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ABSTRACT CAPTCHA, or Completely Automated Public Turing Tests to Tell Computers and Humans
Apart, is a common mechanism used to protect commercial accounts from malicious computer bots, and the
most widely used scheme is text-based CAPTCHA. In recent years, newly emerged deep learning techniques
have achieved high accuracy and speed in attacking text-based CAPTCHAs. However, most of the existing
attacks have various disadvantages, the attack process made high complexity or manually collecting and
labeling a large number of samples to train a deep learning recognition model is time-consuming and
expensive. In this paper, we propose a transfer learning-based approach that greatly reduces the attack
complexity and the cost of labeling samples, specifically, by pre-training the model with randomly generated
samples and fine-tuning the pre-trained model with a small number of real-world samples. To evaluate our
attack, we tested 25 online CAPTCHAs achieving success rates ranging from 36.3% to 96.9%. To further
explore the effect of the training sample characteristics on the attack accuracy, we elaborately imitate some
samples and apply a generative adversarial network to refine the samples, sequentially we use these two
kinds of generated samples to pre-train the models, respectively. The experimental results demonstrate that
the similarity between randomly generated samples and elaborately imitated samples has a negligible impact
on the attack accuracy. Instead, transfer learning is the key factor; it reduces the cost of data preparation while
preserving the model’s attack accuracy.

INDEX TERMS CAPTCHA, security, deep learning, transfer learning.

I. INTRODUCTION
Since the text-based CAPTCHA scheme was first introduced,
it has been widely used to distinguish malicious bots from
humans [1]. A text-based CAPTCHA requires a user to deci-
pher letters or Arabic numerals embedded in an image and
then re-enter them to pass the test. This simple structure
makes CAPTCHAs intuitive for users worldwide. As one
of the most important tools for preventing computer attacks,
the security aspect of text-based CAPTCHAs has attracted
considerable attention from researchers and industry prac-
titioners. To improve security, researchers have introduced
numerous resistance mechanisms that enhance CAPTCHA
complexity, including background interference, noise lines,
and geometric alterations [8]. However, with the advent of
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deep learning techniques, all these defense mechanisms have
been overcome [2], [3], [6], [7], [9].

To attack text CAPTCHAs, most of the previous attacks
have adopted a three-step strategy: preprocessing, segmen-
tation and recognition. The preprocessing operation involves
extra calculation cost and effort, and the segmentation-based
methods do not perform well in terms of accuracy and effi-
ciency. Moreover, deep learning techniques require a large
number of training samples, but manually collecting and
labeling large numbers of samples is labor-intensive and
inefficient. Therefore, some researchers have attempted to
train models using synthetic data [20], [29]. However, mim-
icking real-world CAPTCHA schemes is also complex, and
time-consuming because of the requirement of background
recovery, font matching, features adjustment, etc. Further-
more, the models trained on synthetic data are usually unable
to achieve considerable accuracy on the real-world attacks.
In 2018, Ye et al. [9] combined a generative adversarial
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network (GAN) [19] and transfer learning to address the limi-
tations of current deep learning attacks. Their method was the
first to adopt a GAN to break text-based CAPTCHAs. How-
ever, that work contains three main limitations. First, using
SimGAN [10] to fine-tune the samples greatly increases
the computational complexity. Second, it uses a compli-
cated method to remove image noise, which is also time-
consuming. Third (and most important), the impact of using
a GAN on the attack success rate was not discussed. Briefly,
the existing methods either have high complexity in the
image-processing stage or requires a large effort on training
the recognition engine.

In this paper, we propose a simple, generic and efficient
transfer learning-based method that can greatly decrease the
complexity in breaking text CAPTCHAs. Unlike previous
works that require manually labeling a large number of real
samples or elaborately imitating the real CAPTCHAs, our
attack requires only randomly generated samples and a small
set of real samples. We achieve this by using randomly gen-
erated synthetic images to pre-train the model and then using
a few real labeled CAPTCHAs to fine-tune the model. The
recognition engine is a combination of a residual network
(ResNet) [12], a recurrent neural network (RNN), and an
attention mechanism.

To evaluate the effectiveness of the attack, 20 Roman-
character-based CAPTCHAs and 5 Chinese CAPTCHAs
found on popular websites, such as Google, Apple,
Wikipedia, Baidu, Alipay, and Sina, were tested. With
transfer learning, only 500 (1,000 for the Chinese scheme)
real samples from each scheme are used to fine-tune the
base-solver model. The proposed attack achieves high suc-
cess rates—ranging from 36.3% to 96.9%. The experimental
result shows that our approach reduces the crack complexity
while remaining high accuracy, and it also demonstrates
that transfer learning is a generic and efficient strategy for
breaking text-based CAPTCHAs.

To further study the effect of the similarity between syn-
thetic data and real-world samples on the attack accuracy,
we used carefully simulated samples and GAN-based refined
samples to pre-train the model. Seven targeted schemes were
chosen as representatives. The results show that the level of
similarity between the synthetic and real samples has only
a small impact on attack accuracy and that using a GAN
to imitate real samples has little influence on improving the
attack success rate.

The remainder of this paper is organized as follows.
In Section II, we survey prior attacks and introduce back-
ground information about transfer learning. Section III
includes not only our overall cracking idea and the details
of our attack scheme but also reports the attack results using
randomly generated samples. In Section IV, we instead use
elaborately imitated samples and GAN-based generated sam-
ples to evaluate our attack. We also conducted a further study
on the similarity between the synthetic data and the real-world
samples. In section V, the results of a comprehensive com-
parison between our attack and prior works and the analysis

are provided. Then, we experimentally discuss the effects of
some CNN models and how to optimize the training speed;
also, we further analyze the impact of using different training
strategies. Finally, we summarize our work in Section VI.

II. BACKGROUND
A. PRIOR ATTACKS
In large numbers of commercial websites, a CAPTCHA
scheme is the most prevalent method used for protection
against malicious bots. However, many of these text schemes
have been successfully broken by the attacks of prior works,
which has spurred the development of CAPTCHA designs.
Although many other CAPTCHA schemes have been pro-
posed, such as image-based schemes, audio-based schemes,
and game-based schemes, text-based CAPTCHAs are still the
most widely used type because of their intuitiveness and low
deployment costs.

