This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.20xx.DOI

Software Vulnerability Analysis and
Discovery using Deep Learning

Techniques: A Survey

PENG ZENG', GUANJUN LIN?, LEI PAN3,YONGHANG TAI' AND JUN ZHANG',

!'School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650000, China

2School of Information Engineering, Sanming University, Sanming, Fujian, 365004, China
3School of Information Technology, Deakin University, Geelong, VIC, 3220, Australia

Corresponding authors: Jun Zhang and Yonghang Tai. Peng Zeng and Guanjun Lin contribute equally to this paper.

ABSTRACT Exploitable vulnerabilities in software have attracted tremendous attention in recent years
because of their potentially high severity impact on computer security and information safety. Many
vulnerability detection methods have been proposed to aid code inspection. Among these methods, there is
a line of studies that apply machine learning techniques and achieve promising results. This paper reviews
22 recent studies that adopt deep learning to detect vulnerabilities, aiming to show how they utilize state-of-
the-art neural techniques to capture possible vulnerable code patterns. Among reviewed studies, we identify
four game changers that significantly impact the domain of deep learning-based vulnerability detection and
provide detailed reviews of the insights, ideas, and concepts that the game changers have brought to this
field of interest. Based on the four identified game changers, we review the remaining studies, presenting
their approaches and solutions which either build on or extend the game changers, and sharing our views on
the future research trends. We also highlight the challenges faced in this field and discuss potential research
directions. We hope to motivate the readers to conduct further research in this developing but fast-growing

field.

INDEX TERMS deep learning, vulnerability detection.

I. INTRODUCTION

NCREASINGLY more cyberattacks are rooted in soft-

ware vulnerabilities, resulting in the leak of user data and
the damage of the company’s reputation [33], [37]. Although
many studies have been proposed to aid vulnerability detec-
tion, vulnerabilities remain threats to the secure operation
of IT infrastructure [74]. The number of vulnerabilities dis-
closed in the Common Vulnerabilities and Exposures (CVE)
! and the National Vulnerability Database (NVD) 2 rep-
resenting the vulnerability data repositories increased from
approximately 4,600 in 2010 to 8,000 in 2014 before jumped
to over 17,000 in 2017 [32], [63]. These vulnerabilities may
have posed potential threats to the secure usage of digital
products and devices worldwide [6], [7], [40], [73].

Aiming to identify vulnerabilities before the deployment
of software, many vulnerability detection methods have been
proposed to combat the attacks caused by vulnerability ex-

Uhttps://cve.mitre.org
Zhttps:/nvd.nist.gov

VOLUME xxx, 20xx

ploitation [31], [32], [36], [37], [92]. In addition to the
software community’s detection solutions, many studies ad-
vocate conventional machine learning techniques [2], [65],
[68], [69], [87], [88]. However, the conventional machine
learning-based solutions usually require experts to explicitly
define features [46], [65], [66]. In many cases, the manually
defined features can be task-specific, subjective, and error-
prone [83], [84]. Furthermore, the quality of the manually
determined features is inherently confined by practitioners’
experience and knowledge. Deep learning techniques extract
features automatically, resulting in relieving experts from
tedious feature engineering tasks. The abstract feature repre-
sentations automatically extracted by deep learning methods
often demonstrate better generalization abilities than man-
ually extracted features [35]. These benefits accelerate the
adoption of deep learning techniques in newly proposed soft-
ware vulnerability detection solutions [9], [11], [12], [32],
[37].

This paper reviews 22 recently published studies that apply
deep learning for vulnerability detection. The focus is on how

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

to use the emerging neural network techniques for capturing
potentially vulnerable code patterns. Among the reviewed lit-
erature, we identify and prioritize four revolutionary studies
as game changers according to the significance of their
impacts on deep learning-based vulnerability detection. For
the four game changers, we review their technical details,
innovative insights, and significant impacts. We categorize
the remaining 18 studies into different categories relevant to
the four game changers. We exploit the game changers and
their follow-up studies to elaborate on the research problems
and the solutions with a systematic view. Finally, we share
our views on the challenges in this field and point to potential
research directions.

Related Reviews

Several surveys summarize various solutions for applying
machine learning and deep learning for bug or vulnerability
detection. Liu et al. [38] briefly reviewed the vulnerability
detection solutions using code analysis and machine learn-
ing techniques. Malhotra et al. [45] reviewed software fault
prediction solutions using machine learning techniques. Rad-
jenovic et al. [54] provided a systematic literature review to
depict the state-of-the-art software metrics in software fault
prediction. However, fault prediction is marginally relevant
to vulnerability detection [74]. Ghaffarian and Shahriari [15]
presented an extensive and in-depth review, summarizing
studies applying traditional machine learning techniques for
vulnerability detection, excluding deep learning methods.
Wang et al. [77] reviewed machine learning-based fuzzing
techniques for vulnerability discovery. Ji et al. [24] briefly
reviewed the studies of adopting automated systems for de-
tecting, patching, and exploiting software vulnerabilities.

However, only a few surveys investigate deep learning-
based solutions for vulnerability detection. Singh et al. [70]
provided a brief survey of methods utilizing deep learning-
based software vulnerability discovery with feasibility anal-
ysis. Lin et al. [33] examined studies focusing on how deep
learning techniques facilitate the understanding of code se-
mantics for vulnerable pattern recognition.

Contributions of this Survey

In this survey, we use a different way to review the state-
of-the-art research papers using deep learning for vulnera-
bility detection. We identify four “game changers" which
we consider as milestones in the field. Then, we catego-
rize the reviewed studies based on their relatedness to the
game changers. When reviewing each study, we examine
whether the work follows the trend led by a specific game
changer, aiming to provide a different perspective to see the
approaches proposed in applying deep learning for vulnera-
bility detection. By reviewing the game changers and their
subordinates, we highlight trends and the challenges faced in
the field of interest, showing the status and achievements of
this cutting-edge research.

2

Paper Organization

The paper is organized as follows: Among 22 reviewed
papers, we identify four papers as game changers and explain
our choice in Section II. By highlighting the influence that
the game changers have exerted on the filed of deep learning-
based vulnerability detection, we discuss the main problems
faced and the solutions proposed. In Section III, we review
the remaining papers and categorize them based on their
relevance to the game changers, focusing on the research
problems, methods, and solutions they proposed. Section IV
elaborates on the research challenges and possible future
directions in the field of vulnerability detection. Section V
concludes this paper.

Il. GAME CHANGERS LEADING THE RESEARCH
TREND

Applying deep learning for vulnerability detection is an
emerging field. During the review process, we identify four
research works that have laid a foundation for deep learning-
based vulnerability detection. Many remaining studies are
followed and built based on the four papers. Therefore, to
better understand the trends in this field, in this section,
we firstly identify these game changers with highlights of
concepts, ideas, and deep learning models. Because of their
unique and significant contributions, we clearly articulate
how the subordinate works further explore the field.

A. IDENTIFYING GAME CHANGERS
The four game changers which have a significant impact are
as follows:

o Game changer 1: “Automatically Learning Semantic
Features for Defect Prediction" by Wang et al. [75]. It
is the first paper that proposes to use a deep learning al-
gorithm for learning the semantics code representations
indicative of defective code. Wang et al. [75] advocated
that semantic information in the program’s source code
should be extracted through the deep learning algo-
rithms’ representation learning capability. It means that
the feature sets characterizing defective code can be
automated without relying on manual extraction. Hence,
feature representations are automatically extracted by
deep learning, relieving experts from tedious and time-
consuming feature extraction processes.

o Game changer 2: “End-to-End Prediction of Buffer
Overruns from Raw Source Code via Neural Memory
Networks" by Choi et al. [4]. It is the first paper to
provide an end-to-end solution for vulnerability detec-
tion, which means that programs’ source code can be
direct inputs to a competent neural model, which is
the memory networks [78] and the output is whether
the corresponding inputs being vulnerable or not. The
end-to-end solution demonstrates that it is feasible for a
neural model to directly operate on source code, without
requiring any code analysis for pre-processing, which
significantly automates the vulnerability detection pro-
cess.

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

Main contribution domain

Y
ﬂ From open-source to
potentially commercial projects m—
A Source code > Binary level
Application . [—)

level detection Binary-assembly detection

-+ representation learning —
From mainstream to

customized NEtWOrk StruCture ——

. Fully- > Memory

Model Design CNN LSTM i i

J connected Equipped with extra Network

memory slots —
From mainstream to specific-
designed program representation CEEEEE—
Code >
analysis/process CFG AST PDG From ggneral to specifically- Code Gadget
designed features for —
___________________________ vulnerable patterns _____ _________________.
From manual to

. automated ——

Feature Rule-based Human-defined - — Semantic

representations features features _"rom speciric to Representations

high-level & abstract \ J

> Research

Game changers Trend

FIGURE 1. The contribution domains from the identified game changers.

« Game changer 3: “VulDeePecker: A Deep Learning-
Based System for Vulnerability Detection” by Li et
al. [32]. This paper proposes the “code gadgets" con-
cept consisting of multiple lines of code depicting data
dependencies or control dependencies. Compared with
existing studies that use abstract syntax trees (ASTs) for
learning potentially vulnerable patterns [36], [37], the
code gadget is a more fine-grained entity for revealing
variable flaws. This setup allows a neural model to ob-
tain accurate and precise information relevant to specific
vulnerability types, e.g., the buffer error and resources
management error vulnerabilities. This paper is a pio-
neer that applies fine-grained program representation for
the neural network to learn high-level representations.

