
 

 

 © 2020 Tanka Nath Dhamala, Shiva Prakash Gupta, Durga Prasad Khanal and Urmila Pyakurel. This open access article is 

distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

Journal of Mathematics and Statistics 

 

 

 

Original Research Paper  

Quickest Multi-Commodity Flow Over Time with Partial 

Lane Reversals 
 

1Tanka Nath Dhamala, 2Shiva Prakash Gupta, 3Durga Prasad Khanal and 4Urmila Pyakurel 

 
1,4Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepal 
2Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal  
3Saraswati Multiple Campus, Tribhuvan University, Kathmandu, Nepal 

 
Article history 

Received: 21-05-2020 

Revised: 29-09-2020 

Accepted: 30-09-2020 

 

Corresponding Authors: 

Urmila Pyakurel 

Central Department of 

Mathematics, Tribhuvan 

University, Kathmandu, Nepal 

Email: urmilapyakurel@gmail.com 

Abstract: Routing of more than one different commodity from specific 

origin nodes to the corresponding destination nodes through the arcs of an 

underlying network respecting the capacity constraints is one of the main 

problems in operational research. Among them, the quickest multi-

commodity flow problem concerns with minimization of time taken to 

complete this process. The general multi-commodity and quickest multi-

commodity flow problems are computationally hard. By flipping the 

orientation of lanes towards the demand nodes, the outbound lane 

capacities are increases. We introduce lane reversals in the quickest multi-

commodity flow problem and present two approximation algorithms, one 

polynomial-time with the help of length-bounded flow and another FPTAS 

by using ∆-condensed time-expanded graph. Both algorithms prevent 

reversing arc capacities that are not required by the optimal flows that may 

be of interest for other purposes.  

 

Keywords: Network Flow, Multi-Commodity, Quickest Flow, Lane 

Reversals, Length Bounded, ∆-Condensed 

 

Introduction  

The multi-commodity network flow problem 

concerns the distribution of multiple commodities from 

specific source nodes to corresponding sink nodes 

obeying the arc capacity constraints. A wide variety of 

network routing problems can be modeled as a multi-

commodity flow problem, for example, message routing 

in telecommunication, railway network, vehicles routine 

in transportation, production planning, logistics, supply 

chains for essential goods, medicines and other 

supports during disaster and lock-down caused by 

serious pandemics, like COVID-19. Additional 

applications and illustrations can be accessed in 

(Ahuja et al., 1993; Assad, 1978; Kennington, 1978; 

Wang, 2018; Salimifard and Bigharaz, 2020). 

 The transportation network is considered as a 

network that corresponds to transshipping different 

commodities wherein supply points, demand points and 

the intersection of road segments represent the nodes and 

links between two nodes denote the arcs (lanes). The 

initial and final destinations of commodities are at the 

supply nodes (distribution centers) and demand nodes 

respectively. The collection of commodities that shipped 

through the network can be considered as flow. The arcs 

are assigned with capacity and travel times in the 

networks with time dimensions. 

 In general, multi-commodity flow problems can be 

dichotomized into static and dynamic flow (also known 

as flow over time) problems. The former one can be 

classified as maximum, maximum concurrent and 

minimum cost flow problems. The maximum flow 

problems arise when the sum of flows for all 

commodities is to be maximized. The maximum 

concurrent flow is a special version of the maximum 

flow problem which maximizes the fraction of demands 

for all commodities. Whereas, to find the flow value 

satisfying the demands for all commodities with 

minimum cost obeying the capacity constraints on all 

arcs is known as minimum cost flow problem. The 

dynamic flow problem can be classified into maximum 

dynamic, quickest and earliest arrival multi-commodity 

flow problems (Tomlin, 1966; Ali et al., 1980; Wang, 

2018; Salimifard and Bigharaz, 2020).  

The network flow over time has been pioneered six 

decades ago by Ford and Fulkerson, (1962). The inverse 

of this problem in which the supply and demand on the 

origin and destination nodes are given, whereas the 

problem is to find the minimum possible time to fulfill 

the demand is called the quickest flow problem. 
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Burkard et al. (1993) applied a binary search to the 

maximum flow solution of Ford and Fulkerson, (1962) 

and provided the first polynomial-time bound for the 

quickest flow problem. They upgraded this method and 

its complexity to provide strongly polynomial-time 

bound by incorporating a parametric approach to the 

minimum cost flow problem.  

The quickest flow problem further generalized to 

multi-source and multi-sink quickest flow problems. One 

of such generalization, in which the vector of supplies 

and demands at the terminals are given, where the task is 

to find a flow over time that satisfies all supplies and 

demands within minimum possible time, is the quickest 

transshipment problem. Hoppe and Tardos (2000) 

presented a polynomial-time solution to this problem.  

The naive approach of Ford and Fulkerson (1962) to 

flow over time problem is generalized to the case of 

multi-commodities by Fleischer and Skutella (2002; 

2007). Moreover, the method proposed by authors 

employed length-bounded static flows in contrast to the 

algorithm of Ford and Fulkerson (1962) based one static 

minimum cost flow computation. Although static flows 

do not include temporal dimension, Fleischer and 

Skutella (2007) considered the static flows that suggest 

accessible routes with reference to transit time as length. 

They decompose the static flows into paths in which the 

set of paths starting at some origin node with certain 

commodity are shipped to its destination node.  

Multi-commodity flow problem is harder than their 

single commodity flow part. Hall et al. (2007) proved 

that multi-commodity flow over time is NP-hard even 

for series parallel graphs or having only two 

commodities. The quickest multi-commodity flow 

problem with or without intermediate node storage and 

simple flow path is NP-hard. Due to the NP-hardness of 

this problem, Fleischer and Skutella (2002; 2007) 

presented two approaches for its approximate solutions. 

First one is length-bounded flow and the other one is a 

discretization of larger time step instead of unit time step. 