The early text-based CAPTCHAs were simple and dif-
fered only in character size and rotation angle; consequently,
most of them were easily recognized using optical charac-
ter recognition (OCR) engines [13]. Later, designers added
more security features to text-based CAPTCHAs; however,
the advances in traditional machine learning techniques
quickly broke these schemes as well. In 2003, Mori et al.
applied the shape context matching-based method to break
two early simple schemes named Gimpy and EZ-Gimpy,
achieving success rates of 33% and 92%, respectively [14].
In 2006, using pattern recognition algorithms, Yan et al.
successfully brokemost of the CAPTCHAs at CAPTCHAser-
vice.org [16]. In 2008, Yan’s work applied amachine learning
mechanism to recognize segmented CAPTCHA charac-
ters [4]. Using a K-Nearest Neighbors (KNN) model, Gao’s
team proposed a generic attack in 2016 that achieved success
rates of between 5% and 77% on Google reCAPTCHA,
Yahoo! and Microsoft designs [18]. Undeniably, traditional
machine learning algorithms are able to successfully attack
some simple schemes. However, most of the traditional attack
methods are very slow. The numerous image processing
details they required also made them difficult to implement.
In addition, they are unsuitable for attacking difficult schemes
that feature complex resistance mechanisms.

As deep learning techniques developed and achieved great
results in image classification tasks, neural networks (NNs)
were also adopted in the CAPTCHA field; however, training
an efficient neural network requires a certain number of
labeled samples. Thus, some works used manually labeled
collected CAPTCHAs to train their models. Using LeNet
for recognition, Chellapilla attempted two-step attacks (seg-
mentation and recognition) to study the security of some
typical CAPTCHAs [15]. For each scheme, they labeled
1,800 CAPTCHAs for training. In 2013, using their novel
segmentation algorithms and a convolutional neural network
(CNN), a model by Gao et al. was able to attack a fam-
ily of hollow CAPTCHA schemes [7]. However, their seg-
mentation process was highly complex, and they used a
manually labeled sample set to train the CNN. In 2017,
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George et al. [32] proposed a recursive cortical network
(RCN)-based approach to attack four CAPTCHA schemes.
However, their attack required clean individual characters,
which also increased the difficulty. In 2018, [3] proposed a
deep-learning-based three-step attack. To obtain an efficient
model, they used 2,400 manually labeled samples from each
scheme for training. Most recently in 2019, Zi et al. [24]
proposed an end-to-end attack to solve text CAPTCHAs with
a deep learning network; but they trained the recognition
models with 10,000 manually labeled CAPTCHAs for each
scheme. In particular, to obtain higher accuracy in Google
reCAPTCHA, they even used 200,000 manually labeled sam-
ples for training the model, which took a lot of time and labor
costs.

Using real-world labeled samples to train the model is
the most effective way, but training deep-learning networks
requires a large number of labeled samples that are some-
times difficult to collect, and manual labeling is expen-
sive and time-consuming. Moreover, when the CAPTCHAs
expand their character classes, for example, by adopting
large-alphabet languages such as Korean and Chinese, even
more samples are required to train the model, which increases
the labeling cost. Due to the difficulty of collecting and
manually labeling real CAPTCHAs, it has become a trend
to use synthetic samples to break text-based CAPTCHA.
In 2015, Stark et al. [33] introduced a simple method to
recognize CAPTCHAs using synthetic training data. How-
ever, their training process required that new samples be
continuously added to the training dataset, which is com-
plicated and inefficient. Besides, their approach applied to
fixed-length CAPTCHAs only. In 2017, Gao’s team proposed
another deep-learning-based method that used an imitator
to generate CAPTCHAs for attacking Microsoft’s two-layer
hollow scheme [2]. Later, Le et al. [20] used synthetic
data to train the recognition model and achieved good suc-
cess rates on their synthetic data, ranging from 91.05% to
99.8%, but their model performed poorly on the real-world
CAPTCHAs. While using synthetic data indeed reduces the
cost of manually labeling samples, the traditional image gen-
eration algorithms used to imitate real-world samples also
introduce extra time and labor costs. Therefore, attackers
must create diverse samples with different character fonts,
sizes, rotation angles, backgrounds, and so on to make
their synthetic samples as similar to real-world ones as
possible.

To solve the sample simulation problem, in 2018, [9] first
utilized SimGAN [10] to implement a CAPTCHA synthe-
sizer that could generate synthetic CAPTCHA automatically.
They also used a specific GAN named Pix2Pix [28] to train
a preprocessing model to remove security features and stan-
dardize the font style. In conjunction with transfer learn-
ing, their attack achieved good success rates, ranging from
3% to 100% on 33 text-based CAPTCHAs. However, their
work involves training two individual GANs, which greatly
increases the time and computational cost. Adjusting the
parameters for the two GANs to closely imitate real samples

also requires extra labor and time. Last but not least, they did
not report the effects of using the GANs in their work. Thus,
it is still unclear whether using aGAN to generate CAPTCHA
samples can indeed improve the attack results.

In summary, regardless of which types of resistance mech-
anisms are used in text CAPTCHAs, some approaches exist
that can attack them successfully. However, the prior attacks
have various drawbacks with regard to attack efficiency and
cost.
• Image preprocessing and segmentation are complex
operations that have a great impact on the subsequent
recognition step.

• Manually labeling samples is expensive and time-
consuming. (especially for large-alphabet schemes)

• Generating synthetic samples requires careful adjust-
ments that involve additional time and labor costs.More-
over, training GANs induces yet more costs, and the
effects of using a GAN are still unclear.

Thus, an approach is expected to solve these defects while
achieving low-cost and efficient attacks, and this is the nov-
elty and motivation of our work.

B. TRANSFER LEARNING
In many machine learning and deep learning tasks, it is
assumed that the training and test data should exist in the
same feature space and have a similar distribution. However,
in many real-world cases, that assumption cannot be satis-
fied because collecting sufficient training data for machine
learning or deep learning models may be difficult (labeling
may be expensive). Under this circumstance, researchers seek
to find substitute samples that are similar to the source data
to train their models and complete their tasks. In this way,
the knowledge learned from the substitute data can be applied
to the source data, which underpins the concept of transfer
learning.