« Game changer 4: “Cyber Vulnerability Intelligence for
Internet of Things Binary" by Liu et al. [41]. This work
extends the application domain of neural model-based
vulnerability detection from source code to binary code.
In practice, commercial software and the firmware of the
Internet of Things (IoT) devices are provided in binary
code. This work enables vulnerability detection to be
performed without relying on the source code.

Deep learning-based vulnerability detection methods usu-
ally employ four steps, including data collection, data prepa-
ration, model building, and evaluation/test. Data collection
is to gather labeled vulnerable and non-vulnerable data for
neural model training. Data preparation aims to convert raw
data (in most cases, the data in textual format) to vector repre-
sentations acceptable by neural models. These two steps are
related to the data, which is the key to building an effective
detection system. Model building is to apply or customize a

VOLUME xxx, 20xx

deep neural network model to extract potentially vulnerable
patterns for building a vulnerability detector. Evaluation/test
evaluates or tests the built detector in specific application
scenarios. Therefore, the four game changers have made
contributions in different domains, as shown in Figure 1.

Figure 1 shows the key contribution domains made by the
identified game changers. Game changer 1 [75] has revolu-
tionized code feature learning because high-level and abstract
features indicative of defective code can be automatically
extracted by a neural network, instead of manual feature
engineering. Game changer 2 [4] forsakes mainstream pro-
gram representations such as Control Flow Graph (CFG),
AST, and Program Dependency Graph (PDG) for learning
vulnerable code features. Instead, a novel program represen-
tation called “code gadget" was designed to reveal vulnerable
programming patterns and facilitate the neural network to
learn vulnerability-relevant features. Game changer 3 [32]
is the first work to apply a customized network structure
called memory networks for building a detection model.
Compared with mainstream network structures like fully-
connected network, CNN, and LSTM, the memory networks
use extra built-in memory slots for memorizing long-range
code dependencies that are crucial for identifying buffer error
vulnerabilities. Game changer 4 [41] has extended the appli-
cation domain of deep learning-based vulnerability detection
from source code to binary code.

An extensive review of all four game changers is provided
in the following subsections, detailing how they contribute to
the field of interest.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

B. GAME CHANGER 1 - “AUTOMATICALLY LEARNING
SEMANTIC FEATURES FOR DEFECT PREDICTION"
Gamer changer 1 [75] is the pioneer study to adopt a deep
belief network (DBN) to learn the semantic representations
of a program. It aims to use the high-level semantic represen-
tations learned by the neural networks as defective features.
In particular, it enables the automated learning of feature
sets indicative of defective code, without relying on manual
feature engineering. This method is not only suitable for
within-project defect prediction but also applicable for cross-
project defect prediction. AST is used as the representation
of the program to feed into a DBN for data training. A data
processing method is proposed with four steps. The first step
is to parse the source code into a token; the second step is to
map the token to an integer identifier; the third step is to use
DBN to generate semantic features automatically; the final
step is to use DBN is to establish a defect prediction model.

Experiments were conducted on open-source Java projects
dataset to assess the performance of this proposed method.
The empirical studies demonstrate that the method can effec-
tively and automatically learn semantic features from Within-
Project Defect Prediction (WPDP) and Cross-Project Defect
Prediction (CPDP). However, this paper’s detection granu-
larity is not fine-grained enough to allow code inspectors
to pinpoint the vulnerabilities related to specific code lines
because it only works at the file level. The DBN used for
learning semantic representations has motivated follow-up
researchers to apply various types of neural networks for
learning abstract feature representations for defect and vul-
nerability detection, such as [29], [35]-[37], [42], [47], [59].
Hence, expert-defined features are not the necessity when
deep learning is involved. Thus experts can devote their effort
to tailoring code analysis, neural model design, or both.

C. GAME CHANGER 2 — “END-TO-END PREDICTION OF
BUFFER OVERRUNS FROM RAW SOURCE CODE VIA
NEURAL MEMORY NETWORKS"

Game changer 2 [4] is the first to provide an end-to-end
solution for detecting buffer error vulnerabilities. Empirical
studies demonstrate that a neural network is capable and
expressive enough to directly learn vulnerability-relevant
features from raw source code without code analysis. A
novel neural model is developed to relax the code analysis
constraint by constructing and customizing the memory net-
works [72], [79]. The proposed neural network equips with
built-in memory blocks to memorize very long-range code
dependencies. Hence, this network modification is crucial
for identifying buffer error vulnerabilities. For performance
evaluation, experiments are conducted on a self-generated
dataset. Experimental results show that this method can ac-
curately detect different types of buffer overflows. In terms
of solving overflow tasks, the memory networks model is
superior to other models. However, this method still has
limitations for further improvements. The first limitation is
that it fails to detect the buffer overflow issues residing in
external functions because the predefined code in external

4

files is excluded in the input data. The second limitation
is that each row must contain some data assignment for
this model to work. It is not easy to apply this method
out of the box for the source code containing conditional
statements because attention values are calculated to find the
most relevant code positions.

This paper uses source code as the input of a memory
network architecture to train the model directly, has moti-
vated follow-up researchers to apply an end-to-end solution
to use neural networks to train source code data directly [34],
[64]. It mitigates the code analysis constraint so that the
neural network can gain an in-depth understanding without
excessive code analysis.

D. GAME CHANGER 3 - “VULDEEPECKER: A DEEP
LEARNING-BASED SYSTEM FOR VULNERABILITY
DETECTION"

Game changer 3 [32] is the first study to apply a bidirectional
Long Short Term Memory (BiLSTM) model [20] for vul-
nerability detection. The BiLSTM extracts and learns long-
range dependencies from code sequences. Its training data
is derived from the code gadget representing the program
fed to the BILSTM. There are three stages to process the
code gadgets. The first stage is to extract the corresponding
program slices of library/API function calls. The second
stage is to generate and label code gadgets. The third stage
is to convert the code gadgets into vectors. After that, the
dependencies across a long-range are captured from the code
gadgets. In this paper, the granularity of detection is at the
slice-level. For evaluating the performance of VulDeePecker,
a set of experiments is conducted on open-source projects
and the SARD dataset [48]. The experimental results show
that VulDeePecker can handle multiple vulnerabilities, and
human experience can help improve the effectiveness of
VulDeePecker. Besides, VulDeePecker is more effective than
other static analysis tools that require experts’ defined rules
for detecting vulnerabilities. However, this method has lim-
itations for further improvement. The first limitation is that
VulDeePecker only can deal with C/C++ programs. The
second limitation is that VulDeePecker can only deal with
vulnerabilities related to library/API function calls. The third
limitation is that the dataset for performance evaluation is
small-scale as it only contains two vulnerability types.

The BiLSTM model used in VulDeePecker has motivated
researches to adopt this paradigm. The use of BiLSTM en-
ables research works [28], [43] to inspect the code dependen-
cies across long-range. VulDeePecker proposes to use fine-
grained code gadgets as the representation of a program in-
stead of capturing data dependence relations only. This paper
also inspired an extended work in [92], where code gadgets
represent programs to capture the data dependence relation
and control dependence relation. Besides, this paper and a
few extended works [30], [31] come from the same research
team with continuous improvements and innovations.

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

E. GAME CHANGER 4 — “CYBER VULNERABILITY
INTELLIGENCE FOR INTERNET OF THINGS BINARY"

Game changer 4 [41] proposes a deep learning-based vul-
nerability detector for binary code. It aims to broaden the
application field of vulnerability detection by mitigating
the unavailability of source code. For data training, binary
segments are fed to a bidirectional LSTM neural network
with attention (Att-BiLSTM). The data processing consists
of three steps. First, the binary segments were obtained by
applying the IDA Pro tool on the original binary code. The
second step extracts functions from binary segments and
mark them as ‘vulnerable’ or ‘not vulnerable.” The third step
takes the binary segment as a binary feature before feeding
it to the embedding layer of the Att-BiLSTM. Moreover,
the granularity of detection is at the function-level. For
evaluating the performance of the proposed method, many
experiments are conducted on an open-source project dataset.
The experiment results indicate that the proposed method
outperforms the source code-based vulnerability detection
approaches on binary code. However, this method has lim-
itations for further improvement. In particular, the detection
accuracy is relatively low, given that the detection accuracy is
less than 80% in each dataset. It also overlooks the function
inlining scenario when the binary code’s structure often
changes due to function inlining.

This paper utilized deep learning techniques to detect
vulnerabilities for binary code. It has motivated follow-up
works to detect binary code vulnerability with deep learning
methods [27], [82]. It paves a path to expand deep learning-
based vulnerability detection applications from source code
to binary code.

lll. TRENDS FOR DEEP LEARNING-BASED
VULNERABILITY DETECTION
A. CATEGORIZATION BASED ON GAME CHANGERS

The game changers are trend-leaders to inspire multiple
follow-up papers. In this paper, we categorize the review
studies into five categories corresponding to the four game
changers:

1) Methods based on semantic representation learn-
ing: Game changer 1 is the first study that applies neu-
ral networks for learning code semantic representation
indicative of potentially vulnerable code semantics.
The follow-up studies [29], [35]-[37], [42], [47], [59]
inherit the similar idea. Hence, we categorize them into
one category.

