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Abstract: Conventional planning of maintenance and renewal work for railway track is based on
heuristics and simple scheduling. The railway industry is now collecting a large amount of data
with the fast-paced development of sensor technologies. These data sets carry information about the
conditions of various components in railway track. Since just before the beginning of the 21st century,
data-driven models have been used in the predictive maintenance of railway track. This study
presents a systematic literature review of data-driven models applied in the predictive maintenance
of railway track. A taxonomy to classify the existing literature based on types of models and types of
applications is provided. It is found that applying the deep learning methods, unsupervised methods,
and ensemble methods are the new trends for predictive maintenance of railway track. Rail geometry
irregularity, rail head defect, and missing rail components detection were the top three most commonly
considered issues within the application of data-driven models. Prediction of rail breaks has received
increasing attention in the last four years. Among these data-driven model applications, the collected
data types are the most critical factors which affect selecting suitable models. Finally, this study
discusses upcoming challenges in the predictive maintenance of railway track.

Keywords: railway track; data-driven models; predictive maintenance; measurement data;
machine learning

1. Introduction

Railway track is one of the most critical parts in railway system. Track-caused accidents has
consistently constituted 30-40% of total accidents for the past decade in America [1]. With high
traffic levels, huge axle loads and varying environmental conditions even small flaws in railway track
may develop into severe damage [2,3]. Therefore, to avoid disruption in rail network, railway tracks
need to be maintained regularly and monitored for unusual degradation.

Globally, the railway industry spends a large amount of money on maintenance and
renewal projects. The annual maintenance expenditure of British railway infrastructure was more
than £1 billion in 2015; almost two-thirds of the Network Rail organization’s employees engaged in
maintenance work [4]. In the United States of America, over half of the railway maintenance costs are
related to track [5].

To reduce the maintenance costs, it is crucial to find suitable maintenance strategies. In the
literature, maintenance strategies include corrective, preventive, condition-based, and predictive
maintenance [6-9].
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e  Corrective maintenance happens only when the track needs to be repaired. It is performed after
a fault has occurred, resulting in the need for a backup transport service to be organized and
dispatched as soon as possible. These factors lead to remarkably high costs and fees from the
incurred service interruptions.

e Preventive maintenance happens periodically with a planned schedule before track failures,
which reduces the useful life of track components due to early replacement. Unnecessary
maintenance actions may be taken, leading to additional cost.

e Condition-based maintenance aims to optimize maintenance strategies based on the estimation
of the track status. Recent advancements in smart sensors enable railway engineers to estimate
the real-time track conditions. Components are then repaired or replaced only when conditions
exceed some thresholds.

e Predictive maintenance is a predictive framework to estimate the time when a fault is likely to
occur and to adopt maintenance interventions accordingly. It is a proactive process that requires
the development of a predictive model. The maintenance can be carried out whenever it is
convenient for the railway asset managers before the predicted failure time.

Predictive maintenance strategy is the most desirable because it reduces track failure rates and
minimizes maintenance costs by extending the life of track components and allowing operators to plan
maintenance operations ahead of time [9].

Optimum maintenance strategy in the railway industry depends on information collected
from existing monitoring facilities. Railway track monitoring methods include walking patrol [10],
mechanized track patrol [11], and wayside detectors [12]. In a walking patrol, patrollers look for signs
of track defects, particularly where immediate action is required. The mechanized track patrol includes
specific inspection cars and in-service vehicles. Wayside detectors are fixed sensors along the track.
These inspection methods aim to detect obstructions, broken rails, track geometry defects, signs of
earthworks or drainage failure, and security of track signage.

An abundance of data is now available in the railway industry. The characteristics of these data
include large-volume, multi-source, highly imbalanced towards normal behavior, and high noise.
These are described in Table 1.

Table 1. Characteristics of railway measurement data.

Characteristics Descriptions Examples

Collecting huge amounts of data from
two aspects:
Time domain (real-time, nearly real-time
or streamlines).
Space domain (thousands of miles).

More than 60 million records of track
geometry measurement data set were
collected in a U.S. Class I rail network for
100 miles from 2012 to 2017 [11].

Large-volume

Predict the remaining useful life of railcar
by fusing data from wheel impact load
detector, machine vision systems and
optical geometry detectors [12].

Multi-source refers to the various
measurement methods from which data can
be generated in multiple types.

Multi-source

Highly-imbalanced

The rail defects are highly skewed in the
collected data sets. Majority of observations
belong to the normal states while only a
small portion are related to defects.

Pre-process the imbalanced rail image data
by sampling techniques and
semi-supervised techniques before rail
defect detection [13].

High noise

Noise come from two aspects during the
data collection:

The inherent environmental uncertainty
along the track: soil type, climate condition,
track profile, and materials.

The precision of sensors.

Use of derivatives and smoothing can
reduce the noise present in the raw
measurements and thus improve the quality
of the signal [12].

The models used to evaluate the track conditions for diagnostic and prognostic purposes can
be grouped into mechanical models and data-driven models [7]. Mechanical models are based
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on mechanistic knowledge of component behavior and rely on simplifying assumptions of track
components. Data-driven approaches, which do not have such dependencies, have been increasingly
applied in predictive maintenance of railway track. Analyzing the railway measurement data sets
with data-driven approaches has recently been an area of focus, both within academia and industry.

Data-driven methods discover viable feature sets and decision criteria from observed data.
These methods include statistical models and machine learning models [14]. The primary difference
between these two types lies in the main goal of the analysis. Statistical models make inferences about
the relationships between variables, whilst machine learning models focus on making the most accurate
predictions possible. Both types can handle high dimensional and multivariate data, and extract
hidden relationships between the track status and measurement data. Overall, data-driven methods
help railway engineers to understand the status of the railway track better and make corresponding
maintenance decisions. However, the performance of the data-driven methods depends on the
appropriate choice of data pre-processing and analysis models.