They have shown by an instance that the ratio between 

optimal time horizon without and with storage is 4/3.  

To find the quickest time satisfying all demands through 

storage, Gross and Skutella (2015) focused on speed-up in 

multi-commodity flow problem. They have shown that 

there is family of multi-commodity flow instances for 

which the ratio between the optimal time horizon with and 

without storage converges to 2. The formulation of the 

quickest multi-commodity path problem based on mixed-

integer linear programming using unique path with 

uninterrupted scheduling is presented by Melchiori and 

Sgalambro (2015). Kappmeier (2014) provided solutions of 

maximum multi-commodity flow over time and multi-

source single-sink multi-commodity earliest arrival 

transshipment problems using a time-expanded network 

within pseudo-polynomial-time complexity.  

Lane reversal means flipping of arc orientations 

(directions), to increase the flow and reduce the travel time 

by expanding its capacity. Rebennack et al. (2010) provided 

models and strongly polynomial-time algorithms for two-

terminal maximum and quickest flow problems. These lane 

reversals are made at time zero and kept fixed afterward. 

Pyakurel and Dhamala (2015; 2017b) find the optimal 

earliest arrival flow in a two-terminal general network for 

discrete-time settings. An approximation solution to this 

problem is given in Pyakurel et al. (2017). By using natural 

transformation Pyakurel and Dhamala (2016; 2017a) 

provided the solution of quickest flow problem in 

continuous time setting. Pyakurel et al. (2018) presented a 

strongly polynomial-time algorithm for the quickest flow 

problem and developed an approximation algorithm with 

load dependent transit times. Nath et al. (2020) investigated 

the quickest flow problem with an objective of minimum 

increment of optimal time if some arcs are occupied by 

facility locations in evacuation network.  

The main goal of partial lane reversals is to utilize the 

capacities of unused arcs in a network for other 

purposes. Pyakurel et al. (2019) introduced the partial 

lane reversal approach in which only necessary arc 

capacities are used to increase the flow value. The saved 

capacities of unused arcs can be used for the logistic 

supports and facility location in emergency periods.  

In this paper, we introduce two approximate 

algorithms to solve the quickest multi-commodity flow 

problem with partial lane reversals by reducing them into 

single-commodity flow problems and decomposing the 

flow along the paths. Fleischer and Skutella (2002; 2007) 

approximated the quickest multi-commodity flow 

problem with the help of T-length bounded function and 

∆-condensed time-expanded networks. We introduce a 

partial lane reversal approach in both cases. 

By applying lane reversal technique in routing 

problem, it reduces the time horizon to transship 

commodities from supply nodes to the demand nodes. 

The reduction in delivery time is the major 

significance of this study.  

The paper is organized as follows. The first section 

below provides some basic notations and models used in 

the article. The quickest multi-commodity flow 

problem with lane reversals is introduced in the 

second section. In this section, we present two 

algorithms for approximate solutions to this problem. 

The paper is concluded in the last section. 

Mathematical Formulations of Flow Models  

The multi-commodity flow problem consists of a 

distribution of different commodities from their 

respective sources to corresponding sinks through a 

given network so that the total demand for each 

commodity is fulfilled. We set necessary denotations and 
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give mathematical formulations of this problem, where 

reversals of arcs are permitted that improves an objective 

value by flipping their orientations whenever necessary. 

Flow Models for Lane Reversals  

Consider a dynamic network topology N = (V, A, K, 

u, τ, di, S, D, T) with node set V, arc set AVV and the 

set of commodities K = {1, 2, ...., k}, where |V| = n and 

|A| = m. Each commodity i ∈ K with demand di is routed 

through a unique source-sink pair (si, ti), where siSV 

and tiDV. On each arc e = (v, w), the capacity 

function u: A R+ restricts the flow of commodities and 

a non-negative transit time function τ : A R+ measures 

the time to transship the flow from tail (v) to the head (w) 

of arc e = (v, w). The time period T is given in advanced 

which is denoted by T = {0, 1, ..., T-1} in discrete and T 

= [0, T) in continuous-time settings.  

For a given network N, the corresponding auxiliary 

network is denoted by N a = (V, Aa, K, ua, τa, di, S, D, T), 

with undirected edges in Aa = {(v, w): (v, w) or (w, v) ∈ 
A}, where er = (w, v) is the reversed arc of e = (v, w). The 

capacity of auxiliary arc is the sum of capacities of arcs e 

and er such that r

a

e e e
u u u  , where ue = 0 if eA. The 

transit time of auxiliary arc a

e  is the same as τe if e  A 

and re
 otherwise. Other network parameters are 

unaltered. Figure 1 (a-b), represents such a transformation 

for two commodity networks with lane reversals. The first 

and second commodities are shipped through the paths s1-

t1 and s2-t2, respectively. 

The static network without the temporal dimension is 

also denoted by N = (V, A, K, u, di, S, D). Many nice 

properties developed based on static network topology 

are fundamental tools for most of the real-world dynamic 

flow problems. By considering the auxiliary network N a 

as a two-way directed one, we use it as the network N in 

the following models.  

Static Multi-Commodity Flow with Lane Reversals 

A static multi-commodity flow y with lane reversals 

for the given static network N without temporal 

dimension is a combination of all non-negative static 

flows yi with lane reversals denoted by the functions yi: 

A R+ for each commodity i satisfying: 
 

0

i i

y i i

d if v s

d if v t i K

otherwise

 


    



G  (1.1) 

 

0 r

i

e e e
i K

y u u e A


      (1.2) 

 

where, the net flow at node v is: 

 

( ) ( )

i i

y e e

e A v e B v

y y
 

  G  

 

The sets A(v) ={(v, w) | wV} and B(v) ={(w, v) | 

wV} denote outgoing arcs from node v and incoming 

arcs to node v, respectively, such that A(D) = 0  and 

B(S) = 0  except in the lane reversal network. The third 

condition of the constraints in (1.1) are flow 

conservation constraints for each commodity at 

intermediate nodes. The constraints in (1.2) are bundle 

constraints bounded by lane reversal capacities. The 

static multi-commodity flow problem with lane 

reversals seeks to satisfy the pre-specified amount of 

demand in the remaining conditions of (1.1).  