2) Solutions capable of end-to-end detection: Game
changer 2 proposes an end-to-end detection solution,
allowing the source code to be directly fed as inputs to
a neural network. The follow-up papers [34], [64] of
game changer 2 belong to this category.

3) Features designed for vulnerable patterns: Game
changer 3 utilizes specifically designed features to
facilitate the neural models to learn potentially vulner-
able patterns. The follow-up studies [28], [30], [31],

VOLUME xxx, 20xx

[43], [92] extend game changer 3, thus belonging to
this category.

4) Vulnerability detection for binary code: Based on
game changer 4, the follow-up studies [27], [82] in-
vestigate vulnerability detection for binary code.

5) Miscellaneous: We assign the remaining works [18],
[49] to the miscellaneous category because they do not
belong to any of the aforementioned categories.

The following subsections present the review of each
study, aiming to identify the research problems, the method-
ologies, and the effectiveness of the proposed solutions.

B. FOLLOW-UPS OF GAME CHANGER 1

This subsection reviews seven follow-up studies of game
changer 1, presenting the problem identified, approaches
and solutions proposed for vulnerability discovery. The key
difference of reviewed studies is listed in Table 1 from the
perspectives of data source, features, neural network models,
and detection granularity.

A deep belief network (DBN) is used in game changer 1
for extracting semantic features from abstract syntax trees
(ASTs) built from Java source code. However, the original
detection is performed at the file-level. As an improvement,
DeepBalance [42] applies BILSTM networks to learn the
code representations at the function-level to pinpoint vulner-
able functions.

Deepbalance was proposed in [42] to address the data im-
balance issue where there is an overwhelming amount of non-
vulnerable data so that the number of vulnerable instances
becomes insufficient. The data imbalance problem poses
huge challenges to train effective classifiers for accurate
vulnerability detection. The process of building DeepBalance
consists of three steps. The first step is to convert source code
functions to ASTs in a serialized format, where the ASTs
are subsequently tokenized to form AST sequences. The
BiLSTM network directly receives AST sequences as input
and acts as a feature extractor for automatically obtaining
feature representations from input ASTs. In the second step,
a novel fuzzy-oversampling method is proposed to mitigate
the data imbalance problem by synthetically generating vul-
nerable code samples based on the learned representations to
rebalance the ratio of vulnerable and non-vulnerable samples.
In the third step, a random forest algorithm with the feature
representations forms a classifier. Experiments are conducted
on three open-source projects, including LibTIFF, LibPNG,
and FFmpeg. Empirical results confirm the effectiveness of
the proposed method.

Game change 1 is constructed based on the availability of
sufficient labeled training data collected from the homoge-
neous sources. However, it is not always possible to guaran-
tee the data source’s availability, as real-world vulnerability
data is usually scarce. A deep learning-based framework is
proposed in [35] to automate software vulnerability discov-
ery. The proposed system in [35] automatically extracts latent
vulnerable programming patterns from multiple heteroge-

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

TABLE 1. Category 1 — Follow-ups of Game Changer 1

Reference Data Source Feature/Representation Neural Network Model Detection Granularity
Wang et al. [75] Open source projects ASTs DNN (Deep Belief Network) | File-level

Liu et al. [42] Open source projects ASTs BiLSTM Function-level

Lin et al. [35] Open source projects and SARD | ASTs & source code LSTM Function-level

Nguyen et al. [47] | Open source projects Statements in source code | Bidrectional RNN Function-level

(opcode and metadata)

Lietal. [29] Open source projects and SARD

representation

A minimun intermediate

Three concatenated CNN's An interprocedural slices (the
subset of code related to vulner-

abilities)

Lin et al. [37] Open source projects Serialized ASTs BiLSTM Function-level
Lin et al. [36] Open source projects AST BiLSTM Function-level
Russell et al. [59] SATE TV, Debian, GitHub Source Code RNNs and CNNs Function-level

neous vulnerability-relevant data sources. Two vulnerability-
relevant data sources are used to train two network models.

A framework proposed in [35] transfers the knowledge
from the existing data source of different forms, aiming to
mitigate the problem of lacking vulnerable data. For this pur-
pose, combined with multiple heterogeneous vulnerability-
related data sources, a deep learning framework based on
the LSTM unit learns the unified vulnerability source code.
Its proposed framework consists of four steps. First, the
two neural networks are trained on the two data sources,
receptively, so that the two trained networks serve as a feature
extractor. Second, a set of knowledge representation is ob-
tained by the two feature extractors from the aggregated data.
Third, a random forest classifier is trained with the features
that combine the two knowledge representations. Fourth, the
trained classifier detects the vulnerabilities. This framework
deals with two different situations in the process of vulnera-
bility detection. The first situation is a target project without
labeled data when the transfer learning method is applied.
The second situation is the target software project having a
few labeled data samples while detecting vulnerabilities at
the function level. Experiments are conducted on the SARD
dataset [48] and six open-source projects to evaluate this
proposed method’s performances. The experiment results are
satisfactory. Its performance is better than its counterparts us-
ing the generated representations instead of transfer learning.
Moreover, the proposed approach outperforms the baseline
vulnerability detect systems. Using two networks to learn the
representation from two vulnerability-relevant data sources
achieves better performance than merely using any single
network. Finally, its performance is still comparable when
detecting various vulnerability types. However, the proposed
method still has some limitations. The first limitation is its
incapability of detecting vulnerabilities manifested during
the execution process and vulnerabilities across multiple
functions or files. The second limitation is that the truncation
of various length of input sequences of source code function
sequences may cause information loss, which may bias the
classifier training.

Code Domain Adaptation Network (CDAN) is proposed
in [47] to leverage deep domain adaptation with auto-
matic feature learning for identifying software vulnerability.
The CDAN applies transfer learning methods for obtaining

6

knowledge from the labeled projects to process unlabeled
projects. It is proposed to address two significant issues.
The first issue is to overcome the lack of labeled vulner-
ability data by adding additional training data to improve
the trained model’s effectiveness. The second issue is to
automatically learn representative features for improving vul-
nerability detection and prediction capabilities. Furthermore,
a semi-supervised variant of CDAN is proposed to fully
utilize the unlabeled target data’s information by treating
the unlabeled target data as the unlabeled component in
semi-supervised learning. A fundamental principle in semi-
supervised learning is to enforce the clustering assumption.
Statements in source code are used as the program represen-
tations, where each statement consists of opcode and state-
ment information. Before feeding the data to the bidirectional
RNN neural network, there are two data processing steps.
The first data processing step standardizes source code by
removing comments and non-ASCII characters. The second
data processing step embeds the statements into a vector.
For evaluating the performance, experiments are conducted
on several datasets, including six real-world datasets across
six domains. The experiment results indicate that CDAN and
its semi-supervised variant outperform VulDeePecker [32],
as VullDeePecker does not use domain adaptation.

A method of intelligent vulnerability detection is proposed
in [29] utilizing the minimum intermediate representation
learning in source code. The detect granularity is an inter-
procedure slice that is the subset of code relating to vul-
nerabilities. It aims to address three problems in the exist-
ing intelligent vulnerability detection methods, including the
lack of vulnerability data, coarse detection granularity, and
long-term dependence due to insufficient vocabulary. The
proposed method has four data processing steps. The first
step is to exclude useless information and reduce dependency
by transferring the data from source code into a minimum
intermediate representation. The second step transfers the
minimum intermediate representation into a vector so that
semantics and structure are retained. The third step obtains
high-level features by using the vector as the input to three
concatenated CNNs. The last step trains a classifier by using
the features learned from the neural networks. Comparative
experiments are conducted on the datasets from SARD [48]
and open source projects for performance evaluation. The

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

empirical study results show that the proposed method com-
pletely outperforms the similarity-based method, the pattern-
based method, and a few other baseline methods. However, it
suffers from two limitations. The first limitation is its failure
to detect vulnerabilities in compiled software because it uses
a static analysis paradigm. Its second limitation is its failure
to identify or filter out the mislabeled samples in the dataset.

Furthermore, game changer 1 inspires many succeeding
studies to apply the idea of representation learning, including
“Cross Project Transfer Representation Learning for Vul-
nerable Function Discovery" [37], “Vulnerability Discov-
ery with Function Representation Learning from Unlabeled
Project” [36] and “Automated Vulnerability Detection in
Source Code using Deep Representation Learning," [59]. All
three papers use representation learning as the core tech-
nique.