There are several reviews in the literature on the application and challenges in predictive
maintenance of railway track. However, most of these studies focus on a specific aspect of railway track.
For example, in Soleimanmeigouni [15], a survey of track geometry degradation and maintenance
models was conducted. A survey of track degradation prediction models based on mechanical models,
statistical models and artificial intelligence models was provided in Reference [14]. Sol-Sanchez [16]
conducted a literature review focusing on the effectiveness of the major conventional techniques and
materials for track design and maintenance, as well as innovative solutions being developed to reduce
track degradation. Other survey articles on the application of data analytics in a specific aspect of
railway track can be found in the literature [17-20]. To the best of the authors” knowledge, the literature
in this field suffers from the lack of a holistic survey covering all of the data-driven solutions in both
railway track defects detection, prediction, and maintenance decision-making.

This study provides a taxonomy to classify the existing literature based on types of models and
types of applications. The emphasis is on the selection of appropriate feature extraction methods and
data-driven models for different data sets, track defects, and maintenance strategies. This provides a
thorough overview of which approaches are being developed in this field and the performance of the
current state-of-the-art techniques.

Our fundamental motivation is to answer the following research questions:

1.  What are the measurement methods and data sets used in railway track engineering?
How are data-driven models employed in the predictive maintenance of railway track?

3. How should one choose suitable methods for different data types, track defects, and maintenance
strategies?

The remaining part of the paper is organized as follows: Section 2 develops a statistical analysis
aiming to provide a complete picture of current research interests and publication trends for predictive
maintenance of railway track. Section 3 covers the track measurement methods and various classical and
advanced data-driven algorithms applied in this field. Then, Section 4 specifically studies data-driven
models applied with different measurement data types, track defects, and maintenance strategies.
Section 5 provides future challenges and suggestions for the development of predictive maintenance
methods for railway track. Finally, Section 6 concludes this paper.

2. Systematic Literature Review

Systematic literature review is commonly used to summarize and interpret the relevant parts of
research [21,22]. From a methodological point of view, systematic literature review is a secondary study.
Related publications are labeled to critically evaluate the available approaches provide for statistical
analysis. The implementation of this systematic literature review was based on the proposed
methodology from Reference [21].
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2.1. Material Collection

The mainstream literature databases were searched for this analysis, including ScienceDirect,
Scopus, and IEEE Xplore. Due to a lack of standard terminology in this field, several keywords were
used in the search to ensure all relevant papers were captured. The keywords used in this paper were
the combination of the following words (“predictive maintenance” OR “condition-based maintenance”)
AND (“railway” OR “rail” OR “track”) AND (“data-driven” OR “big data” OR “artificial intelligence”
OR “machine learning” OR “statistical”). Note that this survey only considered English papers in
journals, conferences, and dissertations. Articles with purely mathematical or physical methods were
not included. With the stated search parameters, a total of 218 publications were identified from 1999
to 2019 in this review.

2.2. Literature Statistical Analysis

This study provides overall statistics about the current state in data-driven models applied in
predictive maintenance of railway track. Figure 1 shows the number of articles published between 1999
and 2019 in this field with a quadratic trend line. Research on the data-driven models for predictive
maintenance of railway track started just before the beginning of the 21st century. The publication rate
increased slightly with the increasingly more widespread use of computers and new measurement
technologies. Before 2013, less than ten papers were published each year. After 2013, there has been
considerable growth in the field’s publication rate. Specifically, the average number of papers increased
from 3.1 articles per year during 1999-2012 to 25 papers per year in 2013-2019. Especially in the last
three years, the publication rate has jumped to an average of approximately 40 per year.
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Figure 1. Number of publications per year with a trend line.

To give readers an intuitive understanding of the topics from the selected publications, a novel
text analysis method [23] was used. The titles and abstracts of all 218 papers were extracted to pick
up the word frequency lists and draw the word frequency distribution plots. The larger the word,
the more frequently it appears in the collected publications. Figure 2 shows the 65 most frequently
used words among the titles and abstracts.

It is worth mentioning that, other than the keywords used in searching for these publications,
the most frequent words “geometry”, “inspection”, “defects”, “prediction”, and “degradation”
indicate the most popular topics among these studies. The details of these topics are covered in the

following sections.
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Figure 2. Word frequency distribution for the paper titles and abstracts.

3. Results of the Systematic Literature Review

This section summarizes the methods and models used in the identified publications to answer
the fundamental research questions 1 and 2. Firstly, data acquisition and track measurement methods
in railway track engineering is discussed. Then, an overview of the publication distribution among
the data-driven methods is presented. Finally, various classical and advanced data-driven algorithms
applied in predictive maintenance of railway track are discussed.

3.1. Data Acquisition in Railway Track Engineering

Data acquisition is the first step in the application of data-driven models. The railway industry
uses a set of measurement methods to collect relevant data. These measurements are carried out at
different frequencies based on analysis and experience, targeting specific aspects of the track conditions.
The commonly used measurement methods for railway track are summarized in Table 2.

Table 2. Measurement methods in railway track engineering.

Methods Technologies Monitoring Objects Advantages Disadvantages
Walking patrols Visual, u%trasonic Ballast sectic?n, ties, Flexible Time-consuming,
testing fasteners, rail head unsafe
Camera-based
Specific measu.remer}t, Track geometry, rail .Eff1c1er1t, High-cost, low
. . ultrasonic testing, head, ties, fasteners, multi-channel data
inspection cars . X < e . frequency
. vibration acoustic, substructure verification, periodic
Mechanized eddy, laser, magnetic

track patrols
Camera-based

Efficient, flexible,
measurement,

In-service . . Track geometry, rail multi-channel data . .
R ultrasonic testing, . - . High-noise level

vehicles . . head, ties, fasteners  verification, real-time

vibration, L

. monitoring

displacement
. . Rail head, wheel-rail
Fiber, meteorological intera,ctions
Wayside detectors sensor, impact load ¢ High stability High-cost
temperature,
detector
weather

