stego images. In this paper,
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we directly adopted the best results reported in their original
paper. Since these methods use different ways for steganal-
ysis, we also point out the classifiers they use while giving
the detection rate. In this case, although we cannot evaluate
the performance of these algorithms objectively, their experi-
mental results will provide us with a relative criterion for the
security of these methods.

It can be seen from Table 3, those methods that use the
generator to generate the cover image and introduce the
steganalyzer have sound security for their steganalysis tools,
such as [79], [17]. At the same time, the security of using
GAN to construct a modification probability matrix is very
close to the traditional steganography by cover modification,
such as [82], [14].

TABLE 3. The FIDs of different models trained on CelebA.

In Table 4, we list the error rate of statistical analy-
sis of steganography by cover synthesis with GAN. Based
on the cover image as an input, those methods that use
the adversarial game strategy to generate stego images,
such as [15], [91], also have a certain degree of security.
SWE’s [19] case 1 assumes that the attacker is unable to
obtain training samples, and the security is higher at this time.

TABLE 4. The FIDs of different models trained on CelebA.

Still, in case 2, when directly using training images to train
the steganalyzer, steganalysis achieves good detection ability.
The problem with this approach is that the steganographic
analysis becomes forensic of the composite image at this
time, that is, whether the image is synthetic. ACGAN-based
method [95] considers cases where training samples cannot
be obtained. In GSS [96] method, under the embedded capac-
ity of 0.4bpp, the security is higher for SPAM features, but for
SCRMQ1 [118], the classifier gets a good detection ability.
The benefit of this sampling method is that the training set
can be exposed, and the steganographic security can depend
on the confidentiality of the embedded key.

3) SECURITY LEVELS WITH KERCKHOFFS’S PRINCIPLE
Ke et al. [28] proposed a stego-security classification strat-
egy with Kerchhoffs’s principle based on the different
levels of steganalysis attacks such as Stego-Cover Only
Attack (SCOA), Known Cover Attack (KCA), Chosen Cover
Attack (CCA) and Adaptive Chosen Cover Attack. In synthe-
sis methods, such as [19], [95], there are explicitly extraction
or embedding key k. The mapping itself can be used as a
key, but in this case, the keyspace is too small to resist SOA
attacks. Therefore, when the algorithm exposes an active
attack environment that directly attempts to extract a key,
it is not secure in terms of the computational complexity of
acquiring keys. In the GSS method [96], the keyspace meets
the specified computational complexity when the size of the
Cardan grille is large enough. Therefore, the GSS method
can be stego-secure against SCOA. The training image set
should be available for the attacker in theKCAmodel. In [19],
it has been shown that directly using the training set to train
classifies for steganalysis is unsafe. Therefore, the cover syn-
thesis method is not stego-secure against KCA. At present,
the actual security requirements for cover synthesis are as
follows.1) the training dataset and the key k should be kept
secrecy. 2) |K| should be large enough to meet requirements
of computational complexity.

B. CAPACITY AND RECOVERY ACCURACY
At present, there is still a big gap in performance between
GAN-based steganography by cover synthesis and traditional
cover modification methods. It has reached a considerable
level compared to the traditional cover selection or synthesis
method. We list the capacity of cover synthesis methods by
GAN in Table 5, and the absolute capacity is shown in the sec-
ond column, the size of the stego image is listed in the third
column, the relative capacity is shown in the last column:

Relative capacity

= Number of message bits/Size of the image (26)

Extraction rate. However, in those schemes, such
as [15], [19], [94]–[96], where the generator directly gen-
erates the stego image, the stego image generation depends
on the optimization problem of the neural network, that
is, the minimization of a certain cost function. Since the
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FIGURE 26. Extraction rate for the cover synthesis.

TABLE 5. Capacities of various non-modification methods.

generator or neural network usually cannot get the optimal
solution, the message may not be extracted correctly. The
actual capacity can be denoted as:

Actual capacity = Relative capacity × Extraction rate

(27)

In Fig.26, we show the extraction rate of different algo-
rithms when the message cannot be extracted exactly.

It can be seen from the Fig.26 that in the methods of
(a) [19] and (b) [95], additional training is required, and the
message extractor gradually increases the stability of the
message extraction as the number of training steps increases.
The ACGAN-based method message is hidden in the label of
the image, that is, the semantic level. By training a classifier,
the category information can be obtained, so that the message
extraction accuracy is high, and the disadvantage is that the
sneaking rate is low. In Fig.26 (c) [96], to verify the accuracy
of message extraction, we first perform random damage,
according to the damage ratio of 99%-91%, and embed the
message on all pixels that are not damaged. The recovery
accuracy increases as the iteration numbers increases. Due
to limitations in learning performance that the message con-
straint cannot be completely satisfied. The actual embedding
capacity is not high. In Fig.26 (d), the recovery accuracy [94]
increases as the number of training steps increases. After
about ten epochs (every epoch has 633 steps), the recovery
accuracy rapidly increased to a higher level.
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C. ROBUSTNESS
In the steganography by cover synthesis, such as [19]
and [95], [121], the message is hidden in the transform
domain of the generated image, so that it has certain robust-
ness. Furthermore, varying the types of image distortion
during the training process, [92] and [93] show that steganog-
raphy model can learn robustness to a variety of different
image distortions. In this section, we only test the robustness
of [19] and [121] with common image attacks. We consider
applying four typical image attacks. These attack conditions
are listed as follows.