A method of cross-project transfer representation learning
is proposed in [37] for vulnerability discovery. Due to the
lack of training data, we have to rely on the features defined
by experts. In this case, an individual expert’s opinion may
overlook the critical features during the software project’s
early stages. The method constructs a BiILSTM neural net-
work to achieve an optimal balance between feature-richness
and generalizability. The BiLSTM’s input is the serialized
ASTs, and the BILSTM’s output is the representation indica-
tive of software vulnerability. To train this network, the first
step of data processing serializes the semantics of the AST
release code while encoding the tokens by continuous Bag-
of-Words neural embedding. The method’s final step obtains
the neural representation from the existing software projects
that are transferred to new projects to enable early vulnerabil-
ity detection with insufficient training labels. This method’s
detection granularity is function-level. The extracted features
are deep AST representation. However, the function-level
vulnerability ground truth dataset is not publicly available
because it uses a self-collected private dataset instead of any
public datasets. This method achieves a better precision for
predicting vulnerability function than the methods relying on
traditional code metrics across multiple projects. However,
it cannot be directly applied to the vulnerability that contains
multiple functions or multiple files. Furthermore, this method
requires further research. The first direction is to explore
alternative search strategies to map the AST element as this
method uses only a depth-first traversal, e.g., whether the
breadth-first traversal achieves a better result. The second
direction is to use both the AST-based representation and
code metrics as features to train a vulnerability detector.

A method of learning function representation from unla-
beled projects is proposed in [36] to facilitate vulnerability
discovery. It can detect the vulnerability in the cross-project
scenario by leveraging the ASTs learned automatically from
the high-level representation of functions. The detect gran-
ularity of this method is at the function-level. Besides, a
customized BiLSTM neural network is applied to learn the
sequential AST representations from raw features. Before
feeding training data to the BiLSTM neural network, there

VOLUME xxx, 20xx

are two data processing steps. The first step of data pro-
cessing is to use the “CodeSensor" parser to extract AST
elements from the source code. The second step is to map
the AST nodes’ elements to the vector using depth-first
traversal technology. For performance evaluation, experi-
ments are conducted on the open-source project data set.
The experimental results show that learned representations
are beneficial for cross-project vulnerability detection and
improve vulnerability detection performance.

A deep representation learning-based approach is pro-
posed in [59] to automate vulnerability detection at the source
code level. The vulnerability detection system is developed
at the function-level using machine learning by leveraging
available codebases in C and C++. Millions of functions are
compiled as a supplement dataset in addition to the existing
vulnerability dataset with labels. Based on the enhanced
dataset, a scalable and fast vulnerability detection tool uses
deep feature representation to interpret the compiled source
code directly. It no longer needs any complex data processing
component as the source code is directly fed to the neural
network as input. For performance evaluation, a set of ex-
periments is implemented in the NIST SATE IV benchmark
dataset [50] and real software packages. The overall result
indicates a promising method for automated software vulner-
ability detection using deep feature representation learning.

C. FOLLOW-UPS OF GAME CHANGER 2

This subsection reviews two research works on game changer
2, discussing the research problems and the proposed ap-
proaches. Table 2 summarizes and compares their key dif-
ference in the perspectives of data source, features, neural
network models, and detection granularity.

Some limitations of game changer 2 are addressed in [64].
First, game changer 2’s deep learning architecture requires
an excessive amount of training data to model security flaws.
Second, game changer 2’s method will inevitably overfit
synthetic datasets because of the challenges to generate real
code massively. Hence, possible solutions are proposed to
mitigate these problems using representations of code and
deep learning methods to perform arithmetic operations. The
code representation can capture appropriate scope informa-
tion. A code generator named s-bAbl is proposed in [64]
to detect buffer overflow vulnerabilities. The generator s-
bADbI is implemented by improving a previous work in [4].
In particular, source code is fed into the memory networks
to train s-bAbl directly to avoid code analysis. However,
the cost is to do some necessary operations beforehand.
The first operation is to divide the file into code lines and
subsequently tag each line of code. The second operation
is to number each line together with a specific mark for
identification. The third operation consistently maps tokens
to integers. The final operation is to store the integer labels
in the array, with zero paddings on the right and bottom. For
performance evaluation, many experiments were conducted
on the dataset generated by the code generator s-bAbl. The
experiment results indicate that the static analysis engine has

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

. 10.1109/ACCESS.2020.3034766, IEEE Access
IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

TABLE 2. Category 2 — Follow-ups of Game Changer 2

N lines each of which is
represented by a list of in-
teger tokens)

Reference Data Source Feature/Representation Neural Network Model Detection Granularity
Choi et al. [4] self-generated lines of source code Memory Networks Function-level
Sestili et al. [64] | code generator: s-bAbl | Source code (consisting of | Memory Networks the line-of-code level

Lin et al. [34] Open source projects Source code

DNN Text-CNN and four RNN | Dual-granularities: file-level
variants: LSTM, GRU, BiL- | and function-level
STM, BiGRU

high accuracy, but its recall rate is very low. Moreover, the
memory networks can achieve similar performance to the
static analysis engine. However, it needs enormous training
data to achieve high accuracy.

The memory networks model is applied by game changer
2 for detecting buffer overflow vulnerability. However, no
systematic performance comparison is provided across dif-
ferent approaches because of its self-constructed/collected
dataset. A benchmarking framework is proposed in [34] to
assess the effectiveness of deep learning-based vulnerabil-
ity detectors. In particular, there are six mainstream neural
networks, including a DNN network, a text-CNN network,
and four RNN variants along with three embedding solutions.
A real-world vulnerability ground truth dataset is also built
from nine open-source software projects to provide unified
performance standard measures since previous vulnerability
detection methods are evaluated on self-constructed and self-
collected datasets. No code analysis is required because
source code is fed to the neural network as direct input
for data training. The detection of granularity covers two
levels, including function level and file level. There are three
modules in the proposed framework. The first module is
an embedded module to mark the text/code as an impor-
tant vector representation. The second module is a training
module. The third module is a test module, in which users
can use test data as input into the trained network to ob-
tain test results. Experiments are conducted on nine open-
source projects. Two baseline systems are using the proposed
framework. The first system is built in the self-constructed
dataset, which consists of nine open projects to study the
neural network’s performance in the real-world dataset in
the presence of the data imbalance problem. The second
baseline system uses the SARD dataset [48] to examine
the neural network’s performance in the real-world scenario.
The experiment results indicate that the systems perform
well on the SARD dataset, the DNN network, the Text-
CNN, and the BiLSTM network. In the SARD dataset, the
neural network model is agnostic for vulnerability detection;
but in the real-world dataset, DNN outperforms BiLSTM
and Text-CNN. DNN cannot effectively learn potential code
vulnerabilities because DNN merely contains a complete
contact layer. Conversely, BILSTM and Text-CNN handle
text dependencies well between sequence elements because
BiLSTM has a bidirectional LSTM layer, and Text-CNN
has many kernels. To further extend this work, vulnerable

8

functions and non-vulnerable functions at the binary-level
can be collected and used to train the models. Furthermore,
it is crucial for detecting vulnerability to derive the patched
functions and files.

D. FOLLOW-UPS OF GAME CHANGER 3

The follow-up studies of game changer 3 are summarized in
this subsection, identifying research problems and proposed
solutions for vulnerability discovery. Table 3 lists the key
difference of the reviewed studies in the perspectives of
data source, features, neural network models, and detection
granularity.

Three limitations of game changer 3 VulDeePecker [32]
are listed in [31]. First, VulDeePecker considers vulnera-
bilities related to library/API function calls only. Second,
VulDeePecker only uses the semantic information contained
in the data dependency. Thirdly, VulDeePecker only uses
BiLSTM. Hence, six deep neural networks are investigated
in [31], including CNN, DBN, LSTM, Gated Recurrent Unit
(GRU) [3], BiLSTM, and BiGRU. Nevertheless, it does not
strive to explain the reasons for false positives and false
negatives. A system named Syntax-based, Semantics-based,
and Vector Representations (SySeVR) is proposed in [31] as
the first systematic framework to detect vulnerability based
on deep learning. SySeVR focuses on solving the problem of
obtaining program representations, and it can accommodate
semantic and syntax information related to vulnerabilities.
The framework uses semantics-based vulnerability candi-
dates (SeVC) as feature representations fed into the network
to train. There are three data processing steps: The first step
extracts Syntax-based vulnerability candidates (SyVCs) from
a training program. The second step transforms SyVCs to
SeVCs. The third step transforms SevCs to vectors. The
detection granularity is at the SeVC-level, which is multiples
lines of code semantically related to each other. Hence, it
needs further improvement to precisely detect vulnerabilities.
For SySeVR’s performance evaluation, experiments are con-
ducted on the open-source projects and the SARD dataset
[48]. The experimental results show that SySeVR outper-
forms some state-of-the-art vulnerability detection methods.
The two main limitations of SySeVR are the lack of fine-
grained detection and its narrow focus on the detection of
vulnerabilities in the C and C++ programming languages.