The fundamental motivation for transfer learning was first
discussed in 1995 with a focus on ‘‘learning to learn’’,1 and it
subsequently attracted more attention in different tasks such
as classification, object localization, and clustering problems.
It is a promising strategy for the tasks that lack sufficient
samples. For example, suppose we want to classify cats of
different breeds, but we only have sufficient training data
from ImageNet, which contains some cats. We could train
a base model on the ImageNet dataset and later retrain the
model using a few detailed cat data to obtain a more accu-
rate model. In transfer learning applications, we define the
source data that are sufficient and related to the target as
the source domain and the task when training the source
domain as the source task. Naturally, the other important
definition in such applications is the target domain and target
task, which respectively indicate the domain-specific data
used for training the model to achieve the final goal. In this
definition, transfer learning uses a dual learning approach that

1http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/
transfer.workshop.1995.html.
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TABLE 1. A survey of text-based scheme targeted by our work.

first attempts to learn the knowledge from the source domain
and then to retrain the model for detailed parameters in the
target domain to finally complete the target task [11].

III. PROPOSED ATTACK
In this section, we introduce our attack based on simple
synthetic data and transfer learning. To evaluate the effec-
tiveness of our attack, we tested our approach on 25 real-
world text CAPTCHAs with randomly generated samples,
including both Roman-character-based schemes and Chinese
schemes.

A. DATA PREPARATION
To test the feasibility of the proposed attack, we select
25 targeted CAPTCHAs, all of which are deployed by highly
popular websites as ranked by Alexa. As shown in Table 1,
each scheme has distinct security features, and our tar-
geted schemes cover almost all the resistance mechanisms
employed in text CAPTCHAs.

1) ROMAN-CHARACTER-BASED SCHEMES
Roman-character-based schemes are the most widely used
type of CAPTCHA because they are universal for worldwide
use. In this study, we selected 20 Roman-character-based
schemes deployed by famous websites worldwide, including
Google, Microsoft, Wikipedia, Apple, Baidu and so on. For
each scheme, we collected 1,500 real CAPTCHAs from the
websites. Note that only 500 of them are used for fine-tuning,
and another 1,000 are applied to calculate the test accuracy,
which is not required in the real attack. Each scheme uses a
different character dictionary; we found a total of 62 charac-
ters, including 52 English letters and 10 digits.

2) CHINESE SCHEMES
To expand the solution space of text CAPTCHAs,
many schemes have utilized large-alphabet languages for
CAPTCHA designs. For example, Chinese has over 3,000
commonly used characters, many more than the Roman
alphabet’s 62 characters. Moreover, most Chinese characters
consist of integrated Chinese radicals, which alsomakes them
more difficult to recognize than Roman characters [5]. In fact,
some prior works have analyzed the significance of and
worked partly with Chinese schemes [3], [5], [22]. To investi-
gate the potential of our attack, we also evaluated our transfer-
learning-based attack on five Chinese CAPTCHA schemes
deployed by five well-known Chinese commercial websites.
For each scheme, we collected 2,000 samples in total, half of
whichwere used for fine-tuning, and the other half for testing.
Each CAPTCHA image was labeled manually. In the Chinese
schemes, the total number of character classes was 3,626.

B. ATTACK DETAILS
As Fig. 1 shows, our attack consists of three parts:

Step 1. CAPTCHA generation. This step uses image-
processing algorithms to generate CAPTCHAs unrelated to
the targeted scheme for training our recognition network.
In our attack, all the pre-training samples are generated com-
pletely randomly without any special design, which is easy to
implement and greatly reduces the effort taken in gathering
training samples.

Step 2. Pre-training. After generation, the synthetic
CAPTCHAs are input directly into the recognition engine
without any preprocessing to train a base model. After the
pre-training, we adopted the trained model as the base model
of all the subsequent schemes.
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FIGURE 1. The overview of our attack approach.

Step 3. Fine-tuning. Finally, for each scheme, we used
500 real samples to fine-tune the base model. This stage was
achieved by retraining the base model using transfer learning
for the purpose of updating the parameters corresponding to
the real features. Note that we only used domain adaptation
of transfer learning, and the model retained consistency in the
pre-training and retraining stages.

In the following, we explain the details of our attack.

1) CAPTCHA GENERATION
To reduce the costs associated with manual labeling,
in this study, we also generated synthetic CAPTCHAs as
pre-training data. All of the training data for the base model
is generated by simple image processing algorithms.

As Fig. 2 shows, all the pre-training samples are generated
with black characters on a pure white background. Unlike the
original CAPTCHAs, we did not add any security features
to the generated CAPTCHAs, e.g., no noise lines, distortion,
overlapping, and so on. Instead, the samples were generated
in the simplest manner to reduce the generation cost since
this type of CAPTCHA is easy to implement and requires
no special effort. Note that our generated CAPTCHAs are
completely unrelated to targeted CAPTCHAs, and they are
not similar to any of the targeted schemes.

For the Roman-character-based schemes, the length of the
text string is set to between 4 and 10; the fonts are randomly
selected from the font library, including both regular and
hollow styles; all the images are the same size and the text
rotation angle is set from minus 45 to 45 degrees. We gen-
erate 200,000 images for base model pre-training. For the
Chinese schemes, we set the string length between 2 and 5;

FIGURE 2. Some examples of our randomly generated CAPTCHAs for
training the base model: (a) Randomly generated Roman-character-based
CAPTCHAs; (b) Randomly generated Chinese characters.

selected themost commonly used fonts in the font library; and
randomly generated 500,000 images. All the samples were
resized to 500× 150 and can be generated within an hour in
Python using an image processing framework named Pillow
on a desktop with Intel Core i3 CPU.