Taking i

ec  as the cost coefficient associated with arc e 

and commodity i, the cost of static flow y is defined as: 

 

  i i

e e

e A i K

c y c y
 

  (1.3) 
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 (b) 

 
Figure 1: Auxiliary network (b) of the given network (a) 

 

Dynamic Multi-Commodity Flow with Lane 

Reversals 

For a given dynamic network N with constant 

transit time on arcs, a multi-commodity flow over 

times Φ with lane reversals is a collection of flows 

defined by Φi: A× T→ R+ satisfying the constraints 

(1.4-1.6): 

 

1

0

i i

T

i i

d if v s

d if v t i K

otherwise





 


    



G  (1.4) 

 

 0 , , ,i iv s t i K      G T  (1.5) 

 

   0

, ,

r

i

e e e e
i K

u u

e A i K

 





     

   



T
 (1.6) 

 

where, the net flow at node v at time δ is: 

 

   
  0

e

i i

e e e

e A v e B v

 


  

  

  

       G  

 

Here, the third condition of the constraints in (1.4) 

are flow conservation constraints at time horizon T, 

whereas the constraints in (1.5) represent non-

conservation of flow at intermediate time points βT 
= {0,1,...,T-1}, or with the continuous-time setting, it 

can be considered as T = [0, T). Similarly, the bundle 

constraints in (1.6) are bounded above by the 

capacities with lane reversals. The goal is to transship 

a given amount of flow in order to satisfy the demand 

di of each commodity i from si to ti, which is stated in 

the first two conditions of (1.4). The cost of a discrete 

flow over time is defined by: 

 

   
1

0

.
T

i i

e e

e A i K

c c





  

     (1.7) 

 

The bound of cost for every single commodity i is 

calculated as: 

 

 
1

0

,
T

i i

e e i

e A

c C





 

    (1.8) 

 

and the budget constraints for dynamic flow Φ, stated in 

(1.7), is bounded by C.  

The strict inequality in (1.5) represents weak flow 

conservation constraints that allow to store the flow at 

intermediate nodes, wait there for a moment (storage 

is allowed) and move onwards. The flow over time 

fulfilling equality constraint in (1.5) represents flow 

conservation at intermediate nodes for all times β 

without intermediate storage (storage is prohibited). 

In the case of a single commodity, there is always the 

quickest flow that does not use intermediate storage. 

But for the case of multi-commodity, storage is 

useful. The optimal make-span without storage at 

intermediate nodes is 4/3 times the optimal make-span 

with storage, Fleischer and Skutella, (2007). 

The single commodity quickest flow problem with 

lane reversals is modeled as an integer programming 

problem, (Kim et al., 2008). Moreover, they presented 

a greedy and a bottleneck relief heuristic for its 

numerical solution. Its single-source and single-sink 

version is solved in polynomial-time, Rebennack et al. 

(2010). But, the problem with multiple sources and/or 
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sinks is NP-hard, as it is equivalent to 3-SAT and 

PARTITION, Rebennack et al. (2010). The 

continuous-time version is polynomial-time solvable 

in (Pyakurel and Dhamala, 2017a; Pyakurel et al., 

2017). The problem with partial lane reversals is 

solved in Pyakurel et al. (2019).  

To realize the main idea behind it, suppose that a 

single-commodity optimal solution y with partial lane 

reversals is obtained in the auxiliary network N a with 

respect to a given network N. Then it can be observed 

from a partial lane reversal strategy that a saving of 

unused arcs can be achieved in the following ways.  

 

 Arc er = (w, v) is reversed if and only if either flow 

along the arc e = (v, w) is greater than its capacity 

or there is non-negative flow along the arc e = (v, 

w)  A. If ye > ue and a

eu  > ye, where a

eu  = ue 

+ re
u , then the arc er is reversed partially and 

unused capacity of arc er is saved. 

 If ye > ue and a

eu = ye, then we have to reverse the arc 

er completely. Thus, no capacity is saved. 

 If ye < ue neither arc e nor arc er is reversed, then 

remaining capacity of arc e and all capacity of arc 

er are saved. 

 

Figure 2(a) illustrates a feasible multi-commodity 

static flow and Figure 2(b) shows a saving of unused arcs 

using partial arc reversals. To reallocate the capacity of 

bundle constraint on arc (x, y), we use the resource-

directive decomposition method, where capacity is 

reallocated in such a way that it increases the objective 

function value. 

 

 
 (a) 

 

 
 (b) 

 
Figure 2: (a) A static multi-commodity flow and (b) A network with flow on the solid arc and saved capacity on dotted arc. 
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Discrete Versus Continuous Model 

Fleischer and Tardos (1998) connect the relations 

between discrete and continuous flow models by the notion 

of natural transformation. It defines the continuous dynamic 

flow for time β[θ, θ +1) with fe (β) = e (θ), where e (θ) 

is the amount of discrete dynamic flow entering arc e, at 

time θ{0, 1, ..., T -1}, (Dhamala et al., 2018). With the 

help of this, natural transformation for multi-commodity 

flow can be extended as follows: Any discrete flow over 

time  i

e  with integral time horizon T is equivalent to the 

continuous flow over time  i

ef   by incorporating the flow 

 i

e  entering arc e, at time step θ ≤ T - τe -1 as a constant 

flow rate on arc e during the unit time interval [θ,  θ +1). 