As shown in Table 2, railway measurement methods include walking patrols, mechanized track patrols,
and wayside detectors. Walking patrols are used in the areas that the rail vehicles are at slow speed
or are not allowed to operate. In this method, patrollers look for signs of track defects, particularly
where immediate action is required [24]. The mechanized track patrols include specific inspection
cars and in-service vehicles. To avoid the dangerous and inefficient walking inspections along the
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railway track, camera-based measurement has been widely adopted by railway industry. This method
is useful in measuring the surface defects and identifying missing track components. However, visual
inspection cannot find defects within rails. Internal microscopic defect detections can be identified
with ultrasonic testing [25]. Ultrasonic inspection cars can be used to detect rail breakages and internal
cracks [26]. In this method, the ultrasonic energy beam generated by the piezoelectric element is first
transmitted to the rail, and then the reflected or scattered energy of the transmitted beam is detected
by a sensor. Then, the amplitude and time information of the received signal is used to identify defects.
The main advantages of this approach are the possibility for extremely high testing speed and the
inherent sensitivity to the critical transverse-type defects in rail [27]. However, ultrasonic inspection
is not sufficient to detect cracks at an early stage where the cracks are too small to penetrate deep
enough through the material for ultrasonic detection. The eddy current measurements and magnetic
flux leakage are more suitable to detect such early defects in rails [25].

Measurements by specific inspection cars are usually carried out with a sparse frequency
and rarely on busy routes. This means that these data sets are usually not continuous nor do
they have a small enough time interval between readings [28]. Rather than using dedicated
inspection cars, the measurement platform can be mounted in standard trains with daily service [29].
The continuous measurement from every train provides a stream of data that can be used in the
data-driven analysis. These measurements can be used to monitor the dynamic train response (e.g.,
vertical axle acceleration, spring nest displacement, bogie bounce), track geometry data (e.g., track
twist, vertical rail profile, track curvature), and train driving parameters (e.g., brake cylinder pressure,
in-train forces). These monitoring results can provide regular and rapid insight into track behavior
over time [28].

Wayside detectors are fixed sensors along the track that collect information of interest.
These wayside detectors employ a variety of sensing technologies to measure force, heat, sound,
and geometry, among other values [12]. For example, the versatility of optical fiber Bragg grating
sensors is utilized in monitoring high voltage overhead lines, rail corrugations, and wheel-rail
interactions. The advantages of fiber sensors are immunity to electromagnetic interference, multiplexing
capabilities, long reach, lightweight, and high signal fidelity [30]. Wayside detectors can also be used
in environmental and meteorological monitoring, such as temperature sensors and weather recorders.
These sensors monitor the environment in which the tracks are placed.

3.2. Publication Distribution among the Data-Driven Methods

Before presenting the publication distribution, it is important to introduce some basic concepts
about the data-driven models. These models include statistical and machine learning models.
For statistical methods, the purpose is to estimate a small number of parameters from a large
collection of samples. The basic assumption is that the data fit a specific hypothesis, like the Weibull
distribution [31]. This is in contrast to machine learning, where a usually large set of model parameters
is estimated from huge amounts of samples. The machine learning method can extract more information
from the data without a priori knowledge [32]. The statistical models are better suited to inference
about the relationships between parameters, while the goal of machine learning is in making the most
accurate predictions, whether regression or classification. In this way, machine learning methods can
contribute to railway maintenance decision-making in a more direct and robust way.

A summary of the distribution of publications where data-driven models were applied in the
railway track prediction maintenance field is provided in Figure 3. Note that the statistics here only
include publications that give detailed input data, model construction, and output results descriptions.
In this way, a total of 109 publications were identified.
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Figure 3. The distribution of data-driven methods in predictive maintenance of railway track.

Figure 3 reveals a preference for the application of data-driven methods where each color represents
a kind of data-driven method. It is worth mentioning that most papers use machine learning (74%)
instead of statistical models (26%). The classical machine learning models dominate in machine
learning. The most employed classical machine learning algorithm was the support vector machine
(SVM) (33%), followed by artificial neural networks (ANN) (26%) and tree-based models (21%).
The advanced machine learning approaches of deep learning models, unsupervised learning models,
and ensemble models account for a combined 22% of applications.

3.3. Publication Trend Analysis

Figure 4 presents the trend of various data-driven methods that researchers developed in the
predictive maintenance of railway track.

18 -
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14 —a— statistical model
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Figure 4. Publication trend for data-driven methods in predictive maintenance of railway track.

To date, researchers have shown great interest in classical machine learning models, especially
during the last three years. The number of statistical model papers has also slowly increased, although
its proportion of all publications has slightly decreased. The advanced machine learning models
(unsupervised, ensemble, and deep learning models) have started to be used in the last five years.
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This may have occurred due to ability of these advanced models to exploit and cope with the modern
data set characteristics of large volume, multi-source, highly-imbalanced, and high noise of railway
measurement data (see Table 1 for details). These models will be discussed in the following sections.

3.4. Classical Data-Driven Models in Railway Predictive Maintenance

Classical data-driven models consist of statistical models and classical machine learning models
as shown in Figure 3. Table 3 discusses the advantages and disadvantages of classical data-driven
models and how they are employed in the predictive maintenance of railway track. More details about
these models can be found in Reference [14,18,33].

Table 3. Classical data-driven models in predictive maintenance of railway track.

Data-Driven Models Advantage Disadvantage Application
Regr.essm'n modelmg.(e,g., Simple; Prlor.knowledge of the Estimating the remaining useful
multivariable regression, interpretabilit data is needed to select life of railway track [34]
multi-stage regression) P Y the best fitting model y g
Probability distribution
model (e.g., Weibull, normal, Simple; Based on specific Prediction of track failure
lognormal and extreme interpretability hypotheses time [35]
value distributions)

Time series model (e.g.,
Statistical models ~ autoregressive (AR), . Time series is required to Prediction of the short-term
L Interpretability . . .
autoregressive integrated be stationary trend of track irregularity [36]
moving average (ARIMA))
Bayesian methods (e.g., Stable; better Predictors are required Investigation of the rail squat