The VulDeePecker proposed by Li et al. [32] is limited
to detect two types of vulnerabilities. A multi-class vul-

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

IEEE Access

TABLE 3. Category 3 — Follow-ups of Game Changer 3

Reference

Data Source

Feature/Representation

Neural Network Model

Detection Granularity

Lietal. [32]

Open source projects and SARD

Code gadgets(only capture
data dependence relation)

BiLSTM

slice-level

Lietal. [31]

Open source projects and SARD

SeVC (semantics-based
vulnerability candidates)

6 deep neural networks: CNN,
DBN, LSTM, GUR, BiLSTM,
BiGUR

SeVC (multiples lines of code
that semantically related to
each other)

Zou et al. [92]

Open source projects and SARD

code gadgets (capturing
data dependence relation
and control dependence re-
lation)

A novel neural network archi-
tecture: building-block LSTM

code gadget (consisting of mul-
tiple statements)

Li et al. [30]

Open source projects and SARD

intermediate code

BiRNN-vdl (A novel variant of
BiRNN for vulnerability detec-
tion and location

program slice-level (leverages
program intermediate code to
define)

Liet al. [28] Open source projects Function names BIiLSTM Function-level

Liu et al. [43] Open source projects program representations | BilSTM Function-level
(ASTs,Code gadget)

TABLE 4. Category 4 — Follow-ups of Game Changer 4

Reference Data Source Feature/Representation Neural Network Model Detection Granularity

Liuetal. [41] | Open source projects Binary instructions from | Att-BiLSTM (Attention bidi- | Function-level
each function rectioal LSTM)

Xu et al. [82] Public source projects ACFG (attributed control | DNN Function-level
flow graph)

Le et al. [27] VulDeePecker source code dataset | The opcode and instruc- | RNN Function-level
tion information

nerability detection system named pVulDeePecker [92] is
proposed to extend VulDeePecker [32], capable of identi-
fying multiple types of vulnerabilities. ;sVulDeePecker uses
code gadgets as program representations. Code gadgets are
a code piece consisting of multiple program statements to
provide detailed information on vulnerability types. Code
gadgets are used to capture data dependence and control
dependence with an LSTM. pVulDeePecker uses four data
processing steps. Its first step extracts code gadgets from
the training program. Its second step analyzes the standard
code gadgets to generate code attentions according to the
vulnerability’s semantic characteristics. Its third step extracts
code attentions. Its fourth step converts the standard code
gadgets and code attentions into fixed-length vectors. Fi-
nally, these vectors are the input of the LSTM for training.
The detection granularity of this paper is a code gadget
consisting of many statements. For performance evaluation,
experiments are conducted on open-source projects and the
SARD dataset [48]. The experimental results show that the
method effectively detects multiple types of vulnerabilities.
However, this method still has several limitations for fur-
ther improvement. Its first limitation is its coarse detection
granularity as it requires an additional code inspector to
precisely locate a vulnerability in a code gadget consisting of
many statements. Its second limitation is that yVulDeePecker
only detects vulnerability from programs written in C/C++.
Its third limitation is pVulDeePecker focuses on detecting
vulnerabilities related to library/API function calls. Although
VulDeePecker operates on program slices that are more finer-
grained than functions, a program slice may have many code
lines indicating a low location precision. Coarse-grained

VOLUME xxx, 20xx

vulnerability detection is only a pre-step of vulnerability as-
sessment because it cannot accurately locate vulnerabilities.

The VulDeeLocator is developed by [30] to detect vulner-
ability by using intermediate code as the program’s represen-
tation. VulDeeLocator proposes a novel BiRNN-vdl model
that stands for the BiRNN for vulnerability detection and
location. It requires four data processing steps. First, it ex-
tracts the source code- and Syntax-based Vulnerability Can-
didate (sSyVCs). Second, it locates intermediate code- and
Semantics-based Vulnerability Candidate (iSeVCs) based on
sSyVCs from intermediate code. Third, it marks the iSeVCs
extracted from the training program as vulnerabilities and
non-vulnerabilities. Fourth, it converts the iSeVCs along
with the labels into representative vectors. For performance
evaluation, experiments are conducted on a few open-source
projects and the SARD dataset [48] with eleven vulnerability
types. The experiment results indicate that VulDeeLocator’s
method by leveraging intermediate code-based representa-
tions is more efficient than using source code-based repre-
sentation. Besides, BRNN-vdl achieves a high vulnerability
location accuracy so that it effectively detects vulnerabilities.
However, VulDeeLocator still has a few aspects for further
improvement. The first limitation is its narrow scope because
VulDeeLocator only detects vulnerabilities in C source code.
The second limitation is that VulDeeLocator cannot be used
readily and directly because it needs to be compiled into
intermediate code.

A lightweight vulnerability discovery method using a deep
neural network (LAVDNN) is proposed in [28] to assist
vulnerability discovery and provide guidance for manual
auditing. LAVDNN aims to analyze unknown software code

9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

without restrictions of programming languages, as VulDeeP-
ecker [32] can only detect buffer overflow vulnerabilities
in C/C++ programs. In particular, LAVDNN uses function
names as important semantics features for constructing a
deep neural network-based classifier to distinguish functions
in source code. LAVDNN has two data processing steps. It
obtains semantic features from the open-source program and
extracts the function names before vectorizing the function
names into a proper representation of the neural network.
The experiment results indicate that LAVDNN narrows the
scope of analysis and significantly improves code auditing
efficiency. However, there are two limitations. The first limi-
tation is that the function names often do not provide enough
information, and the second limitation is that LAVDNN
requires the complete source code of the program to detect
software vulnerabilities at the source code level.

A cross-domain vulnerability discovery method (CD-
VulD) is proposed in [43] to mitigate data distribution diver-
gence between training data and testing data. The divergence
is caused by training data and testing data that originate
from different projects or their different vulnerability types.
CD-VulD adopts the concepts of deep learning and deep
adaptation (DA) to reduce the divergence between the two
distributions so that it detects cross-domain vulnerabilities.
Like VulDeepecker, CD-VulD uses code gadgets as the syn-
tax representation of the software program and an Abstract
Syntax Tree (AST) as the syntax representation of the soft-
ware program. The proposed CD-VulD approach contains
four data processing steps. Its first step converts software
code represented into a token sequence to learn the gener-
alized token embedded in the token. CD-VulD’s second step
constructs an abstract high-level representation using a deep
feature model based on the token sequences. Its third step ap-
plies the metric transfer learning framework (MTLF) to learn
the cross-domain representation by minimizing the target
and source domains’ distribution divergence. Its fourth step
uses the cross-domain representation to build a vulnerability
detection classifier. For performance evaluation, experiments
are conducted on a few open-source projects to compare
CD-VulD with VulDeePecker and G-VulD. The experimental
results show that CD-VulD achieves a better performance
in cross-project, cross-vulnerability, and prediction of recent
software vulnerabilities than VulDeePecker and G-VulD.
Moreover, CD-VulD achieves comparable results in terms of
in-domain vulnerability detection. The detection granularity
of CD-VulD is at the levels of Abstract Syntax Trees and code
gadgets. However, CD-VulD has a few limitations. Its first
limitation is that CD-VulD focuses on detecting vulnerabili-
ties in the source code; however, many vulnerabilities appear
in the source code of the binary code is not available. Its
second limitation is its basic experiment of the C/C++ pro-
gramming language. Hence, CD-VulD needs to apply another
programming language like Java to evaluate performance.
Nevertheless, CD-VulD is a CNN-based method instead of
an RNN-based method, which needs to be compared in future
work performance. Last but not least, it needs to collect more

10

real-world data to achieve better performance comparison.

E. FOLLOW-UPS OF GAME CHANGER 4

There are two pieces of research works which focus on the
binary-level vulnerability detection as game changer 4 does.
We summarize them in Table 4, showing their difference
from the perspectives of data source, features, neural network
models, and detection granularity.

A neural network-based cross-platform method is pro-
posed in [82] to detect the similarity of binary code. It aims
to improve the existing method’s slow detection speed and
low detection accuracy while detecting cross-platform binary
code similarity. In particular, the more similar between two
binary code pieces, the more likely that they originate from
the same platform. An attributed control flow graph (ACFG)
is used to represent a program fed to a DNN. The proposed
system mainly includes two components — ACFG extractor
and graph embedded neural network model. Its detection
granularity is at the function-level. For performance evalu-
ation, experiments are conducted on public source projects
dataset. The experiment results indicate that the proposed
method has a better performance than state-of-the-art meth-
ods in terms of accuracy of similarity detection, embedding
time, and overall training time.

Maximal Divergence Sequential Auto-Encoder (MDSAE)
is proposed in [27] for detecting binary software vulnera-
bilities. MDSAE aims to address the over-reliance on hu-
man experts’ characteristics manually in the existing binary
code vulnerability detection methods. In particular, lacking
binaries labeled as either vulnerable or non-vulnerable is
the big constrain to binary code vulnerability detection. A
binary code vulnerability dataset associated with labels is
created along with MDSAE. In MDSAE, opcode and ma-
chine instruction information represent a binary code fed into
an RNN neural network for data training. MDSAE employs
three data processing steps. Its first step detects the entire set
of machine instructions by applying the binary disassembly
framework. Its second step retrieves the core components
containing opcodes and other important information. The
third step embeds the instruction information and opcode into
a vector. Moreover, the detection granularity of MDSAE is at
the function-level. For performance evaluation, experiments
are conducted on the VulDeePecker’s source code dataset
[32]. The experiment results indicate that MDSAE has a
better performance than the baseline models.

F. MISCELLANEOUS
Table 5 summarizes and compares two research works that
do not belong to any of the categories mentioned above.

A CNN-based approach is proposed in [18] to detect
software vulnerability automatically. It aims to widen the
scope that existing tools only detect a small and limited
subset of possible errors using the manually defined rules.
It leverages the available open-source repositories to apply
deep learning for discovering vulnerabilities. In particular,
CFG represents C/C++ software programs fed to the CNN

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

TABLE 5. Category 5 — Miscellaneous Papers

Reference Data Source Feature/Representation Neural Network Model | Detection Granularity
Harer et al. [18] | Open source projects CFG CNN Function-level
Niu et al. [49] Code gadget Database | Taint propagation path CNN-BIiLSTM File-level

model because CFG works on both source code and binary
builds. Its detection granularity is at the function-level. For
performance evaluation, experiments are conducted on a few
open-source projects. The experiment results indicate that
the source-based CNN model has a satisfactory performance.
However, the main limitation of this paper is the process of
labeling the functions.