On the other hand, a continuous flow over time 

 i

ef  with integral time horizon T and integral transit 

time τe entering arc e during the time interval [θ, θ + 1) is 

equivalent to a discrete flow over time  i

e  entering 

arc e, at time step θ of the same time horizon T, 

Langkau, (2003). Mathematically, it means that: 
 

   
1

i i

e ef d



  



    (1.9) 

 
for all e  A, i  K and 0    T - e -1. 

Actually, continuous-time parameters provide 
comparatively better solutions than their discretization but 
may suffer from high time complexity. In such a case, 
discretization is a better option for a good approximation. 
All the discrete-time algorithms are based on path flows 
which transship the feasible static flows along the paths.  

For standard path decomposition, the static flow yi of 

commodity i  K is decomposed into a set of paths Pi with 

path flows  
i

i

P P P
y


 satisfying 

i

i i

PP P
y y


  and the 

direction of each arc in si -ti path is in the same direction of 

yi. The transit time of each path does not exceed the given 

time horizon T. Feasible dynamic flow is obtained by 

summing the dynamic flows induced by each of path 

flows. If feasible flow yi contains nonstandard path 

decomposition, then direction of an arc allows being in 

opposite direction of the flow yi. In this case, for a path 

flow i

Py  sending flow along with the arc e in the opposite 

direction of yi, there must be another path flow i

Py  through 

arc e sending the flow in the opposite direction of i

Py  

which cancels flow i

Py  on arc e.  

Naturally, as these transformations can be performed 
in polynomial-time, the complexity status of discrete and 
continuous-time solutions remain the same. 

Temporally Repeated Multi-Commodity Flow 

Let yi be a static si-ti flow and Pi be a collection of 

paths carrying flows of commodity iK such that 

1

K

i iP
= P, where latter is the set of all paths in multi-

commodity flow. The family of si - ti paths PPi together 

with nonnegative flow values i

Py  such that: 

 

:i

i i

e p

P P e P

y y
 

   (1.10) 

 
is called a path decomposition of the flow yi.  

For a feasible static flow yi in N with path 

decomposition  
i

i

P P P
y


such that the transit time τP of 

every path PPi is bounded from above by T, the 

temporally repeated flow sends flow i

Py  at constant rate 

in to path PPi starting from time 0 to time T - τP.  

Lemma 1.1 [Skutella (2009)] 

Let yi be a feasible static si - ti flow with its 

decomposition  
i

i

P P P
y


such that 0i

Py  for all PPi with 

τP > T. Then the value of corresponding temporally 

repeated dynamic flow Φi for commodity i is equal to: 
 

    .

i

i i i i

P P e e

e AP P

val T y T y y 


       (1.11) 

 

Approximation Scheme  

Let X be a minimization (or a maximization) problem. 
For instance, IX, let the optimal solution of the objective 
function be denoted by OPT (I), and let ε > 0. An algorithm 
A is called a (1 + ε) (or (1 − ε)) approximation algorithm for 
problem X, if for each instance I of X it produces a feasible 
solution with objective value A(I) such that: 
 

   

       

         
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A I OPT I OPT I

OPT I A I OPT I OPT I

OPT I A I OPT I



 

 

 

    
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 For a problem X, a Polynomial-Time 

Approximation Scheme (PTAS) is an 
approximation scheme having time complexity 
polynomial in the input size of the problem. 

 For a problem X, a Fully Polynomial-Time 
Approximation Scheme (FPTAS) is an approximation 
scheme having the time complexity polynomial in the 
input size of the problem and also polynomial in 1/ε. 

 
In many applications, it is more beneficial to calculate 

an approximate solution quickly than an optimal one. As a 
consequence, an intense attempt was made to obtain 
efficient FPTAS for the multi-commodity flow problem. 

Quickest Multi-Commodity Flow with 

Partial Lane Reversals 

 In this section, we introduce the lane reversal 
strategy for the quickest multi-commodity flow problem. 
A solution to this problem satisfies given demands at 
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specified nodes in minimum possible time, where 
reversals of arcs are permitted. We also develop an 
efficient algorithm for an approximate solution to this 
problem. Moreover, our algorithm also applies to save the 
lanes that are unnecessary to reverse for reducing the time 
into quickest one. This extends the network flow models 
introduced in (Fleischer and Skutella, 2007; Hall et al., 
2007) into lane reversal framework introduced in 
(Dhamala et al., 2018; Pyakurel et al., 2019).  

Problem 1 

Given a network N = (V, A, K, u, τ, di, S, D, T), the 
quickest multi-commodity S−D flow problem with 
partial lane reversals and bounded cost, is to transship 
the di commodity from si to ti for each iK in minimum 
possible time by reversing the direction of necessary 
arcs at time zero. 

The multi-commodity flow over time problem with or 
without intermediate node storage is NP-hard even in 
case of series-parallel graphs or having only two 
commodities, Hall et al. (2007). The proof is based on 
the reduction from the NP-hard PARTITION and 3-
PARTITION problems, respectively.  

Moreover, the maximum multi-commodity flow 
problem is NP-hard. Without restriction on 
intermediate node storage, it can be solved as a static 
flow problem in the time-expanded graph in pseudo-
polynomial-time complexity. The quickest temporally 
repeated flow with the bounded cost is strongly NP-
hard and does not allow FPTAS unless P = NP. Using 
3-PARTITION instances, Hall et al. (2007) proved that 
the quickest multi-commodity flow without intermediate 
node storage and simple flow paths (paths without loops 
and cycles) holds the same hardness. Kim et al. (2008) 
proved that lane reversal problem is NP-complete by 
using 3-SAT. So, the NP-hardness of the quickest multi-
commodity flow problem with lane reversals having 
bounded cost can be stated as follows. 

Theorem 2.1 

The quickest multi-commodity flow over time 
problem with partial lane reversals and the bounded 
cost is NP-hard. 