Bayesian inference, Markov to be independent; prior

performance for failure probability using

Chain Monte Carlo . distribution assumption S
(MCMC)) small dataset size needed Bayesian inference [37]
Stochastic process (e.g., Better performance Based on sp ec1f}c Evaluating the deterioration of
. . hypotheses; not suitable
Markov process, Gaussian in process status . track geometry based on
o for mid to long-term
process, Gamma process) prediction 2 Markov process [38]
system prediction
Robust; no expert . . ..
. Time-consuming; poor Prediction of average track
ANN knowledge is interpretabilit degradation rates [39]
needed P Y & :
Efficiency in small . e Fast classification and
T, Poor interpretability; . .
data size; ability to " evaluation of rolling contact
SVM . . sensitive to kernel . .
Classical machine deal with nonlinear P . fatigue (RCF) defects in
s unction
learning model characteristics tracks [40]
Tree-based model (e.g., . . . Prediction of tram track
decision tree, random forest) Interpretability Overfitting on noisy data degradation index [41]
Not easy to determine
. Simple; hyper-parameter k; Classification of tamping
K-nearest neighbors (KNN) interpretability sensitive to data effectiveness [42]

distribution

3.5. Advanced Machine Learning Models in Predictive Maintenance of Railway Track

3.5.1. Deep Learning Models

A new trend in machine learning sees neural networks with greater and greater numbers of
layers and are known as deep learning algorithms. These methods rarely require pre-processing
of data, as they can learn the representation directly. These methods have been applied in many
complicated applications, such as image, audio, video, natural language, sentiment analysis, and
landslides prediction [43]. These deep learning methods have also been shown to be advantageous in
supporting the decision-making for railway track engineering. Typical deep learning models applied
in this field include convolutional neural networks (CNNSs), recurrent neural networks (RNNs), and
long-short-term memory (LSTM) models and are described next.

Convolutional neural network (CNN): CNNs have revolutionized machine learning applications
in the computer vision field for track defects detection. CNN models can reach human-level ability
(often used as a proxy for the Bayes error rate) in image recognition tasks [44]. It is a specific type of
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deep neural networks with special convolutional layers based on the convolution operation [44,45].
The convolution operation is able to extract features from general two-dimensional images in a
reliable manner. CNNs have been successfully applied to recognize track surface faults and identify
missing components. Faghih-Roohi [46] proposed a CNN solution for detecting rail surface defects
where the CNN was used to skip elaborate procedures of image feature extractions in other machine
vision methods. The accuracy of the rail defect classification was almost 92%. Zauner [47] used a
modified CNN structure called a fully convolutional network to realize the image semantic segmentation
for an autonomous rail tamping assistance system. The idea behind a fully convolutional network is
to extend a conventional CNN by replacing the fully connected layer with a convolution layer and
adding a convolution transpose layer. The semantic segmentation enables the computer to recognize
objects in images at the pixel level. In this way, a new turnout-tamping assistance system is proposed,
which can support and relieve the operator in complex tamping areas.

Recurrent Neural Network (RNN): RNNs are widely utilized to analyze time series or sequence
data obtained from track measurements, such as track geometry data. The most important feature of
the RNN is the ability to handle long period time series data through the use of an internal memory to
process inputs in place of the fully connected layers. The RNN unit takes the current and previous
input data into consideration at the same time, enabling the method to perform better at predicting
future trends given some historical sequence of data [43,48]. Heidarysafa [49] employed an RNN to
discover accident causes from the narrative field in the Federal Railroad Administration (USA) reports.
The term-frequency and Word2Vec method (where each word is mapped to a vector) is adopted to
change the accident text report into sequence vectors. The RNN was then used to classify the accident
cause and found important inconsistencies based on these sequence vectors. Lopes [50] used an RNN
to predict rail and geometry defects based on the integrated defect and inspection data. The prediction
from the RNN was used in the discounted Markov decision process model to determine optimal
inspection and maintenance scheduling strategies.

Long short term memory (LSTM): The training error for RNNs may accumulate to an unacceptable
level when the period is too long [51]. To bypass this problem, LSTM structures were proposed by
Hochreiter [52]. The LSTM units are composed of the input, output, and forget gates. This specific
structure contributes to a longer period of remembering ability. Ma [53] used an LSTM model to
predict vehicle-body vibration. A CNN was used to extract features and the LSTM was utilized to find
the inherent pattern in the track geometry time-series. By comparing the results with the LSTM, it
was shown that the CNN combined with LSTM improved performance. The predicted vehicle-body
acceleration could act as a new track quality index [53].

Unfortunately, the capabilities of advanced deep learning models often comes at significant cost in
terms of time-consuming training requirements when the data set is huge. In addition, deep learning
models are “black box” methods [54], making it difficult to explain predictions or communicate its
trustworthiness to railway engineers.

3.5.2. Unsupervised Learning Models

Unsupervised learning aims to find patterns automatically from unlabeled data. Clustering
methods and dimensionality reduction techniques are the most widely used unsupervised methods in
railway track engineering.

Clustering gives insights into the data distributions and is normally used in data processing.
Schalk [55] used the clustering method to find the worst affected areas (hotspots) in railway track
based on the RCF damages. The K-means method is commonly used to determine clusters. The data
gets divided into k partitions based on the distance between the samples [56]. When new data arrives,
the model can adjust the cluster centers automatically. Li [57] used the K-means clustering method
to obtain the possible normal state features of the track grids. Similar health features were classified
into the same cluster based on their track grid health index. The results showed better accuracy than
conventional health evaluation methods. The downsides of the K-means clustering include: difficulty



Geosciences 2020, 10, 425 10 of 24

in determining the number of clusters; non-repeatable classification results unless the random seed
remains constant; and results are sensitive to the scale of input data [58].

Deep autoencoders are now being used as a dimensionality reduction technique. These networks
are a type of neural network that learns to copy its input to its output, with the middle layers
containing fewer “neurons” than those at the input and output layers. Thus, the encoder maps
the input into a smaller dimension mid-parameter, and the decoder maps this mid-parameter to a
reconstruction of the original input. This method is widely used in feature extraction. Li [57] used deep
autoencoder networks to reduce the dimension of multiple track grid condition indices (functional
performance, structural fitness/integrity, safety and aesthetics), constructing new lower-dimensional
condition indices. These indices were then used to evaluate the overall health of the track grids.
The dimensionality-reduction performance of the deep autoencoder is better than that of the principal
component analysis (PCA) method [57].