2) PRE-TRAINING
To recognize the entire character string in one step, a com-
bined model [23] consisting of a CNN and a long short-term
memory (LSTM) model [27] was utilized as the recognition
engine. The CNN is responsible for extracting the feature vec-
tor of the CAPTCHA image. For this study, we chose ResNet
v2-101 [12] as our CNN, which is designed to solve the
degradation problem that occurs as network depth increases.
The performance of other CNN structures was also evaluated,
such as Inception v3 [25] and SeNet [26]; however, ResNet
performs better than those two candidates. The details are
described in Section V-B.

The LSTM converts the feature vectors extracted by
CNN into a single text string; it can be considered as a
character-level language model. The main operations are
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applying input and output gate units and memory cells to
learn to open and close access to the constant error flow.
Decisions are made using the last states in the memory cells.
In this experiment, the number of LSTM cells depends on the
maximum string length of the targeted CAPTCHA.

To make the model ‘‘location-aware’’, we also utilized a
spatial attention mechanism following [23]. The attention
mechanism allows our model to tackle text strings of different
lengths without segmentation. Spatial attention models are
typically used for OCR prediction based on the RNN state,
as in [30]. They combine image content and spatial informa-
tion to determinewhere the network should look. In this work,
we utilized the same attention model as in [23] to enable the
network to locate the characters automatically.

We trained the model by maximizing∑T
t=1 log p (yt |y1:t−1, x), where x is the input image, yt is

the predicted label for location t , and T ranges from 2 to 10
(indicating the length of the string). The model is optimized
by a stochastic gradient descent (SGD) strategy with an
initial learning rate of 0.004, weight decay of 0.00004 and
momentum of 0.9. We finally obtained one base model for
Roman-character-based schemes with 20 epochs and one for
Chinese schemes with 30 epochs.

3) FINE-TUNING
In the last step, we use transfer learning to fine-tune the
pre-trained model parameters with few real CAPTCHAs.
To further illustrate the fine-tuning process, we first provide
mathematical justifications for how the mechanism of trans-
fer learning works. In transfer learning [11], domain D is
denoted as D = {X ,P(X )}, where X is the feature space
and P(X ) is a marginal probability distribution. For a specific
domain, a task can be defined as T = {Y , f }, where Y
denotes the label space and f denotes the objective predictive
function. In general, a complete transfer learning process
involves one source domain (DS ) and one target domain (DT ),
which correspond to one source task (TS ) and one target
task (TT ), respectively. From the knowledge in DS and TS ,
transfer learning aims to help improve the learning of the
target predictive function f in DT . In our CAPTCHA solver,
f denotes the predictive function in ResNet, and DS and DT
are as follows:

DS =
{(
xS1 , yS1

)
, . . . ,

(
xSnS , ySnS

)}
(1)

DT =
{(
xT1 , yT1

)
, . . . ,

(
xTnT , yTnT

)}
(2)

Regarding the training data, xSi ∈ XS is the synthetic
CAPTCHA and yTi ∈ YT is the corresponding CAPTCHA
label, a character string. Here, xTi and yTi have the same
meanings as in the real CAPTCHAs. Note that all the labels
remain the same in DS and DT (62 or 3,626 characters), but
the feature spaces are different because the features of the
synthetic and real CAPTCHAs have different details.

To fine-tune the model, for each scheme, we restored the
pre-trained model and all the layers were fixed unchanged
before updating the prediction model. The architecture of the

TABLE 2. Attack results.

network was exactly the same as the pre-training stage. All
of the parameters also remained the same and only the epoch
for each scheme was turned to 1. For each Roman-character-
based scheme, 500 manually labeled real samples were used.
Considering that the Chinese CAPTCHAs feature a larger
character set than do the Roman CAPTCHAs, we adopted
1,000 real-world manually labeled Chinese CAPTCHAs per
Chinese scheme.

Both pre-training and fine-tuning were implemented on
the called TensorFlow deep learning framework. The models
were trained on a computer equipped with an Intel Core
i7 CPU (1.80GHz), an NVIDIA GeForce GTX 1080 GPU,
and 16 GB of RAM. Training one epoch takes nearly 15 min-
utes.

C. ATTACK RESULTS
We implemented our attack and tested it on all the targeted
schemes. For each scheme, 1,000 real-world CAPTCHAs
were tested using the pre-trained and fine-tuned models,
respectively. We summarize the resulting success rates and
test speeds in Table 2.

1) SUCCESS RATE
As shown in Table 2, before fine-tuning the base model with
real CAPTCHAs, the success rates of the targeted schemes
are extremely low on both Roman-character-based and Chi-
nese schemes. Most of the tested schemes achieved suc-
cess rates of 0%—only four were above 1%. This demon-
strates that training using only the randomly generated data
is not feasible. However, after using a small number of real
CAPTCHAs to fine-tune the base models, our approach was
able to attack all the targeted schemes with considerable
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FIGURE 3. The loss (training VS validation) and accuracy (training
VS validation) of retraining stage.

success rates. For more than half of the schemes, the attack
achieved a success rate of over 90%. On reCAPTCHA, which
has historically proven to be a difficult scheme [24], the fine-
tuned model also achieved good results—51.9%. The low-
est accuracy was achieved on the Dajie scheme of 36.3%
(a Chinese scheme): this scheme is the most difficult because
it hasmany security features and over 3,000 classes. However,
the success rate on Dajie also satisfies the criteria commonly
used in the CAPTCHA community—higher than 1% [31],
which means that the attack was successful.

2) ATTACK SPEED
Finally, regarding runtime speed, our model requires approx-
imately 0.02 seconds to test one CAPTCHA, which is com-
pletely acceptable because it satisfies the commonly used cri-
terion in [31]. The results suggest that our approach executes
in real time.

From the retraining process, we can argue that the transfer
learning can help improve attack accuracy and accelerate the
training stage. Taking Baidu_1 as an example, we recorded
the loss and accuracy of training and validation, respectively,
and showed them in Fig. 3. It is clear that when the number
of training iterations is increased to 150, the loss is basically
stable (1 epoch includes 1000 iterations).