Due to NP-hardness of the quickest multi-commodity 
flow problem, Fleischer and Skutella (2007) presented two 
approaches to provide an approximate solution to this 
problem. The first one is the length-bounded flow and the 
other one is the discretization of larger time steps instead 
of unit time steps. We introduce the concept of partial lane 
reversals in these two cases and provide approximate 
algorithms to solve Problem 1. 

Length Bounded Approximation 

A single or multi-commodity path flow wherein each 

used path must obey a length constraint is a length bounded 

flow. Let Pi be the set of all si - ti paths in network N a with 

commodity iK. Then a static flow y is said to be T-length 

bounded if each component flow yi for each iK can be 

decomposed into the sum of flows i

Py  i.e., 
i

i i

PP P
y y


  

with i

Py  > 0 such that the length  τP = ∑eP τe of any path 

PPi is at most T. The set of all T-length bounded paths is 

denoted by  :T

i i P iP P P T P    . The problem of 

finding T-length-bounded static flow y satisfying multi-

commodity demands is NP-hard, Fleischer and Skutella 

(2007). However, an approximated solution to this problem 

can be computed within polynomial-time. 

Lemma 2.2 

For any ε > 0, a feasible (1+ε) T-length bounded 

static flow y can be computed satisfying given demands 

di with polynomial in the input size and 
1


. 

Proof 

If we compute a feasible T-length bounded static flow 

y satisfying the multi-commodity demands di, then the 

lemma will be proved. This flow is obtained by solving the 

following length-bounded min-cost flow problem, where 
i i

P ee P
c c


  for all e  Aa be the cost of a path P  Pi: 

 

min
T
i

i i

P P

i K P

c y
 

  (2.1) 

 

T
i

i

P i

P P

such that y d i K


    (2.2) 

 

:T
i

i a a

P e

i K P e P

y u e A
  

     (2.3) 

 
0 ,i T

P iy i K P     (2.4) 
 

As the number of paths in T

iP and the number of 

variables in the Linear Program (LP) (2.1-2.4) are 

exponential in the size of the underlying network N a, the 

LP problem is converted into dual. Then the LP is 

reduced to a length-bounded shortest si - ti path with 

respect to dual arc weights i i

e ey c  having length τ(P) ≤ T, 

P T

iP . However, the problem is still NP-hard whose 

approximate solution can be computed as follows. The 

dual of LP (2.1-2.4) is modified in such a way that for 

any ε > 0, an si - ti path PPi with τ(P) ≤ (1+ε)T can be 

found in polynomial-time in the size of N a and 
1


 whose 

length concerning the arc weight i i

e ey c  is at most the 

length of a shortest path in T

iP , Fleischer and Skutella, 

(2007). By solving the modified dual problem with 

additional constraints, i.e., the length of paths iP P  

with  1 TT

i i iP P P
   is at most (1+ε) T, an optimal 

solution can be computed in polynomial-time. From this 
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dual solution, a primal solution y where the flow of 

commodity i can be sent only on the paths in 
iP is 

obtained. As  1 T

i iP P
  , the obtained flow y is (1+ε) T-

length-bounded on the auxiliary network N a.  

We compute an approximate solution to the quickest 
multi-commodity flow problem with arc reversals by 
adopting the concept of length-bounded flows from 
Fleischer and Skutella (2007) and partial lane reversals 
from Pyakurel et al. (2019), and presenting Algorithm 1. 
 
Algorithm 1 T-length bound quickest multi-commodity 
flow algorithm with partial lane reversals. 
Input: Given a multi-commodity flow network N = (V, 
A, K, u, τ, di, S, D, T) 
Output: The quickest multi-commodity flow with partial 
lane reversals: 
 
1. The given network is transformed to auxiliary 

network by adding two-ways capacities in N a = (V, 
Aa, K, ua, τa, di, S, D, T) as: 

 

.

r

r

a

e e e

ea

e

e

u u u

if e A

otherwise






 

 
 


 

 
2. Compute the quickest multi-commodity flow on the 

transformed network N a by using approximate 
length-bounded algorithm of Fleischer and Skutella, 
(2007) for quickest multi-commodity flow problem 
with bounded cost on auxiliary network. 

3. Decompose the flow along the si - ti paths and cycles 
and remove the flows in cycles  iK. 

4. Reverse er A up to the capacity ye - ue , iff ye > ue, 

ue replaced by 0 whenever eA, i, where ye 

=
1

k i

ei
y

 and 
1

k i

e ei
u u


 . 

5. For each eA, if er is reversed, sc(er) = a

e eu y  and 

sc(e) = 0. If neither e nor er is reversed, sc(e) = ue - ye 

> 0, where sc(e) is the saved capacity of e. 
6. Transform the solution to the original network. 
 

First, we recall the solution procedure of approximate 
length-bounded algorithm of Fleischer and Skutella 
(2007) for the quickest multi-commodity flow 
problem with bounded cost in Step 2 of our algorithm 
in Lemma 2.3. Then for the feasibility of Algorithm 1, 
we prove Lemma 2.4. 

Lemma 2.3 

The T-length bounded approximate quickest multi-
commodity S-D flow with given cost can be computed on 
an auxiliary network in polynomial-time complexity. 

Proof 

We have an auxiliary network Na with given bounded 

cost C, predetermined time horizon T and precision ε > 0. 

Then, a static flow y is computed by averaging the feasible 

flow over time Φ on each arc as 
1

0

1 Ti i

e ey
T


   for all 

eAa and iK. The feasibility of y can be shown as follows: 
 
 Capacity constraints: 
 

1 1

0 0

1 1T T
i i a a

e e e e

i K i K

y u u
T T

 

 

 
    

 
     

 
 Flow conservation: 
 

     

  

  

 

1

0

1

0 \ ,

i i

e e

e A v e B v

T
i i

e e

e A v e B v

i i

y y

T

v V s t and i K

 



 



 
    

 
 

   

 

    

 
This flow y satisfies the following conditions: (i) y is 

(1+ ε) T-length bounded, (ii) y satisfies a fraction 
1

T
 of 

the supplies and demands and (iii) c(y) = 
 c

T


. We 

repeat the process until such flow exists. First condition 

is from Lemma 2.2. As 
1

0

1 1Ti i

iy d
T T


   for all i, 

so second condition is at hand and third condition is as 

similar to second one. 