3.5.3. Ensemble Models

To improve on the performance of individual machine learning models, combining two or more
models to build ensemble models is an approach used by many researchers [59-61]. Ensemble learning
creates an advanced model by combining the strengths of a set of base models. This can reduce the bias
of the final predictions or classifications since the results are less dependent on a particular model [59].
Aggregating and stacking are the two major methods for combining the base models. Aggregation is
the combination of the individual results based on a majority voting scheme, while stacking uses a
meta-learner concept to determine which classifiers are reliable and which are not [59]. The meta-model
uses the predicted result of each base model as input to get the final results. Cardenas-Gallo [60]
proposed an aggregating ensemble model to forecast the degradation of track geometry. This model
included three aspects: deterioration, regression, and classification. The results showed that the
ensemble method improves the predictive accuracy. Lasisi Ahmed Nii [61] proposed a stacking
ensemble model to predict the annual track fatigue defects. This study showed that classical Weibull
analysis underestimated annual fatigue defects by at least 25% throughout rail life. The stacking
ensemble model can compensate for this shortfall by aggregating the probability predictions of
diverse learners.

If the researchers are only interested in the best classification or prediction accuracy, an ensemble
model is usually better than any single one. However, this method will increase storage and
computation cost. Moreover, with the involvement of multiple models, the interpretability of the
model will decrease.

4. Data-Driven Model Application in Predictive Maintenance of Railway Track

Discussing the disadvantages and advantages of each algorithm is beyond the scope of this
paper because the performance of the data-driven methods depends on an appropriate choice of
the data with different characteristics and the problems of interest. No single algorithm is always
better than other algorithms over all datasets and all application scenarios. This section provides an
overview for the answer to the third fundamental research question: how should one choose suitable
methods for different data types, track defects, and maintenance strategies? Through this review,
suggestions for model selection are provided. In practice, researchers can try suitable methods based
on related research and experimentation. New technologies, such as the deep learning, ensemble,
and unsupervised learning models are recommended since they have proved to be feasible in many
other research fields.

4.1. Models for Different Measurement Methods

Different measurement methods can be grouped based on the outcome data types. For example,
for the track geometry recording car, the outcome data type is time series associated with
position information, while, for the camera-based method, the data may be collections of images
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or videos. The choice of algorithm is strongly influenced by the input data types. The commonly used
data types and applications are summarized in Table 4.

Table 4. Track measurement data types and applications in railway track engineering.

Data type Measurement Recent Applications
Track geometry recording car [62-64]
Ultrasonic [27,40,55,65]
Time series In-service vehicles [66—69]
Eddy [55,70]
Fiber [30,71,72]
Camera [73-76]
Image Ground penetrating radar [74,77]
Laser [40,75,78]
Video Camera [13,24,79,80]
Temperature, weather [30,81-83]
Discrete value Rail condition [81,84,85]
Tonnage [11,86,87]
Text record Accident/maintenance records [49,81,88]

It can be seen in Table 4 that the commonly used data types in the railway track engineering
include text, value, images (video can be captured as images), and time series. The following section
aims to provide suggestions on selecting appropriate data-driven models.

4.1.1. Time Series-Based Measurement Data Sets

The main track measurement methods being utilized around the world are track geometry
recording cars and in-service vehicles. The output data type for these measurements are time series.

Signal processing techniques are commonly used to extract time series features in both time and
frequency domains. These methods create features with clear physical meanings or interpretations.
Using the generated features can support the development of more concise and accurate classifiers.
In the time domain, instead of using the raw time-series data, statistics information can be extracted
to reduce the data dimension. Li [89] used several statistical features, including maximum values,
quantiles, means and standard deviations to represent the wayside detector values in the time domain.
In the frequency domain, the unusually high or low frequency may indicate anomalies [90]. The Fourier
transform is usually used to generate the frequency spectrum from time series signals. Lederman [91]
used the Fourier transform to extract frequency domain features from vibration signals collected
from the in-service vehicles to detect track degradation. The results showed that signal energy was
useful to detect track failures. It should be noted that the Fourier transform cannot be used directly to
process the non-stationary time series. An advanced approach to overcome this shortfall is a combined
time-frequency analysis [92]. Wavelet transforms have also proven to be useful in feature extraction
and anomaly detection [73]. Jiang [40] utilized the wavelet packet transform to decompose signals of
track surface defects in different frequency bands. The result showed that wavelet packet transform
can enhance the extraction of relevant information from the original signal.

Another important method to extract main features in railway measurement time series is using a
simplified index, such as the track quality index (TQI) [93]. These indices combine the track geometry
measurements, such as the longitudinal level, alignment, gauge, cant, and twist, and can be used as the
primary indicator supporting decision-making in the railway industry. Sadeghi [34] distinguished TQIs
into two parts: track geometry index (TGI) (a function of rail geometry parameters, such as profile,
gauge, and twist) and traffic index (a function of dynamic effects, speeds and loads). Globally, a set
of TQIs has been developed to evaluate track geometry measurements. Berawi [94] evaluated the
geometrical track quality based on the ] Synthetic Coefficient [95], the Indian TGI [96], and also the
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approach presented in the European Standard EN 13848-5 [97]. The results showed that using the
comprehensive index was better than when using any one particular index. PCA was also widely used
to capture the significant variations in the time series. PCA compresses the data set by generating a set
of new variables that have no linear correlation [89]. Lasisi [98] pointed out that the evaluation indices
from PCA were better for predicting defects and revealing salient characteristics in track geometry
data than TGL

The determination of maintenance activities on a track requires the establishment of a good
condition indicator value. For this, time series classification can be used to classify the status of
the tracks. Nadarajah [99] utilized a number of classification algorithms, like SVM, linear regression,
tree bagger, and KNN, to categorize the responses over 50-m sections of track into four distinct classes
and then determine the maintenance requirement based on these results. Sun [100] used a CNN
to present an end-to-end time series classifier for the detection of rail joints using acceleration data.
Time series were treated as one-dimensional images, in which the useful features were extracted from
the time domain. Animportant concept for classification is the “distance” between two given time series;
some metric defining the how similar two series are. The Euclidean norm is often used to calculate
the distance using the corresponding values directly. Dynamic time warping [101] is an algorithm
for measuring the similarity between two sequences by using the optimal match. The sequences are
warped in a nonlinear fashion to match each other. Dynamic time warping is robust to time shifts
and can align time series with different phases. Tan [42] used the data between two tamping dates
to form a time series. The KNN was then employed to classify the time series based on the dynamic
time warping. The results showed that the dynamic time warping based KNN performed better in
predicting tamping effectiveness than the decision tree and naive Bayes methods.