To sum up, first of all, our attack is clearly extremely easy.
The proposed approach requires neither preprocessing nor
CAPTCHA segmentation. It achieves one-step recognition
and is an end-to-end attack because when a new CAPTCHA
comes, it can recognize all the characters directly. It is also
suitable for solving variable-length strings. Furthermore, our
method is very low cost in that we can attack any text-based
CAPTCHAby using only a small number of real labeled sam-
ples, and mimicking those samples is not necessary; instead,
we simply generate images with random fonts in a simple
style. Moreover, our attack is undoubtedly efficient. The eval-
uation of the targeted 25 schemes all achieved considerable
success rates at a very fast speed. In addition, this is the first
work to use transfer learning to attack Chinese CAPTCHAs,
and the results showed that our attack is also applicable to

large-alphabet CAPTCHAs. The results also demonstrate that
transfer learning is a promising way of to enhance attack
efficiency. In brief, this result not only helps make our attack
extremely low-cost but also greatly reduces the complexity
and effort for attacking text CAPTCHAs—and once again
demonstrates the insecurity of text CAPTCHAs.

IV. THE EFFECT OF THE SIMILARITY OF SYNTHETIC
SAMPLES
Based on the results in the last section, it is clear that even
when pre-trained with randomly generated data, our attack
achieved high success rates after transfer learning. However,
most prior works that used synthetic data spent consider-
able effort to simulate real CAPTCHAs: they even applied
deep-learning-based generation mechanisms to assist with
sample generation. Therefore, in this section, we further
analyze the impact of the similarity of pre-training data.
To explore whether the similarity of the training samples
affects the attack accuracy, we first use traditional (non-
deep-learning) image generation algorithms to carefully sim-
ulate each scheme and generate corresponding samples.
Then, we utilize a GAN mechanism to refine our imitated
CAPTCHAs to make them more similar to real CAPTCHAs.
Finally, we use the simulated data and the GAN-based refined
data to train the base model.

A. MOTIVATION
To train an effective model, the ideal solution is to train
the network with the original dataset. However, in reality,
many factors affect the difficulty of obtaining sufficient quan-
tities of labeled data. In such cases, we can simulate the
original data to generate training samples. As is known,
highly similar training samples will lead to good perfor-
mance. However, generating synthetic samples that have
high similarity requires substantial human effort and time.
Therefore, Ye proposed a GAN-based attack in [9] for text
CAPTCHAs, claiming that they could use SimGAN to refine
synthetic CAPTCHAs, making them highly similar to real
CAPTCHAs. However, they did not verify this claim through
experiments.

In this paper, to verify whether training data similarity
substantially influences the results of transfer-learning-based
attacks, we also generated samples similar to real-world
CAPTCHAs and employed SimGAN [10] to make the visual
characteristics of our simulated samples more similar to real
data. Then, we test the targeted schemes using base models
trained with the simulated samples and fine-tuned with a few
real CAPTCHAs.

Our experiments were intended to answer two main ques-
tions:
• Does the similarity between pre-trained data and origi-
nal data have a large impact on transfer-learning-based
attacks (including ours and Ye’s)?

• Is it truly practical to use a GAN to assist with sample
generation?Moreover, is it truly necessary to expend the
effort to closely simulate real CAPTCHAs?
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FIGURE 4. Examples of real and imitated targeted CAPTCHAs.

B. ATTACK WITH SIMULATED DATA
1) SIMULATING REAL CAPTCHAs
We first generated 25 types of CAPTCHAs by imitating real
samples. For each targeted scheme, we observed the security
features and tried our best to generate CAPTCHAs that were
visually similar to the real CAPTCHAs. Our generation pro-
cess is the same as in [24]. Fig. 4 shows some examples of
the real data and our generated data for all the schemes.

For each Roman-character-based CAPTCHA scheme,
we generated 10,000 imitation samples for training and
another 1,000 for validation. Then, we mixed all the training
and validation samples together to train one base model on
20 targeted schemes. For each Chinese scheme, we generated
100,000 imitated CAPTCHAs and then mixed them all to
train a base model.

2) ATTACK RESULTS WITH SIMULATED DATA
In this experiment, the same 1,000 real-world CAPTCHAs
were tested for each scheme as in Section III. Table 3 shows
the results achieved by the pre-trained and fine-tuned models,
respectively.

As Table 3 shows, when using our elaborately imitated
samples without fine-tuning, we were able to successfully
break most of the targeted schemes according to the criteria
proposed by [31]. However, for some complex schemes such
as Douban, QQ, and Wiki, the success rates were extremely
low. For example, the success rate of our scheme on Google
was still zero. However, after using a small number of real
CAPTCHAs to refine the base model for each scheme,
the success rates increased rapidly. Using the fine-tunedmod-
els, our attack achieved success rates of over 90% on more
than half the targeted schemes.

C. ATTACK WITH GAN-BASED REFINED SAMPLES
1) USING SimGAN TO REFINE THE SIMULATED SAMPLES
In this experiment, we also used SimGAN to refine
the synthetic samples. Fig. 5 shows an overview of the
SimGAN-based generation method. As proposed in [10],
SimGAN learns from simulated and unsupervised images
through adversarial training, where the goal is to improve
the realism of synthetic images. It uses an adversarial loss

TABLE 3. Attack success rates with simulation data.

FIGURE 5. The training process of our GAN-based refining model.

to make the refined images indistinguishable from real ones
with a neural network as discriminator. To preserve the anno-
tations of synthetic images, the adversarial loss was com-
plemented with a self-regularization loss to penalize large
changes. Moreover, a fully convolutional neural network was
used. It operates on a pixel level and preserves the global
structure, thus the image content was not modified holisti-
cally. To obtain the most accurate synthetic data, we chose
to terminate synthesizer training when the discriminator fail-
ure rate for distinguishing real from synthetic CAPTCHAs
exceeds 95%—the same as in [9].

Five Roman-character-based schemes and two Chinese
schemes from Table 1 were selected as representatives
because they include different security features. For each
scheme, we utilized the GAN to refine the synthetic
CAPTCHAs generated in the last section. To further
reveal the difference between samples refined by the GAN
model with different numbers of iterations, the samples
refined by SimGAN [10], which was trained in 2,000,
5,000, and 8,000 steps, respectively, were used to train
the base model. Note that during this period, the base
model of each scheme was trained separately rather than all
together.
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FIGURE 6. Changes in the sample refined by SimGAN.