By T-length bounded path decomposition of y, flow is 

now send into each path P with flow rate i

Py  for time 

horizon T. It takes an additional T units time to reach all 

the flows at the destination so that total flow will reach at 

destination in at most 2T time. Thus, arbitrary feasible 

static flow y satisfying above requirements can be turned 

into feasible flow over time Φ with time horizon 2T 

meeting the same requirements as Φ. 

For static flow i

ey , we set cost ce = τe so that: 

 

 
1

0

1 1
.

a a

T
i i i

e e e e

e A e A

y c
T T

 


 

 
    

 
    

 
As each flow is T-length bounded, flow can travel 

along the path with cost at most T and total cost is 
bounded above by T |Φi|. The temporally repeated flow 
with time horizon 2T can be calculated as: 
 

 
1

2 2 , .
a

i i i i i

e e i

e A

T y y c d i K
T




           

 
Thus, static flow yi satisfies the demand di for all iK 

within time 2T. 
The length-bounded multi-commodity flow stated 

above are iteratively send on shortest paths with respect 
to some length function and computes (1+ε) T-length 
bounded shortest paths, Fleischer and Skutella (2007). 
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So, the flow is (1+ε) T-length bounded. The length 
boundedness is incorporated to binary search for optimal 
make-span T∗ that yields T∗ ≤ T ≤ (1+ε'/4) T∗ for any ε' > 
0 to obtain T. By using ε = ε'/4 we have flow over time 
with make-span (2+ε) T ≤ (2+ε') T∗.  

Lemma 2.4 

The approximate solution of quickest multi-commodity 

flow problem with partial lane reversals having bounded 

cost obtained by Algorithm 1 is feasible. 

Proof 

To prove the lemma, we have to show that all steps 
of the Algorithm 1 are well-defined. Step 1 and Step 6 
are well-defined transformations. The feasibility of Step 
2 is as shown in Fleischer and Skutella (2007). By 
removing positive flow in cycles in Step 3, flow is either 
in direction e = (v, w) or in er = (w, v) but not in both 
directions. Hence, the flow obtained from Step 4 is 
feasible flow with arc reversal in network N. By 
reversing only necessary arcs in Step 4, Step 5 saves the 
capacity of unused arcs. Since the obtained flow never 
exceeds the capacities on each arc in the auxiliary 
network, reversals of arcs are not conflicting. Hence, all 
steps are well-defined and so the algorithm is feasible.  

Theorem 2.5 

T-length bound approximate solution to the quickest 
multi-commodity flow problem with partial lane reversals 
having bounded cost can be obtained by using Algorithm 1. 

Proof 

A proof of the stated theorem contains two steps, the 

first one is feasibility and the next one is the optimality 

of the algorithm. The feasibility of algorithm is achieved 

in Lemma 2.4. 

Now we prove the optimality of the algorithm. From 
the feasibility, any optimal solution to an approximate 

quickest multi-commodity flow problem with lane 
reversals having bounded cost on two-terminal network 
N is also a feasible solution to the approximate quickest 
multi-commodity flow problem with bounded cost on 
corresponding auxiliary network N a. 

A single source-sink maximum flow problem with lane 

reversals can be computed in strongly polynomial-time 

complexity O(mn+n2m3logn), Rebennack et al. (2010). By 

incorporating a parametric search of   Burkard et al. (1993), 

a strongly polynomial-time bound for the quickest flow 

problem with lane reversal can be found. This problem can 

be solved with partial reversals of lane capacities in time O 

(nm2(log n)2), Pyakurel et al. (2019). On the other hand, the 

multi-commodity flow problem can be reduced to a single 

commodity flow problem by separating the paths Pi from si 

- ti for each commodity iK and can be solved as a single 

commodity flow problem. By Lemma 2.3, an approximate 

quickest multi-commodity flow solution can be obtained 

optimally on the auxiliary network Na. Moreover, any 

optimal solution on Na is equivalent to a feasible solution to 

given network N. 

The unused capacities of the arcs are saved by partial 

lane reversals. The saved capacity of the arc er is sc(er) = 
a

e eu y if we revert the arc er. If neither arc e nor er is 

reversed, then saved capacities of the arcs e and er are 

sc(e) = ue - ye and sc(er) = re
u , respectively. Thus, an 

approximate quickest multi-commodity flow with partial 

lane reversals having bounded cost on each arc of the 

network N can be computed optimally.  

Corollary 1 

A T-length bound approximate quickest multi-
commodity flow with partial lane reversals can be 
computed in polynomial-time complexity. 

Proof 

The complexity of Algorithm 1 is dominated by 
Steps 2 and 3. Step 3 is solved in O(mn) time. According 
to Fleischer and Skutella (2007), Step 2 is solved in 
polynomial-time. Since other remaining steps can be 
solved in linear time O(m), the problem can be computed 
in polynomial-time complexity.  

An FPTAS for the Quickest Multi-Commodity Flow 

Problem 

Consider a multi-terminal dynamic network N = (V, 
A, K, u, τ, di, S, D, T) for multi-commodity flows, where 
all parameters are integers. To get polynomial-time 
bound, we can rescale the time by large time steps 
instead of unit time step. 