As for time series forecasting, if the measurement data sets consist of univariate data,
the autoregressive integrated moving average (ARIMA) model could be considered. Narezo [102]
utilized the ARIMA model to predict the evolution of incipient switch failures. The ARIMA model
assumes a linear correlation structure among the time series, and, therefore, no nonlinear patterns
can be captured. The approximation of linear models to complex real-world problem is not always
satisfactory [103]. Deep learning methods are recommended to deal with multiple time series
forecasting problems. These methods are robust to noise and can even learn in the presence of missing
values, accept multivariate inputs, and perform multi-step forecasts. Specific deep learning methods,
such as the RNN and LSTM, are quite suitable for long-term time-series forecasting. However, these
methods are yet to have been fully exploited in the time series forecasting of railway track engineering.

4.1.2. Image-Based Measurement Data Sets

Machine vision inspection is more objective and consistent compared to manual vision
measurement. Data-driven methods can process large amount of image data in a short time [104].
Li [105] proposed a real-time automatic machine vision inspection system. This system inspected along
the track at 16 km/h to detect defects or missing components, such as tie plates, ties, and anchors using
multiple cameras to collect images and videos. The location of the inspection car was determined by
the global position system and a distance measurement instrument. By using a global optimization
method, the authors achieved high accuracy in finding the missing track components. In machine
vision analysis, the first step is to extract important features from the images using filters or signal
processing methods. The second step is to use a classifier, such as an ANN, to analyze the features. In the
literature, gradient-based features, such as the histogram of oriented gradients [104], scale-invariant
feature transforms [76], and Gabor filters [80], were commonly used for railway images analysis.

In the traditional computer vision models, the difficult task of hand-crafting features is needed
before classification. However, features extracted using hand-crafting features may not result in good
performance due to the high noise level in the rail images [13]. Deep neural networks have been
driving significant advancements in real-world computer vision applications over the last decade [106].
These networks can learn features of interest directly and automatically from the data. For instance,
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Jamshidi [107] combined track inspection images and crack growth data from ultrasonic inspection
to classify squat defects using a CNN architecture. Faghih-Roohi [46] trained three different CNN
architectures on the track inspection image data set. The results showed that the deeper architecture
outperforms on the multi-class classification of squat defects. Zhuang [108] used the linear iterative crack
aggregation method to obtain the boundary of cracks. Then, a cascading classifier ensemble integrating
three single cascading classifiers with a major voting scheme was proposed to detect the presence
of cracks in the track image. The result was compared to Otsu’s method, the geometrical approach,
fully convolutional networks and Unet. Results showed that the proposed ensemble framework was
the most effective one among these methods in the detection of rail surface cracks.

4.1.3. Discrete Value-Based Measurement Data Sets

Discrete value data are not collected with a sensor at a fixed frequency. Most of the time,
these records are collected after an accident has occurred. It could be a log-file of the warnings or
failure messages recorded by an automatic monitoring system or logged by railway track engineers.
This information could be the specific temperature reading, track age, break type or tonnage data in
a particular location of the track. Discrete value data can help engineers to identify the reasons for
the failure. Model selection for discrete value data is recommended based on the size of data sets.
If the size of the data set is not small, the Bayesian methods are more suitable [86,109]. SVMs and
neural networks tend to perform much better when dealing with multiple dimensions and continuous
features [84]. If the data set includes noisy features, the KNN method should not be applied [87]
because this method is sensitive to irrelevant features. If the interpretability is important in the
application, tree-based methods [110] and the Bayesian method would be more suitable than a neural
network or an SVM. Lopes Gerum [50] used a random forest and an RNN to predict rail defects of
different severity levels based on the discrete value data. This data contained (a) the time in days since
the last inspection, (b) the gross load endured by the tracks since the last inspection, (c) the month,
(d) the season, and (e) the number of minor and major defects found in the previous inspection. Then, a
discounted Markov decision process model utilized these predictions to determine optimal inspection
and maintenance scheduling strategies.

4.1.4. Text-Based Measurement Data Sets

Text data analysis is a topic growing in popularity in the predictive maintenance of railway track.
The purpose is to parse (usually human-generated) textual data to discern patterns or provide
summary statistics. Heidarysafa [49] used an RNN to discover accident causes from the railway
accident reports. The accidents report texts were embedded using Word2Vec and GloVe methods into
sequence vectors. The RNN was then used to find the primary causes and significant inconsistencies
in accident reporting. Soleimani [111] employed a text mining tool to discover highway-rail crossing
crashes from the narrative description in the crash reports. The word importance was explored by
considering term frequency and inverse document frequency indices. Random forest and logistic
regression methods were applied using these indices. The results showed that the type of a train-vehicle
crash could be predicted using the text information with an accuracy of 86%. Narrative descriptions
are widely used for reporting in the railway industry, so further work in this direction is likely to yield
useful results.

4.2. Models for Different Railway Track Defects

Railway track defects mainly include geometry irregularities and structural defects (such as rail
head defects, rail breaks, missing rail components, and substructure failures). Predicting the geometric
degradation and structural defects, either implicitly or explicitly, is necessary for the development
of maintenance strategies. Track geometry measurement mainly includes the longitudinal level,
alignment, gauge, cant, and twist [15]. These measurements are mostly used to represent the quality of
the track and to predict the track degradation process. Rail geometry irregularities include wide gauge,
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excessive warp/twist, and horizontal and vertical rail deformities [98]. When the track geometry
degrades to an unacceptable level, severe consequences, such as derailment, may occur.