A CNN-BiLSTM-based static taint analysis approach is
proposed in [49] to identify IoT software vulnerabilities. It
aims to address the high false rate problem. This approach
locates vulnerabilities automatically by using a combination
of deep learning and static analysis algorithms. The taint
propagation path is used to represent programs feed into the
CNN-BiLSTM neural network for data training. It uses three
data processing steps. Its first step sets the rules to select the
taint from various files between the source program and their
patches. Its second step uses static taint analysis to retrieve
the taint propagation paths. Its third step applies the detec-
tion model consisting of two-stage BiLSTM to locate and
discover software vulnerabilities. Its detection granularity is
at the file-level. For performance evaluation, experiments
are conducted on the code gadget database. The experiment
results indicate that the CNN-based classifier performs better
than the baseline models during vulnerability detection.

IV. CHALLENGES AND POSSIBLE FUTURE RESEARCH
DIRECTIONS

Based on the review above, the research field of deep
learning-based software vulnerability detection is still in
its early stage, leaving many problems unsolved. However,
it also provides a large open space for future research as
large-scale datasets and deep learning models become read-
ily available. Therefore, we draw some conclusive remarks
based on the previous works in the perspectives of research
challenges and future research directions.

A. INTERPRETABILITY OF DEEP LEARNING MODELS

Deep learning models are naturally challenging to be inter-
preted because of its layered structure and a massive number
of parameters [61]. On the other hand, explainable informa-
tion of deep learning-based vulnerability detection solutions
is critical to stack holders, including end-users, developers,
project managers [33]. There are two technical causes for
poor interpretability of deep learning methods: nonlinear
activation functions and deep neural network structures. Be-
cause of the poor interpretability in high-dimensional nonlin-
ear space, most deep neural networks equipped with highly
nonlinear activation functions to boost performance suffer
from poor interpretability [76]. The black-box nature of the
deep neural network models increases the difficulty further

VOLUME xxx, 20xx

[21]. Since software code is complicated, the contemporary
vulnerability detection solutions are inherently complex to
comprehend the nuance of the code [33].

Many methods have been proposed to explain deep net-
works to alleviate the interpretability problem of the neu-
ral networks [81]. In general, there are three strategies to
enhance the model interpretability, including visualization
[14], distillation [57], [58], and adding an attention mech-
anism [10] to the deep neural network model. Some tools
are developed and available for public use. For example,
LIME [57] is a black-box tool that creates a linear model
similar to the original model by using a small amount of
data to achieve explainability without sacrificing efficiency;
DeepRED [91] extend the CRED [62] algorithm to build a set
of decision trees by using RXREN [1] to remove unnecessary
inputs and applying the C4.5 [60] algorithm to simplify its
decision tree. Last but not least, Razavian et al. [67] propose
to understand the ability of CNN layers to solve problems
caused by training data.

Deep learning-based solutions should improve the model
interpretability, especially for the software vulnerability de-
tection task. The immediate reason is to gain broad accep-
tance among a wider group of researchers and practition-
ers as the skepticism over deep learning persists. One first
and foremost argument is that deep learning algorithms are
vulnerable to backdoors and data poisoning attacks [56].
Although nobody can guarantee that their deep learning
model is immune to adversarial attacks [26], [44], [90],
deep learning models with enhanced interpretability boost
the confidence of users and developers [22]. We must be
aware that simple tools like LIME have been attacked by
security experts [71], [89]. Hence, we anticipate that future
research works will improve the resilience against adversarial
attacks while providing interpretable results.

B. APPLICATION SCOPE
In the field of software vulnerability detection based on
deep learning, most works surveyed in this paper detect
vulnerabilities in source code, such as [31], [32], [35], [37].
These methods do not apply to detect vulnerabilities when
source code is unavailable. Furthermore, these methods often
do not work well even when a small amount of source code
is available because deep learning models require a large
amount of data for training [37]. In particular, the scarcity of
vulnerable code usually leads to the data imbalance problem
[15]. Therefore, we urgently need research to overcome the
over-reliance on the availability of source code for vulnera-
bility detection.

With the advancement of Al, new paradigms are proposed
to tackle the data imbalance problem. Transfer learning [51]

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

is a novel machine learning paradigm to enable classifiers to
work on different datasets. However, only a few works [37]
surveyed in this paper apply transfer learning to mitigate the
data imbalance problem. One of the biggest challenges for
widely applying transfer learning is the high computational
expenses required for training deep learning-based vulnera-
bility detectors as hundreds of hours are spent on powerful
servers on training some of the current datasets [35], [37].
To leverage the computational resources, federated learning
offers a novel approach so that the learning process can be
distributed even on some less powerful machines [85].

Future research in deep learning-based vulnerability de-
tection may thrive in manifolds in terms of mitigating data
imbalance problems. Although source code with vulnerabil-
ity is rare, future research may investigate many compiled
executable programs in the binary code with known vulner-
abilities subject to license agreement and legal conditions
[16]. With the help of federated learning, Low-power IoT
devices like Raspberry Pi and smartphones could play a
significant role in training deep learning models like CNNs
or AutoEncoders [8], [25]. Last but not least, detecting secu-
rity vulnerabilities from emerging blockchain applications is
becoming a promising topic [53]. Hence, we anticipate that
future research works will analyze binary executable files
and apply new paradigms like transfer learning and federated
learning.

C. DETECTION GRANULARITY
Many deep learning-based studies reviewed in this survey
suffer from a performance bottleneck due to the coarse
vulnerability detection granularity. These studies only detect
vulnerabilities at function-level, such as [28], [30], [35], [42],
[47], some even at file-level, such as [49], [75]. However, the
detection granularity at the function- or at file-level may fail
to pinpoint the exact location of vulnerable code statement(s)
since a vulnerable function or file may have tens of even up to
thousands of lines of code. Therefore, fine-grained detection
methods can eliminate foreign characteristics in the analysis
process while providing detailed auditing information.

Increasing the number of training samples is a strategy
to improve the performance of deep learning-based vulner-
ability detection models. Fortunately, many question and
answer (Q&A) sites like Stack Overflow have millions of
code snippets. A quantitative approach is proposed in [13] to
measure the proliferation of 4,019 security-related code snip-
pets from Stack Overflow. A large number of code clones are
detected by [55] from high-quality answers posted on Stack
Overflow. Furthermore, the repeatability and reproducibility
are investigated in [39] for the deep learning models for
detecting software vulnerabilities using the code information
retrieved from Stack Overflow. Hence, Stack Overflow offers
promising perspectives for improving the detection granular-
ity level of deep learning-based vulnerability detectors.

It is necessary and beneficial for deep learning models to
be trained with high-quality data containing vulnerability to
improve detection granularity. Real-world software reposi-

12

tories contain billions of code lines with noises, but deep
learning models need to be fed with short code snippets.
Stack Overflow is the right candidate to retrieve code snippets
because there is a steadily increasing number of code snippets
posted and verified by users concerning multiple program
languages. Hence, we expect future research to build deep
learning-based vulnerability detectors with fine granularity
levels using Stack Overflow data.

D. LARGE SCALE DATASET WITH GROUND TRUTH

A significant challenge in deep learning-based vulnerabil-
ity detection is the lack of datasets. The available datasets
often cannot be applied in deep learning to train directly
because of the need to preprocess data. Although there is
a rich source of vulnerability data followed by many vul-
nerability detection methods, many of them are not publicly
available or free for use. Moreover, there is no publicly
available vulnerability dataset labeled with the ground truth.
Especially for deep learning-based methods, many training
data is required to achieve excellent performance. Besides,
the data collection process often requires experts to label
code laboriously. Hence, the manual software vulnerability
collection process is expensive. Some research works attempt
to address the challenge of lack of vulnerability data through
machine learning techniques [35], [47]. Other works use NLP
techniques by applying word embeddings and deep neural
networks on language features of vulnerability descriptions
to predict vulnerability severity [17]. Nevertheless, lacking
datasets with labels has been a challenge for constructing
deep learning-based vulnerability detectors.

Self-supervised learning is a new paradigm in machine
learning research. One of its main advantages is the ability
to generate labels from the training data automatically. This
process is called pretraining. And there are multiple pre-
training methods for various deep learning architectures,
such as DBM [19], CNN [23], RNN and LSTM [5], [86],
and many more. Empirical studies in these works show that
most labels obtained through the pretraining process are
of high quality if we set the training objectives properly.
Furthermore, there are readily available tools and solutions to
perform pretraining like BERT [10] and ELMo [52]. Despite
the extra computational resources of the pretraining process,
BERT or ELMo may be a viable solution to generate labels
in mass batches.

For generating many labels on software vulnerability data,
self-supervised learning may be a practical solution. The
research in pretraining language data is much more mature
than pretraining software source code or even binary code.
Despite the current absence of research outcomes in software
vulnerability detection, the success of BERT and ELMo
should have given researchers and practitioners confidence
and opportunities to explore. We anticipate that pretraining
techniques and tools will be applied to label software vulner-
ability data soon.