FIGURE 7. Fine-tuned CAPTCHAs by the refiner under different numbers
of training iterations.

2) ATTACK RESULTS WITH REFINED DATA
Fig. 6 detailedly shows the changes in the images before
and after refined. The GAN model changed the color of the
generated CAPTCHA or refined the pixel details. This result
demonstrates that using a GAN can indeed refine the tiny
details of the pixels of generated CAPTCHAs to make them
more accurate and increase their similarity to real samples.

Fig. 7 displays the refined results by the SimGAN under
different numbers of training iterations. Obviously, for most
schemes, the images vary little in visual characteristics.
Before 10,000 training iterations, the generated CAPTCHAs
change at the pixel level to become increasingly visually
similar to real CAPTCHAs. However, after the number of
training iterations increases beyond 10,000, the CAPTCHA
samples become blurry. This result occurs because when the
training iterations increase considerably, the model changes
more pixels from the original image. For the Baidu scheme,
the CAPTCHAs obviously change visually. Therefore, in our
evaluation, we used only the data refined by GAN models
trained with no more than 10,000 steps.

The attack results with the refined data are shown
in Table 4. There are two groups of success rates. The first
group was achieved by pre-training the base model with
refined samples for different numbers of training steps. The
other group of results were achieved by the fine-tuned mod-
els. The numbers in the second sub-row denote the training
steps used in SimGAN to refine the training data. In summary,
these success rates were achieved by a pre-trained model
with refined CAPTCHAs and a fine-tunedmodel with refined
CAPTCHAs. The fine-tuned model was trained on the same
set of real CAPTCHAs as in the last section.

TABLE 4. Attack results achieved by GAN-based generated samples.

As shown in Table 4, for all the schemes, when the training
data are refined by SimGAN, the success rates do not obvi-
ously increase over those of the pre-trainedmodels: the values
are all similar to the success rates achieved by the pre-trained
model evaluation with simulated data in Section IV-B. How-
ever, all the fine-tuned models achieved great increased suc-
cess rates. We infer that the GAN did not help change the
essential features of the generated samples, suggesting that
even using GAN for refinement, there is also a gap between
the synthetic data and the real data when they are used to train
the models.

D. ANALYSIS
Based on the above experimental results, we can formu-
late exact answers to the questions raised in Section IV-A.
We summarize and analyze our conclusions in the following
section.
• First, the similarity between pre-trained data and origi-
nal data has a very small impact on the transfer-learning-
based attack. Based on our attack results, it is clear that
whether using randomly generated samples or carefully
simulated samples, after fine-tuning by a small set of
real CAPTCHAs, the final model can achieve very high
success rates on all the targeted schemes, including
Chinese CAPTCHAs. We can definitively conclude that
between data similarity and transfer learning, transfer
learning is the true reason why the attack performance is
enhanced rather than the use of a generation mechanism
to optimize the generated samples.

• Second, it is unnecessary to use a GAN or, indeed, pay
much effort to refine the synthetic samples. The reason
can be explained in two aspects. From the time cost
perspective, simulating the real CAPTCHAs is complex,
and matching fonts or recovering backgrounds takes
time to implement or requires labor-intensive processes
to adjust the details. For example, in our experiments
in Section IV-B, it takes approximately two days to
imitate one scheme CAPTCHA. For the Google scheme,
it almost takes five days to adjust the details of the
image tomake it more visually similar to the real sample.
For the GAN-based mechanism, apart from the effort
of rebuilding the model, training a GAN model takes
9.6 hours on average for one scheme, which is also
extremely time-consuming. From the attack accuracy
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perspective, either using the simulated samples or the
GAN-based mechanism, regardless of the number of
iterations the training model is allowed to run, the attack
accuracy was not greatly enhanced. For both experi-
ments, the attack accuracy was notably increased after
the models refined by the real data, which again demon-
strates the significance of transfer learning rather than
generated samples’ optimization.

In summary, these experimental results yield two signif-
icant conclusions. On one hand, the experimental results
further demonstrate that using complex operations and pro-
cesses to create highly similar samples makes no sense from
an improvement viewpoint; thus, it is superfluous. In con-
trast, using transfer learning provides substantial benefits for
training an efficient model. On the other hand, our results
also demonstrate that text CAPTCHAs are no longer secure
because no matter what kind of samples are used, the model,
refined by a small set of real samples through transfer
learning, can achieve high success rates for different text
CAPTCHAs.

V. DISCUSSION
In this section, we first present a comprehensive comparison
with prior works and further explain the superiority of our
attack. Then, to further address the implementation details
of our attack, we analyze the effects of different CNNs and
the impacts of each training step to optimize the training
stage. Finally, we summarize all the strategies that can be
implemented using our approach and discuss the differences
among them.

A. COMPARISON WITH PRIOR WORKS
Many prior works have studied CAPTCHA breaking, and
some of our targeted schemes have also been studied by other
excellent works. In this section, we choose five typical latest
works that were accepted by the top conference or by journals
in the security community and conduct a comprehensive
comparison between our attack and the proposed attacks in
those works. The selected works were published between
2014 and 2019. All of the attacks are compared in multiple
dimensions, such as success rate, process complexity, and
the required number of training data. All the success rates
are shown in Table 5 and the attack processes are shown
in Table 6.

From the attack accuracy perspective, for each scheme,
our success rates are all higher than those in [9]. It is worth
mentioning that our attack achieved a 51.9% success rate
on Google reCAPTCHA, which is widely considered to be
a difficult scheme, but the attack in [9] achieved only 3%.
For the attack process, both their work and ours use transfer
learning for attacking text CAPTCHAs, but their approach
differs from ours in two respects. First, they used two GANs
in their attack to pay effort to sample generation: SimGAN to
refine the synthetic CAPTCHAs and Pix2Pix to pre-process
the synthetics. In contrast, our approach uses only irrelevant

TABLE 5. Comparison between our approach and five prior works [3], [9],
[17], [18], [24]. RI = Results by imitated data; RR = Results by randomly
generated data.

randomly generated CAPTCHAs. As discussed in section IV,
an obvious flaw in using GANs is that it is laborious and
time-consuming and does not pay significant role in accuracy
enhancement. Second, their recognition network is based on
LeNet-5 [21], which cannot recognize variable-length strings,
but our attention-based network can solve variable-length
strings. Overall, our approach achieves higher success rates,
is much simpler, and requires a lower effort.