C1. Contrast enhancement by multiplying the intensity of
the image pixels with factors of 1.1 and 1.5

C2. Gaussian noise addition (variance 0.01).
C3. Salt noise added (density 0.05).
C4. JPEG compression with varying quality facts (q.f. 90,

q.f. 60 and q.f. 30).
We use theG network to generate 5,000 stego images based

on the CIFA-100 dataset and apply the four typical methods
to attack each group of images. Then, we give the accuracy
of the message extraction after the attack, for Hu et al. [19],
the result is shown when parameter σ is 3, and δ is 0.001.
A group of results is shown in Table 6.

TABLE 6. Extraction accuracy of an extractor for the attacked stego
images.

From the experimental results, these methods are robust to
all four attacks, especially the method of Zhang et al. [121],
able to resist jpeg compression and contrast enhancement.
The model has no errors at a jpeg compression factor of 90,
and brightness changes at an intensity of 1.1 times because the
message relies on the recognition of image semantic labels
by neural networks. The neural networks have good fault
tolerance. When inputting fuzzy or incomplete information,
a suboptimal approximate solution can be given to achieve
the correct identification of incomplete input information.
The noise extracted from the image has no clear semantic
meaning. However, it can be seen from the experimental
results that the noise can be resistant to contrast enhancement,
but is less robust to JPEG compression. This is consistent
with our idea of treating this method as a kind of information
hiding in the transform domain.

VIII. PROSPECTIVE AND CONCLUSION
A. PERSPECTIVE
This paper reviews recent researches on image steganogra-
phy based on GAN. At present, the cover modified method
has distinct advantages in terms of embedded capacity, anti-
statistical analysis, and message capacity. The performance
of GAN-based steganography is far from that of traditional
methods in many aspects. We believe that the methods based
on GAN will be a promising field of research in steganogra-
phy. At present, for the GAN-based steganography method,
the following aspects need to be further improved.:

1) STEGANOGRAPHY CAPACITY
In GAN-CSY, such as [96], the message extraction is per-
formed directly on the image pixel in the spatial domain. The
instability of generated pixels leads to the low accuracy of
message extraction. The message in method [19], [95] does
not exist on the pixel value itself but exists as a category
attribute [95] or a noise vector [19]. The disadvantage is
that the embedded capacity is low. Improvement of message
stability or embedding capacity will be the focus of future
research.

2) IMAGE EVALUATION
It is tough to quantify the quality of synthetic images, in the
field of image synthesis, the evaluation criteria of the gen-
erated images are not sound enough. Some methods using
manual evaluation are subjective and lack of objective eval-
uation criteria. The current evaluation criteria are mainly
IS (Inception score) and Frechet Inception Distance (FID).
These methods only consider the authenticity and quality of
the image. These indicators are still an ongoing important
research area.

3) STEGANALYSIS
Under the framework of GAN-CSY, the task of steganalysis
is divided into two phases. The first phase is the image
forensics, which will tell us whether or not the image is
fake. The second stage is image steganalysis, which detects
whether or not the generated image contains a secret message.
Currently, the images generated by GAN are indistinguish-
able for human vision. Many image forensics methods can
be used to distinguish between natural cover images and
generated stego images. In the future, using a computer to
synthesize images, videos, or other media will be common.
Hiding messages in the generated images will become a new
type of covert communication means. In this case, it can be
difficult to tell whether the generated image is stego or not.
Improving the performance of steganalysis will be one of the
potential areas for future research.

B. CONCLUSION
With the generative models, image steganography began to
mergewith the field of computer vision. Traditional computer
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vision researchers have also started to study image steganog-
raphy [92]. A combination of the research fields broadens
the areas of image steganography. Besides, the introduction
of GANs into the research ideas of information hiding will
also have a significant impact on the development of other
information hiding technologies, such as digital watermark-
ing technology.

In this paper, we review image steganography with GAN.
Firstly, we give the principle and characteristics of steganog-
raphy. Then the traditional image steganography method and
the problems are discussed. We also introduce the principle
and some improvement models of GAN. This paper focuses
on the GAN-based steganography with cover modification,
cover selection, and cover synthesis. We analyzed the differ-
ent roles of GAN in these methods. The GAN-based cover
modification methods use GAN to construct the cover image
or a modification matrix. The GAN-based cover selection
method has a low embedding capacity and requires a secret
channel to pass the key. The GAN-based cover synthesis
methods directly use the generator trained by GAN to obtain
the stego images. The GAN-based cover synthesis methods
are divided into three categories, unsupervised, semi-
supervised, and supervised methods for discussion. We also
give evaluation criteria of GAN-based steganography with
secrecy, capacity, and robustness. In conclusion, for the long-
term development of image steganography, using GAN to
enhance the abilities of steganographer to design a more
safety and efficiency methods is a question worth studying.
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