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

E. SEMANTIC INFORMATION PRESERVATION

As pointed out by the surveyed works in [35], [47], seman-
tic information of software code cannot be fully preserved
during the stage of data processing. The information loss can
be caused by the truncated code sequences in order to form
the fixed-length vectors required by the deep learning algo-
rithms. Additionally, to reduce the computational cost and to
facilitate the effective learning of contextual information, the
code sequences fed to a deep neural network should be kept
in a relatively short length. Nevertheless, the truncation of
overly long code sequences is inevitable, which also results
in the information loss.

Besides, many reviewed studies use ASTs and CFGs
derived from source code as features. However, the ASTs
and CFGs are not directly used as inputs, instead, they are
“flattened" before feeding to neural networks [33]. Namely,
the ASTs and CFGs are processed sequentially. This may
lose the hierarchical information kept in the tree or graph
structure. One of the possible solutions can be utilizing Graph
Neural Networks (GNNs) [80] to process the ASTs, CFGs,
and other graph-based program representations. Hence, ap-
plying graph neural networks to process structural program
representations for software vulnerability detection may be
an interesting future research direction.

V. CONCLUSION

This paper reviews recent studies applying deep learning for
vulnerability detection and identifies four cornerstones in this
field. We call these four cornerstones as four game changers
because they provide novel ideas and approaches by bringing
fresh air to the field of deep learning-based vulnerability
detection. According to four game changers, we categorize
relevant research works to provide an organized review for
researchers in this emerging field. This survey provides an
understanding of vulnerability detection achievements and
research trends based on deep learning and future research
directions. Our main conclusion is that the application of
deep learning techniques for software vulnerability analysis
and discovery is not yet mature through the review of existing
studies. With the rapid development of data-driven tech-
niques, significant advances in machine learning and deep
learning will continuously increase vulnerability detection
value. This developing but rapidly growing field will inspire
and attract more researchers to contribute to it.

ACKNOWLEDGMENT

This research was supported by the Optoelectronic Infor-
mation Technology Key Laboratory Open Project Fund of
Yunnan Province, China (YNOE-2020-01) and the 2019
Educational Research Project of Fujian Province, China
(KC20008P).

REFERENCES

[11 M. G. Augasta and T. Kathirvalavakumar, “Reverse engineering the neural
networks for rule extraction in classification problems,” Neural Processing
Letters, vol. 35, no. 2, pp. 131-150, 2012.

VOLUME xxx, 20xx

[2] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 987-1001, 2020.

[3] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[4] M.-j. Choi, S. Jeong, H. Oh, and J. Choo, “End-to-end prediction of
buffer overruns from raw source code via neural memory networks,” arXiv
preprint arXiv:1703.02458, 2017.

[5] A. Conneau and G. Lample, “Cross-lingual language model pretraining,”
in Advances in Neural Information Processing Systems, 2019, pp. 7059—
7069.

[6] R. Coulter, Q. Han, L. Pan, J. Zhang, and Y. Xiang, “Data-driven cyber
security in perspective—intelligent traffic analysis.” IEEE Transactions on
Systems, Man, and Cybernetics, pp. 1-13, 2019.

[71 ——, “Code analysis for intelligent cyber systems: A data-driven ap-
proach,” Information Sciences, vol. 524, pp. 4658, 2020.

[8] R. Coulter and L. Pan, “Intelligent agents defending for an iot world: A
review,” Computers & Security, vol. 73, pp. 439—458, 2018.

[9] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint
arXiv:1708.02368, 2017.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in Proceed-
ings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies,
2019, pp. 4171-4186.

[11] F. Dong, J. Wang, Q. Li, G. Xu, and S. Zhang, “Defect prediction in
android binary executables using deep neural network,” Wireless Personal
Communications, vol. 102, no. 3, pp. 2261-2285, 2018.

[12] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software defect prediction
via attention-based recurrent neural network,” Scientific Programming,
vol. 2019, pp. 1-14, 2019.

[13] F Fischer, K. Béttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in Proceedings of the 2017 IEEE Sympo-
sium on Security and Privacy (S&P). IEEE, 2017, pp. 121-136.

[14] R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes
by meaningful perturbation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 3429-3437.

[15] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and
discovery using machine-learning and data-mining techniques: A survey,”
ACM Computing Surveys, vol. 50, no. 4, p. 56, 2017.

[16] D. Gibert, C. Mateu, and J. Planes, “Hydra: A multimodal deep learning
framework for malware classification,” Computers & Security, p. 101873,
2020.

[17] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict
severity of software vulnerability using only vulnerability description,”
in Proceedings of the 2017 IEEE International Conference on Software
Maintenance and Evolution ICSME). IEEE, 2017, pp. 125-136.

[18] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta, A. Ranga-
mani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Ellingwood
et al., “Automated software vulnerability detection with machine learning,”
arXiv preprint arXiv:1803.04497, 2018.

[19] G. E. Hinton and R. R. Salakhutdinov, “A better way to pretrain deep
boltzmann machines,” in Advances in Neural Information Processing
Systems, 2012, pp. 2447-2455.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Holzinger, “From machine learning to explainable ai,” in Proceedings

of the 2018 World Symposium on Digital Intelligence for Systems and

Machines (DISA). IEEE, 2018, pp. 55-66.

[22] X.Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, and
X. Yi, “A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability,”
Computer Science Review, vol. 37, p. 100270, 2020.

[23] Y.Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, “Vehicle logo recognition
system based on convolutional neural networks with a pretraining strat-
egy,” IEEE Transactions on Intelligent Transportation Systems, vol. 16,
no. 4, pp. 1951-1960, 2015.

[24] T. Ji, Y. Wu, C. Wang, X. Zhang, and Z. Wang, “The coming era of
alphahacking?: A survey of automatic software vulnerability detection,

[21

13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE Access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3034766, IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

exploitation and patching techniques,” in Proceedings of the 2018 IEEE
3rd International Conference on Data Science in Cyberspace (DSC).
IEEE, 2018, pp. 53-60.

E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Maldozer:
Automatic framework for android malware detection using deep learning,”
Digital Investigation, vol. 24, pp. S48-S59, 2018.

R. S. S. Kumar, M. Nystrom, J. Lambert, A. Marshall, M. Goertzel,
A. Comissoneru, M. Swann, and S. Xia, “Adversarial machine learning—
industry perspectives,” arXiv preprint arXiv:2002.05646, 2020.

T. Le, T. Nguyen, T. Le, D. Phung, P. Montague, O. De Vel, and L. Qu,
“Maximal divergence sequential autoencoder for binary software vulnera-
bility detection,” in Proceedings of the 2018 International Conference on
Learning Representations, 2018.

R. Li, C. Feng, X. Zhang, and C. Tang, “A lightweight assisted vulnera-
bility discovery method using deep neural networks,” IEEE Access, vol. 7,
pp. 80079-80092, 2019.

X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, “Automated vulnerabil-
ity detection in source code using minimum intermediate representation
learning,” Applied Sciences, vol. 10, no. 5, p. 1692, 2020.

Z.Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: A deep
learning-based fine-grained vulnerability detector,” arXiv: Cryptography
and Security, 2020.

Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang,
“Sysevr: A framework for using deep learning to detect software vulnera-
bilities,” arXiv preprint arXiv:1807.06756, 2018.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detection,”
in Proceedings of the 2018 NDSS, 2018.

G. Lin, Q. H. Sheng Wen, and Y. X. Jun Zhang, “Software vulnerability
detection using deep neural networks: A survey,” Proceedings of the IEEE,
pp. 1-24, 2020, DOI: 10.1109/JPROC.2020.2993293.

G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based vul-
nerable function detection: A benchmark,” in Proceedings of the 2019
International Conference on Information and Communications Security.
Springer, 2019, pp. 219-232.

G. Lin, J. Zhang, W. Luo, L. Pan, O. De Vel, P. Montague, and Y. Xiang,
“Software vulnerability discovery via learning multi-domain knowledge
bases,” IEEE Transactions on Dependable and Secure Computing, 2019,
DOI: 10.1109/TDSC.2019.2954088.

G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “Poster: Vulnerability
discovery with function representation learning from unlabeled projects,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer &
Communications Security (CCS). ACM, 2017, pp. 2539-2541.

G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and P. Montague,
“Cross-project transfer representation learning for vulnerable function
discovery,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3289-3297, 2018.

B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery tech-
niques: A survey,” in Proceedings of the 2012 4th International Conference
on Multimedia Information Networking and Security. IEEE, 2012, pp.
152-156.

C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On the replica-
bility and reproducibility of deep learning in software engineering,” arXiv
preprint arXiv:2006.14244, 2020.

L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and pre-
venting cyber insider threats: A survey,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 2, pp. 1397-1417, 2018.

S. Liu, M. Dibaei, Y. Tai, C. Chen, J. Zhang, and Y. Xiang, “Cyber
vulnerability intelligence for internet of things binary,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 3, pp. 2154-2163, 2020.

S. Liu, G. Lin, Q. Han, S. Wen, J. Zhang, and Y. Xiang, “Deepbalance:
Deep-learning and fuzzy oversampling for vulnerability detection,” IEEE
Transactions on Fuzzy Systems, vol. 28, no. 7, pp. 1329-1343, 2020.