The success rates in [24] are similar to ours. Their approach
also did not require pre-processing or segmentation and
applied attention mechanism to tackle with variable-length
strings. However, the labeled training-sample numbers in
their method aremuch larger than ours. For each scheme, they
used 10,000 manually labeled CAPTCHAs to train a proper
model. For Google reCAPTCHA, they collected 200,000 real
samples and labeled them to train a more efficient model.
There is no doubt that using real samples is the most effi-
cient strategy; but labeling such large number of CAPTCHA
sample takes a lot of labor and time costs, which is ineffi-
cient from the cost perspective, and this approach does not
work in the case where one does not have access to the
real CAPTCHA system. In addition, they did not evaluate
their attack on real-world large-alphabet text CAPTCHAs,
e.g. Chinese schemes. They trained only synthetic Chi-
nese samples and tested also synthetic CAPTCHAs, which
showed only their deep-learning network capacity but could
not illustrate their approach expandability on large-alphabet
schemes.

The results of our approach compared to those of the other
three works [3], [17], [18] are similar: most of their success
rates are notably lower than ours when attacking the same
scheme. The comparisons are acceptable because all these
works use the image-processing based method to attack the
targeted schemes. The essential traits of these methods are
in three aspects. First, they are complex to implement. For
example, in [18], five individual steps were used in the recog-
nition, whichmakesmuchmore parameters and details for the
readers to perform. Second, the results of the first two steps
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TABLE 6. The attack process comparison between our approach and five prior works [3], [9], [17], [18], [24].

FIGURE 8. Attack results using different CNN models in our approach.

will have a significant impact on the last recognition step so
that much effort is required to optimize the first two steps’
results. In [17], to optimize the segmentation and recogni-
tion results, a large human effort is sacrificed to annotate
segments that have been misclassified, which is a departure
from the original intention of automated cracking. In contrast,
our attack directly recognizes the entire CAPTCHA with-
out any pre-processing or segmentation. Third, the image-
processing based methods are always not generic for various
CAPTCHAs. For instance, different schemes in [3] require

different algorithms and setting parameters to process the
images. The success rate of Wiki in [3] is slightly higher than
ours because they segment the characters individually, which
makes them easier to recognize. Nevertheless, our approach
is still both the simplest and most efficient.

In summary, our proposed approach is by far the simplest
among the existing attacks. It further reduces the complexity
of the attack procedures. From the training data perspective,
it reduces the cost of labeling real samples or the efforts of
imitating real samples. Furthermore, this approach is generic
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FIGURE 9. The success rates achieved with a base model trained with different numbers of epochs and fine-tuned with the same
number of epochs: (a) Roman-character-based schemes; (b) Chinese schemes.

for different text CAPTCHAs, and it ensures comparable
accuracy.

B. OTHER CNN MODEL ALTERNATIVES
In this section, we evaluate the performance of other typ-
ical CNN alternatives, including Inception v3 [25] and
SENet [26], both of which perform excellently on object
recognition and detection tasks. Note that we replace only
the CNN component: the other modules in our recognition
architecture remain the same. In addition, all the experimental
configurations are the same as those reported in Section III.

We depict all the attack results of the three CNNs in Fig. 8.
From the line chart, it is obvious that ResNet outperforms
the other two CNNs on most targeted CAPTCHA schemes.
For most of the schemes, the success rates are very close,
except for Google. For the Google scheme, which is the most
difficult of all the schemes, only ResNet achieves an accuracy
greater than 50%, while the success rates of Inception and
SENet are below 30%. We discuss why the ResNet performs
better than other twomodels for Google reCAPTCHA. In this
paper, we used ResNet-101 with 101 layers, the number of
which is much larger than Inception v3 (47 layers) and SENet
(47 layers (based on Incetion v3)). It makes that ResNet
can extract more advanced features. In addition, ResNet is
constructed by residual mapping, as discussed in [12], which
is easier to optimize than original, unreferenced mapping.

Therefore, we canmake three conclusions. First, regardless
of which of these three CNN models is used for extracting
image features in our approach, the attention-based archi-
tecture can successfully break all the targeted schemes after
fine-tuning the base model. Second, regardless of which
model is used, the overall success rate trends between the
different schemes are highly similar. Thus, different secu-
rity features lead to different levels of difficulty for tex-
tual CAPTCHA. Finally, among the three networks, ResNet
achieved the best performance.

C. TRAINING TIME OPTIMIZATION
To obtain a final appropriate model for CAPTCHA recog-
nition, our CAPTCHA solver is trained in two stages:

pre-training and fine-tuning. This fact is significant when
selecting the number of training epochs: more training epochs
lead to more accurate performance but require more time.
Therefore, in this experiment, we study how the training
time affects model performance. Five representative Roman-
character-based and Chinese schemes were selected for this
experiment.

For the pre-training stage, the synthetic data were trained
in 40 epochs. Fig. 9 shows the test success rates of the
pre-trainedmodels under different epochs. For the fine-tuning
stage, we used the same pre-trained model and then retrained
the model under a different number of epochs for differ-
ent schemes. Because the fine-tuning stage, which learns
detailed features based on the pre-trained model, is much
faster, we trained the real CAPTCHAs using 6 epochs
in total for each scheme. The test results are shown
in Fig. 10.

In Fig. 9, for the Roman-character-based CAPTCHAs,
the test accuracy increased substantially as the training
epochs increased from 1 to 10, while the success rates became
stable after the base-model training epochs exceeded 20.
It is well known that, to some extent, more training epochs
yield more accurate performance; however, more training
epochs require more resources and time. Considering all
20 schemes, 20 epochs were determined for the base model
because the time cost is acceptable, and the performance is
comparable. Since the Chinese CAPTCHAs have a larger
class space, training the base model for 30 epochs is more
reasonable.