If all transit times on arcs are multiple of ∆ > 0 such 

that T/∆ is bounded by a polynomial in the input size, 

then the condensed time-expanded network can be 

obtained by rescaling the time as  ,T T T HV A A   N , 

where the sets of nodes and edges are defined as: 
 

 

 
  

   


1

: , 0,1,2,..., / 1

, : ( , ) ,

0,1,2..., / 1

, : , ,

0,1,..., / 2

e

T

M

e

H

V v v V T

A v w e v w A

T

A v v e v w A

T



  

 



 









 



 

      

  

    
 

  

    

 

 
The copies of TV  corresponds to flow through V in time 

T = {α∆} for discrete-time and T = [α∆, (α+1)∆) for 

continuous-time, where  = {0, 1, 2, ..., T/∆ −1}. In this 

setting, for every arc corresponding to a discrete-time with 

multiple of ∆, capacities are rescaled by ∆ue. If T/∆ is an 

integer and arc length is defined as above, then any (multi-

commodity) flow over time that completes by time T 
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corresponds to a static (multi-commodity) flow of equal 

value and cost in 
T

N , Fleischer and Skutella (2007). 

Similarly, any flow in 
T

N  corresponds to flow over time 

of equal value that completes by time T. If we take ∆ = 1, 

then ∆-condense time-expanded network reduces to the 

classical time-expanded network. If arc transit times are not 

multiple of ∆, then transit times are rounded up to multiple 

of ∆ by τ'e = τe/∆ ∆ and 0 ≤ τ'e − τe < ∆ for all arcs eA. 

To develop an FPTAS to solve Problem 1 by using 

∆-condensed time-expanded network, we present 

Algorithm 2. We construct a ∆-condensed auxiliary 

network wherein capacities of arcs are ∆ times the 

sum of capacities of arcs e and er of the given 

network. Flows are sent through the ∆-condensed 

auxiliary network aN having transit time a

e  . This 

transformation solves the quickest multi-commodity 

flow problem with partial lane reversals using FPTAS-

Core of Fleischer and Skutella (2007) and the lane 

reversal technique of Pyakurel et al. (2019). 
 
Algorithm 2 An FPTAS for quickest multi-commodity 
flow problem with partial lane reversals. 
Input: Given multi-commodity flow network N = (V, A, 
K, u, τ, di, S, D, T). 
Output: The quickest multi-commodity flow with partial 
lane reversals: 
 
1. The auxiliary network N a is transformed to 

∆−condensed auxiliary network aN  = (V, Aa, K, 

u'a, τ'a, di, S, D, T) with: 
 

 

/

/ .

r

r

a

e e e

e
a

e

e

u u u

if e A

otherwise






   

     
  

   

 

 
2. Compute the quickest multi-commodity flow with 

bounded cost on aN  by using FPTAS-Core of 

Fleischer and Skutella (2007) with intermediate 

node storage. 
3. Decompose the flow along the si - ti paths and cycles 

and remove the flows in cycles i. 

4. Reverse erA up to the arc capacity ye - ue if and 

only if ye > ue, ue replaced by 0 whenever eA, i, 

where ye =
1

k i

ei
y

  and
1

k i

e ei
u u


 . 

5. For each eA, if er is reversed, sc(er) = a

e eu y   and 

sc(e) = 0. If neither e nor er is reversed, sc(e) = ue - ye 

> 0, where sc(e) is the saved capacity of e. 
6. Transform the solution to the original network. 
 

Lemma 2.6 

An FPTAS for quickest multi-commodity S-D flow 
problem with bounded cost can be computed on an 
auxiliary network in fully polynomial-time. 

Proof 

Consider a single commodity network N with demand d 

as input with tentative time horizon T and precision ε > 0. A 

standard binary search framework is used to calculate 

bounds on optimal make-span T∗, Fleischer and Skutella 

(2007). With the help of these bounds, an approximate T 

with T∗ ≤ T ≤ (1+O(ε)) T∗ is calculated. By choosing 

appropriate ∆ = ε2T/n, with T' = (1+ε)3T/∆∆, there exists a 

static flow y in the ∆-condensed time-expanded network 

T



N satisfying demands (1+ε) d. With the help of y, a flow 

over time Φ can be calculated in the network N with time 

horizon at most (1+ε) T' satisfying the demands d.  

For the correctness of the algorithm, process to find a 

static flow y in ∆-condensed time-expanded network 

satisfying demand (1+ε) d at cost (1+ε) C is as follows. 

As τ'a and T' are multiple of ∆, any flow over time that 

completes by time T corresponds to a static flow of equal 

cost in 
T



N . So, it suffices to show that, there exists a 

flow over time   with time horizon T' satisfying 

demand (1+ε) d at cost (1+ε) C. 
For single-commodity flow problems with cost, the 

storage of flow at intermediate nodes is not essential. So, 
any flow Φ' on arc e, at time θ can be written in the path 
flow form as: 
 

    
:

e P e

P P e P

P  
 

      (2.5) 

 
where, e(P) is the length of sub-path obtained by 
removing arc e and its successors. This flow is reduced 
to a smooth flow over time by: 
 

   
1ˆ

P P

TT



  

 
  

    (2.6) 

 

for all θ{0, ..., (1+ε)2 T + ε T}. Finally, taking   = 

̂ /(1+ε), flow   is required flow satisfying demand 

(1+ε)d at cost (1+ε)C and time at most T' which 

corresponds to the static flow y. Similarly, for a given flow 

y, we can compute a flow over time Φ in N satisfying 

demand d, cost bounded by C and time horizon bounded 

by (1+ε) T'. Hence, an approximate solution of quickest 

flow problem with bounded cost can be obtained from 

1
logO



 
 
 

 static min cost flow computations in 
T

N  with 

2

2

n
O



 
 
 

 nodes and 
2

mn
O



 
 
 

arcs. By using the storage of 

flow at intermediate nodes this result is generalized to the 

case of multi-commodity flow. The idea is that, if there is 

intermediate storage, there may be flow which contains 

non-simple paths that can be reduced to a simple path 

by delaying for some time σ. 

To deal this, in the path-based model, a path Pσ with 

delays σj, j = 1, 2, ..., q is a path on network N having nodes 
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(v0, v1, ..., vq)Pσ. The amount of time wherein flow is 

stored at node vj while moving forward from node vj to 

node vj+1 on path Pσ particularize by delay σj, j = 1, 2, ..., q. 