S. Liu, G. Lin, L. Qu, J. Zhang, O. D. Vel, P. Montague, and Y. Xiang,
“Cd-vuld: Cross-domain vulnerability discovery based on deep domain
adaptation,” IEEE Transactions on Dependable and Secure Computing,
2020, DOI: 10.1109/TDSC.2020.2984505.

X. Ma, Y. Niu, L. Gu, Y. Wang, Y. Zhao, J. Bailey, and F. Lu, “Under-
standing adversarial attacks on deep learning based medical image analysis
systems,” Pattern Recognition, p. 107332, 2020.

R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, vol. 27, pp. 504-518,
2015.

[46]

[47]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59

[60]

[61]

[68]

S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vul-
nerable software components,” in Proceedings of the 14th ACM SIGSAC
Conference on Computer & Communications Security (CCS). ACM,
2007, pp. 529-540.

V. Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu,
and D. Phung, “Deep domain adaptation for vulnerable code function
identification,” in Proceedings of the 2019 International Joint Conference
on Neural Networks (IICNN). IEEE, 2019, pp. 1-8.

NIST, “Software assurance reference dataset project,” https://samate.nist.
gov/SRD/, 2018, accessed: 2020-07-20.

W. Niu, X. Zhang, X. Du, L. Zhao, R. Cao, and M. Guizani, “A deep
learning based static taint analysis approach for iot software vulnerability
location,” Measurement, vol. 152, p. 107139, 2020.

V. Okun, A. Delaitre, and P. E. Black, “Report on the static analysis tool
exposition (sate) iv,” NIST Special Publication, vol. 500, p. 297, 2013.
S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359,
20009.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceed-
ings of the 2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies,
2018, pp. 2227-2237.

P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security analysis
methods on ethereum smart contract vulnerabilities: A survey,” arXiv
preprint arXiv:1908.08605, 2019.

D. RadjenoviAG, M. HeriAmko, R. Torkar, and A. AjivkoviAm, “Software
fault prediction metrics: A systematic literature review,” Information and
Software Technology, vol. 55, no. 8, pp. 1397-1418, 2013.

C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering, pp. 1-1, 2019, DOI: 10.1109/TSE.2019.2900307.

K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial attacks and defenses in
deep learning,” Engineering, vol. 6, pp. 346-360, 2020.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135-1144.

——, “Anchors: High-precision model-agnostic explanations,” in Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.
R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in Proceedings of
the 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2018, pp. 757-762.

S. L. Salzberg, “Book review: C4.5: Programs for machine learning by j.
ross quinlan. morgan kaufmann publishers, inc., 1993,” Machine Learning,
vol. 16, no. 3, pp. 235-240, 1994.

W. Samek, T. Wiegand, and K.-R. Miiller, “Explainable artificial intelli-
gence: Understanding, visualizing and interpreting deep learning models,”
arXiv preprint arXiv:1708.08296, 2017.

M. Sato and H. Tsukimoto, “Rule extraction from neural networks via de-
cision tree induction,” in Proceedings of the International Joint Conference
on Neural Networks (IICNN’01), vol. 3. IEEE, 2001, pp. 1870-1875.
“Record-breaking number of vulnerabilities disclosed
in 2017: Report,” https://www.securityweek.com/
record-breaking-number-vulnerabilities-disclosed-2017-report,
SecurityWeek, February, 2018, accessed: 2018-05-28.

C. D. Sestili, W. S. Snavely, and N. M. VanHoudnos, “Towards security
defect prediction with ai,” arXiv preprint arXiv:1808.09897, 2018.

L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application vulnerability
prediction using hybrid program analysis and machine learning,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 6, pp.
688-707, 2015.

L. K. Shar and H. B. K. Tan, “Predicting common web application
vulnerabilities from input validation and sanitization code patterns,” in
Proceedings of the 27th IEEE/ACM International Conference on Auto-
mated Software Engineering, 2012, pp. 310-313.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn fea-
tures off-the-shelf: an astounding baseline for recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2014, pp. 806-813.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating com-
plexity, code churn, and developer activity metrics as indicators of soft-

VOLUME xxx, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3034766, IEEE Access

IEEE Access

Zeng et al.: Software Vulnerability Analysis and Discovery using Deep Learning Technique: A Survey

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

ware vulnerabilities,” IEEE Transactions on Software Engineering, vol. 37,
no. 6, pp. 772-787, 2011.

Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?” Empirical Software Engineering, vol. 18,
no. 1, pp. 25-59, 2013.

S. K. Singh and A. Chaturvedi, “Applying deep learning for discovery and
analysis of software vulnerabilities: A brief survey,” in Soft Computing:
Theories and Applications. ~ Springer, 2020, pp. 649-658.

D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling lime and
shap: Adversarial attacks on post hoc explanation methods,” in Proceed-
ings of the AAAI/ACM Conference on Al, Ethics, and Society, 2020, pp.
180-186.

S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory networks,”
in Advances in Neural Information Processing Systems, 2015, pp. 2440-
2448.

N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang, “Data-
driven cybersecurity incident prediction: A survey,” IEEE Communica-
tions Surveys and Tutorials, vol. 21, no. 2, pp. 1744-1772, 2019.

D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek, “Hackers vs.
testers: A comparison of software vulnerability discovery processes,” in
Proceedings of the 2018 IEEE Symposium on Security and Privacy (S&P).
IEEE, 2018, pp. 374-391.

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for
defect prediction,” in Proceedings of the 38th International Conference on
Software Engineering (ICSE). ACM, 2016, pp. 297-308.

X. Wang, X. He, F. Feng, L. Nie, and T.-S. Chua, “Tem: Tree-enhanced
embedding model for explainable recommendation,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 1543-1552.

Y. Wang, P. Jia, L. Liu, and J. Liu, “A systematic review of fuzzing based
on machine learning techniques,” arXiv: Cryptography and Security, 2019.
J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv preprint
arXiv:1410.3916, 2014.

——, “Memory networks,” arXiv preprint arXiv:1410.3916, 2014.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1-21, 2020, DOI:
10.1109/TNNLS.2020.2978386.

N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable deep learning:
A field guide for the uninitiated,” arXiv preprint arXiv:2004.14545, 2020.
X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
& Communications Security (CCS, 2017.

F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation: as-
sisted discovery of vulnerabilities using machine learning,” in Proceedings
of the 5th USENIX Conference on Offensive Technologies. =~ USENIX
Association, 2011.

F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC). ACM,
2012, pp. 359-368.

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1-19, 2019.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,
“Xlnet: Generalized autoregressive pretraining for language understand-
ing,” in Advances in Neural Information Processing Systems, 2019, pp.
5753-5763.

J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network traffic
classification,” IEEE ACM Transactions on Networking, vol. 23, no. 4, pp.
1257-1270, 2015.

J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network
traffic classification using correlation information,” IEEE Transactions on
Parallel and Distributed systems, vol. 24, no. 1, pp. 104-117, 2013.

X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang, “Interpretable
deep learning under fire,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20), 2020.

X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” arXiv preprint arXiv:2004.11573, 2020.

J. R. Zilke, E. L. Mencfa, and F. Janssen, “Deepred—rule extraction from
deep neural networks,” in Proceedings of the International Conference on
Discovery Science. Springer, 2016, pp. 457-473.

VOLUME xxx, 20xx

[92] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “pvuldeepecker: A deep

learning-based system for multiclass vulnerability detection,” IEEE Trans-
actions on Dependable and Secure Computing, pp. 1-1, 2019, DOI:
10.1109/TDSC.2019.2942930.

PENG ZENG is working towards his master’s
degree in the School of Physics & Electronic
Information in the Yunnan Normal University,
China. His research interests include the use of
deep learning and vulnerability data analysis for
software vulnerability detection.

GUANJUN LIN received the Ph.D degree in the
School of Software and Electrical Engineering
at the Swinburne university of technology, Mel-
bourne, VIC., Australia, in 2019. He is current
a lecturer at School of Information Engineering,
Sanming University. His research interest is the
application of deep learning techniques for soft-
ware vulnerability detection.

LEl PAN (M’12) received the Ph.D. degree in
computer forensics from Deakin University, Aus-
tralia, in 2008. He is currently a Senior Lec-
turer with the School of Information Technology,
Deakin University. His research interests are cyber
security and privacy. He has authored 50 research
papers in refereed international journals and con-
ferences, such as the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY,
the IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, and the IEEE TRANSACTIONS ON IN-
DUSTRIAL INFORMATICS.

YONGHANG TAI received his Ph.D. degree in
computer science in 2019 of IISRI from Deakin
University, Geelong, VIC, Australia. He is now
an associate professor in the School of Physics &
Electronic Information in the Yunnan Normal Uni-
versity, China. His current research interests in-
clude physics-based simulation, applied Al, medi-
cal AR/MR and precision medicine.

JUN ZHANG is a professor in the School of
Physics & Electronic Information in the Yunnan
Normal University, China. His research interests
include applied Al, big data analytics, precision
medicine and healthcare digital twin. He has pub-
lished over 100 research papers in refereed inter-
national journals and conferences. He has served
as chairs in many international conferences.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