Structural defects, such as rail head defects and rail breaks, are major threats to the safe operation
of a railway system. Rail structural defects occur due to wear (primarily in curves), fatigue (in the form
of surface and sub-surface initiated cracks), and plastic flow (in the form of corrugation in rails) [112].
These failures usually start with a small initial crack but propagate quickly due to the significant shear
and normal stresses on the rail caused by the rolling-sliding contact loading. As the cracks develop,
the cracking area may lead to spalling of material from the rail surface [113]. Isolated cracks may
develop to the bottom of the rail and may cause a rail break.

Figure 5 presents the publication counts by track defects in the literature identified and is
compared with that of just the most recent four years. Application of data-driven models in rail
geometry irregularity defects were the most popular. Rail geometry irregularity, rail head defects,
and missing rail components were the top three used in the data-driven models for the all-years count.
More than half of the papers on rail geometry irregularity were published in the last four years,
and almost all of the papers for rail head defects were published in the last four years. Interest in the
detection of missing rail components has dwindled in recent years, while rail geometry irregularity,
rail head defects, and rail breaks received increasing attention in the last four years. The application
of data-driven models in predicting the substructure failure were fewest. This may be due to the
measurement data for the substructure being difficult to obtain.

Some representative studies categorized by railway defect type are summarized in Table 5.

Table 5. A summary of the most recent papers for track defects.

Track Defects Equipment Feature Data-Driven Method Reference

Standard deviation of
longitudinal level, tonnage,
past maintenance, and
renewal actions

Track geometry recording car,
operation records,
maintenance records

Bayesian method [114]

Geometric defect type, class ~ Ensemble of gamma process,

Geometry irregularity Track geometry recording car of track, tonnage logistic regression, and SVM (601
Track geometry recording car Gauge deviation ANN [115]
Track geometry recording car Track degradation index Random forest [116]

based on gauge deviation

Vertical and lateral
accelerations and the roll SVM [69]
rate of the car body

In-service vehicles on-board
sensing device

Adaptive blur removal for

Camera . CNN [117]
images
Wavelet packet
time-frequency coefficient,
Laser-ultrasonic technology energy and local entropy SVM [40]
Rail head defects (using wavelet packet
transform and kernel
principal component)
Ultrasonic and rail surface Severity categories of the Bayesian inference method [118]
photos squats
Sperry’s eddy current walkin, Maintenance, track
perry }s,tick & geometry, and rolling stock Clustering [55]
parameters
Missing rail Camera Hog features SVM [104]
component Gabor-filtered images Multiple signal classification [80]
In-service vehicles Axle box acceleration Contmuoufs wavelet [119]
Rail break transform
Eddy current sensor Eddy current signals Bayesian network [70]

Substructure failure: Fiber bragg grating Track slab deformation Variational heteroscedastic [72]

sleeper and ballast Gaussian process

Camera Stiffness of the ballast Bayesian method [37]
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Figure 5. Publication count by track defects.
4.3. Models for Maintenance Strategy

The methods for optimizing maintenance strategies include: implementation of track recovery
and degradation models based on statistical methods; determination of maintenance strategies based
on remaining useful life prediction; and prediction of maintenance requirements directly using a
machine learning algorithm.

Statistical methods attempt to solve this problem by implementing recovery and degradation
models to predict long-term behavior of the track. Arasteh Khouy [120] presented a track geometry
degradation model based on exponential regression and discussed possible reasons for the distribution
of failures along the track. The tamping effectiveness was considered by the actual longitudinal
level degradation rates between two consecutive maintenance interventions. The track geometry
inspection interval was optimized by minimizing the total ballast maintenance costs per unit traffic load.
Mercier [121] used a bivariate Gamma process to model the longitudinal and transversal levelling
indicators. These indicators were then used to predict the optimal time for interventions. The results
showed that using the combined deterioration indices enabled maintenance schedules to be determined
that ensured the railway track remained of good quality with a high probability.

Remaining useful life (RUL) prediction has received considerable attention in predictive maintenance.
RUL in this domain is defined as the period of time from the present to the end of the useful life for
track components. Recently, RUL prediction was based on data-driven models, such as Reference [122],
where regression analysis was used to estimate and predict the RUL for various usage profiles of
railway tracks. The discrete data (service failure data, signal data, ballast history, grinding history,
remedial action history, and traffic data, as well as curve and grade data) and time series data
(measurement data from mechanized track patrols) are both used for predicting RUL [12,112]. Li [12]
proposed six popular statistical and machine learning regression models: random forest, quantile
regression forest, decision tree, KNN, support vector regression, and principal component regression
to predict the mid-term (60-180 days) RUL of railcar components. Accurate mid-term prediction of
RUL allows railway managers to plan predictive maintenance with sufficient time. Here, the random
forest and quantile regression forest had similar prediction accuracy and outperformed the other
models used.

From an application perspective, another way for optimizing the maintenance strategy is to predict
the maintenance requirement directly. The maintenance requirements are labeled as the learning targets
for historical measurement data, and the model outputs are the specific maintenance types. Allah
Bukhsh [88] used tree-based methods to predict the railway switches” maintenance needs. The input
parameters included detected problem, switch component, problem reason and cause, functional
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location of a switch, track type, technical details, age, and term frequency-inverse document frequency.
Specific maintenance activity types and trigger status could also be predicted with the tree-based
method. The random forest made predictions with the highest accuracy among the tree-based
models. Lopes Gerum [50] presented a new framework to integrate the prediction with inspection and
maintenance scheduling activities. The defects were initially predicted based on risk-averse and hybrid
prediction methods. The inspection and maintenance scheduling strategies were then optimized with
the discounted Markov decision process model. This framework is effective for defect prediction and
formulating long-term maintenance scheduling strategy considering real-time track conditions.