Fig. 10 shows the success rates when the same base model
is fine-tuned for different epochs. The results intuitively
show that, regardless of whether the target is a Roman or
Chinese scheme, adding additional fine-tuning epochs does
not significantly improve the success rate. The difference
between the 1-epoch model and the 6-epoch model is small
enough to ignore. Therefore, in our experiments, we chose
1 epoch for the fine-tuning stage. One epoch requires
only approximately 15 minutes to complete on an NVIDIA
GeForce GTX 1080 Desktop GPU, which saves time and is
efficient.

VOLUME 8, 2020 59055



P. Wang et al.: Simple and Easy: Transfer Learning-Based Attacks to Text CAPTCHA

FIGURE 10. The achieved success rates with a fixed base model and a fine-tuned model using different numbers of epochs:
Roman-character-based schemes; (b) Chinese schemes.

D. A DISCUSSION OF DIFFERENT TRAINING STRATEGIES
We have highlighted the performance of transfer learning and
achieved considerable improvement by adopting it. However,
what happens if transfer learning is not applied? In this
section, we survey the results obtained by different training
strategies and discuss the impact of the transfer learning
mechanism.

To show the benefit of using transfer learning, we com-
pare the results with and without transfer learning. There
are seven different strategies in total. Without transfer learn-
ing, there are four groups of results obtained by train-
ing the synthetic CAPTCHAs alone, training the synthetic
CAPTCHAs adjusted by GAN, training the randomly gen-
erated CAPTCHAs alone, and training the real CAPTCHAs
individually. When using transfer learning, we used the first
three groups of generated CAPTCHAs to train the base mod-
els and real CAPTCHAs to fine-tune themodels. Note that the
number of real CAPTCHAs for each scheme in the last four
experiments remained the same (500 in the Roman-character-
based schemes and 1,000 in the Chinese schemes).

For the Roman-character-based schemes, we selected Ali-
pay, Sohu, Baidu_1, 360_1 and 360_2 as representative
because they cover the range of results. For Chinese schemes,
we selected Renmin and Dajie, for which the evaluation
described in Section III achieved the best and worst results,
respectively. All the experimental details were the same
for all seven groups. We summarize all the success rates
in Table 7, where G1, G2, G3 and G4 are the results achieved
by models without transfer learning and represent the success
rate achieved by the models trained with imitated samples,
imitated samples refined by SimGAN, randomly generated
samples, and a few real samples, respectively. The remain-
ing three groups are the results achieved by fine-tuning the
models with transfer learning. G1/4, G2/4, G3/4 denote the
success rates achieved by using G4 to fine-tune models
pre-trained by G1, G2, and G3, respectively.
Table 7 shows that among all the strategies, the results

of the models without transfer learning are not as good as

TABLE 7. Attack results of different strategies.

those with transfer learning. After applying transfer learn-
ing, the success rates on most of the schemes increased
sharply due to the fine-tuning using real CAPTCHAs. This
result illustrates that, without transfer learning, using either
synthetic CAPTCHAs or a few real CAPTCHAs to train a
recognition model is not sufficient.

For the three groups of experiments with transfer learning,
although their results are very similar, the scenarios to which
they were applied are not the same. Using imitation data to
train the base model yields the highest success rates. How-
ever, simulating the CAPTCHAs is relatively complicated
and time-consuming, and it is difficult to adjust the details.
Therefore, this strategy is not suitable for tasks that require
real-time cracking. Nevertheless, it could be used for tasks
that require high precision because this method is the most
accurate. Using GAN-based synthetics is also not suitable
for real-time tasks: this strategy is more complicated and
time-consuming because the GAN model must be trained.
In comparison, using randomly generated samples combined
with a small number of real CAPTCHAs for fine-tuning is
the best choice. This is because the random generation is the
simplest approach, has the lowest cost, and is generic for
all schemes. Moreover, it is suitable for real-time tasks and
achieves good results.

In summary, the results demonstrate that using transfer
learning to combine the benefits of generating CAPTCHAs
and labeling a small set of real CAPTCHAs is the
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optimal choice. Moreover, applying transfer learning to
CAPTCHA-breaking tasks enhances performance without
increasing the time or labor costs.

VI. CONCLUSION
This paper systematically analyzed how to enhance the per-
formance and reduce the complexity and costs of text-based
CAPTCHAs attacks. We proposed a simple, low-cost and
efficient method based on transfer-learning that uses ran-
domly generated synthetic CAPTCHAs to train the base
model and a very small set of real CAPTCHAs to fine-tune
the base model. Our approach results in a high-performance
CAPTCHA solver. Using deep learning techniques, we tested
20 Roman-character-based schemes and 5 Chinese schemes
and achieved remarkably good success rates, ranging from
36.3% to 96.9% at an average attack speed 0.02 seconds per
CAPTCHA. These results show that even on large-alphabet-
based text CAPTCHAs, transfer learning can enhance the
attack performance and reduce the collection and labeling
costs.

To further understand how the similarity of training data
affects the recognition results, we also carefully gener-
ated simulation samples and utilized SimGAN to refine
the initial samples, making them more similar in detail to
real CAPTCHAs. The experimental results demonstrate that
under the transfer-learning attacks, the effort to similarity
enhancement is not necessary. In addition, transfer learning
plays a more crucial role in enhancing performance than
refining samples to make themmore similar. Finally, we com-
pared our proposed attack with some typical existing attacks
and further analyzed their respective characteristics. We also
evaluated our method using some other classic CNNs on the
targeted schemes. To study the efficiency of model training,
we conducted further experiments to learn how to optimize
the training time and to show the effects of different training
strategies.

Our attack provides a more promising strategy that not
only reduces the attack complexity and manual-labeling cost
but also preserves comparable accuracy. We all know that
text-based CAPTCHAs have security problems, and we hope
and believe that our investigation will inspire other works.
In addition, it also proves that using GAN-based sample
adjustment is not the correct direction, conversely, attention
should be paid to the fact that as one of the most popular
techniques in generating pictures, a GAN will play a part in
the CAPTCHA community in other ways. We plan to explore
this idea in our ongoing future work.
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