The scheduling of predictive maintenance should be involved in the process of optimizing the
maintenance strategy. Large-scale activities, such as grinding, turnout maintenance, tamping, and other
geometry maintenance measures, have particular requirements in terms of cost, track possession time,
demanded quality, the machinery involved and scheduling challenges. Maintenance tasks that occur
with a high frequency or have long maintenance window requirements have the most significant
effect on track availability and network capacity [123]. In order to minimize these negative effects,
scholars tried to maximize the availability of track by optimizing the possession time. This includes
lean optimization, maintenance window optimization, subtask optimization, maintenance interval
optimization, and better planning. Famurewa [123] provided an analysis of track geometry maintenance
to reduce the required possession time. The condition of the track geometry was determined by a
simulation approach. The support intervention decisions and the track possession time optimization
were solved by a schedule optimization method. The results showed that optimizing the maintenance
shift length and cycle length are opportunities to reduce the extent of track possession required for
the maintenance of the track geometry. Consilvio [124] used a mixed integer linear programming
method to consider the space-distributed aspect of railway infrastructure. The optimal scheduling can
consider the best path and the activities assignment for each maintenance team. The conventional
maintenance methods for optimizing the maintenance strategies are offline models that cover the
long-term horizon but neglect operational disturbances. In order to consider the real time information
and adapt the day-to-day planning, Consilvio [125] proposed a rolling-horizon approach for risk-based
maintenance planning in the rail sector. A mixed-integer linear programming framework was utilized
to optimize the maintenance strategy based on risk minimization. The proposed framework was
able to react to execution delays or priority changes for the maintenance tasks. All in all, the optimal
maintenance strategy is to build up an efficient automated decision-making system. Automation
decision-making provides continuous railway service over a specified time period based on automated
track defects detection and prediction. The role of maintenance experts is to help the data analyst shift
the maintenance strategy from the corrective and planned maintenance into the predictive maintenance.
The data analyst turns the maintenance expert’s manual judgment to an automated decision process
based on the data-driven models. However, the predictive maintenance framework cannot be created
just from data; instead maintenance experts’ knowledge is also vital for the model’s structure, as some
variables representing the underlying state of the system may not be present in the data, such as
considering the cost, track possession time, demanded quality, the machinery involved, and scheduling
challenges. The goal of the infrastructure manager is to ensure that railway service is provided,
while incurring the least total negative impacts which can be incurred through normal use and the
execution of inspections and interventions [126]. The automatically generated decisions should be
performed to ensure the infrastructure manager with adequate information about when and which
type of interventions should be executed.

5. Future Challenges and Suggestions

Current data-driven methods applied to the predictive maintenance of railway track suffer from
some shortcomings. Recommendations for future research include:

e  Pay more attention to the advanced machine learning methods. The advanced methods, such as
the deep learning, ensemble, and unsupervised learning methods, are able to better utilize and
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handle the large-volume, multi-source, highly-imbalanced, and high noise of modern railway
measurement datasets. These methods have proven to be immensely useful in other fields, yet are
rarely used in railway predictive maintenance.

e Make use of the text-based data in the railway industry. Narrative descriptions are widely
used in the railway industry, but there are still only a small number of applications in the
predictive maintenance of railway track. Text mining techniques can tackle the problems of text
representation, classification, clustering, information extraction, or the search for and modeling
of hidden patterns [127]. In this way, the recorded narrative descriptions can be utilized as a
valuable source of information to combine with other data types.

e  Develop automatic data labeling methods. The performance of the data-driven models depends
on high-quality labeled samples. Although large volumes of data are collected from sensors in
the railway industry, most of the data needs to be labeled manually. Data-driven algorithms,
such as unsupervised learning models, can contribute by labeling the data automatically [13]. In
addition, as mentioned in Table 1, one of the important characteristics of the railway measurement
data is highly imbalanced. High quality automatic data labeling algorithms help to identify more
faulty samples, which alleviates the extreme imbalance distribution in railway defects data.

e  Enhance the interpretability of the models. As mentioned in the Section 3, data-driven methods,
such as deep learning models, are “black box” methods [54]. It is hard to justify the classification
or prediction basis to end users. Much attention has been given to attempting to improve the
interpretability of these machine learning methods in the research community [128]. More details
about the relevant methods can be found in Reference [129].

e  Consider cost information in model performance evaluation. To evaluate the model performance
of track defects detection or prediction, the defects detection accuracy is commonly used, which
measures the proportion of track status correctly identified. In general, there are two common
errors in track status prediction. One is false alarm prediction, and the other is false safe prediction.
False alarm prediction means that the actual safe condition is falsely predicted as a problem.
False safe prediction means that the actual problem is falsely identified as a safe condition.
From the engineer’s perspective, high false alarm prediction usually leads to ineffective and
unnecessary decision-making, while false safe prediction would cause huge loss for the railway
service suspensions, putting the maintenance organization in reactive mode. Thus, compared
to the prediction accuracy, railway managers care more about the percentage of the false safe
prediction. A scientific evaluation system should take cost information into account, considering
the huge and asymmetric cost for false safe predictions in railway engineering [130]. The further
work is expected to take the various costs (false safe, early replacement, false alerts) into account
and return the expected gain in dollars as an evaluated metrics instead of only considering the
accuracy of the prediction.

6. Conclusions

This paper presented a systematic literature review covering the main publications of data-driven
methods in the predictive maintenance of railway track. Based on the literature review, data-driven
models are proved to be able to avoid unnecessary replacement of track components, save costs,
and improve the safety, availability, and efficiency of railway service.

Among the data-driven methods, the machine learning models are becoming more and more
popular in this field. The deep learning, unsupervised learning, and ensemble methods are attracting
growing attention. Statistical models for track predictive maintenance will probably not disappear in
the near term, mainly due to their ability to provide informative inferences on the relationships between
the parameters and the track degradation processes. Among the applications of data-driven models,
rail geometry irregularity, rail head defect, and missing rail component detection were the top three
issues addressed in the literature. Rail break prediction has also been receiving increasing attention in
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the last four years. The type of data collected are the most important factors influencing model selection.
Future challenges and suggestions for the predictive maintenance of railway track were also provided.
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