The flow over time 
P  is the decomposition of flow over 

time Φ on paths with delay Pσ by: 
 

    
:

e eP
P e P

P



  


     (2.7) 

 
where, τe(Pσ) is the time with delays on path Pσ to reach 

the arc e. 

In each search step of the algorithm, we check whether 

T

N  contains quickest multi-commodity flow satisfying all 

demands di having bounded cost with intermediate node 

storage and update the value of T. The lower bound can be 

computed in polynomial-time using constant factor 

approximation algorithm. The estimated T' can thus be 

found within O
1

log


 
 
 

 geometric mean binary search steps 

by static multi-commodity flow computations with bounded 

cost having the same number of nodes and arcs.  

Lemma 2.7 

The solution of the quickest multi-commodity flow 

problem with partial lane reversal having bounded cost 

obtained by Algorithm 2 is feasible. 

Proof 

Being transformations, Step 1 and Step 6 are feasible. 
The feasibility of Step 2 is shown in Lemma 2.6 and the 
feasibility of Step 4 is similar to the feasibility of Step 4 
of Lemma 2.4. Step 3 is already feasible. Step 5 saves 
the unused condensed capacity of the arc obtained by 
Step 4. Hence all the steps of Algorithm 2 are well-
defined. Thus, Algorithm 2 gives a feasible solution.  

Theorem 2.8 

An FPTAS provides an approximate solution to the 

quickest multi-commodity flow problem with partial lane 

reversals having bounded cost by using Algorithm 2. 

Proof 

We prove this theorem in two steps. In the first step, 

Lemma 2.7 proves the feasibility. In the next step, we 

show that the obtained solution is optimal. Feasibility 

implies that an optimal solution to an approximate 

quickest multi-commodity flow problem on two-terminal 

network N with lane reversals having bounded cost is also 

a feasible solution to the approximate quickest multi-

commodity flow with bounded cost on the corresponding 

auxiliary network aN . A multi-commodity flow over 

time can be reduced to a static flow problem on time-

expanded network and is computed in pseudo-polynomial-

time complexity, Skutella (2009). The ∆-condensed time-

expanded network as defined above is time-expanded 

network obtained by reduction of its size which provides 

approximate polynomial-time bound. An approximate 

quickest flow solution can be obtained optimally on 

auxiliary network by Lemma 2.6. The relation of flow 

over time to quickest flow problem and reduction of multi-

commodity to single commodity are similar as in Theorem 

2.5. Furthermore, any optimal solution on aN  is 

equivalent to the feasible solution to given network N. 

The unused capacities of the arcs by partial lane reversals 

are saved in Step 5. Consequently, an approximate 

quickest multi-commodity flow solution with lane 

reversals having bounded cost on each arc of a given 

network N can be computed optimally.  

Corollary 2 

An approximate quickest multi-commodity flow with 
partial lane reversal can be computed in fully 
polynomial-time complexity. 

Proof 

The complexity of Algorithm 2 is dominated by Steps 2 

and 3. Step 3 is solved in O(mn) time. According to 

Fleischer and Skutella (2007), a (1+ε) approximate solution 

of static multi-commodity flow problem with bounded cost 

can be calculated by 
1

logO


 
 
 

 computation in a 
T

N with 

2

2

n



 
 
 

 nodes and 
2

mn



 
 
 

 arcs in Step 2. Since other 

remaining steps can be solved in linear time O(m), so the 

problem can be computed in fully polynomial-time.  

Example 1 

Consider the networks from Figure (1-3) with two 

commodities having demands d1 = d2 = 12. Figure 1(a) 

and 2(a) are used to calculate the quickest time without 

lane reversals and with lane reversals, respectively. 

Similarly, Figure 3(b) represents the ∆-condensed 

network of Figure 3(a) for i = 1 by taking ∆ = 2 with 

modified capacities and transit times on the arcs. The 

approximate solution by ∆-condensed time-expanded 

network is presented in Figure 3(c). The same procedure 

can be used for the second commodity. 

On solving Problem 1 for quickest multi-commodity 
flow over time without lane reversals (c.f. Figure 1(a)), it 
takes T = 7 units of time to fulfill the given demands d1 
and d2. On the other hand, if lane reversal is applied (c.f. 
Figure 2(a)), then it takes T = 5 units of time to fulfill the 

same demands. So, approximately 28.5% of the time is 
saved due to lane reversal. 

Again, to use length-bounded approximation without 

lane reversal (c.f. Figure 1(a)), 5-length bounded 

approximation is essential for the first commodity to 

satisfy the demand d1 = 12 and flow is pushed for 3 times, 
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i.e., θ = 0, 1, 2. So the quickest time for the first 

commodity is T = 7. Similarly, 4-length bounded 

approximation is sufficient for the second commodity to 

satisfy the demand d2 = 12, and flow is pushed for 4-time 

units so that the quickest time for the second commodity is 

T = 7. Therefore, the minimum time required to satisfy 

both demands is T = 7. But in Figure 2(a) with lane 

reversals, 4-length bounded approximation is sufficient for 

the first commodity, and flow is pushed for 3-time units 

whereas 4-length bounded approximation is sufficient for 

the second commodity and flow is pushed for 2-time units. 

The quickest time to satisfy both demands is T = 6. Thus 

approximately 14.3% time is saved due to lane reversal in 

length-bounded approximation. 

Next, by using ∆-condensed time-extended network 

presented in Figure 3(c), the total time to fulfill demand d1 

with lane reversal is T = 6. Similarly, we can calculate the 

quickest time for d2 and the total time to satisfy both 

demands is T = 6. If we calculate flow in ∆-condensed time-

extended network without lane reversals (c.f. Figure 1(a)) 

with ∆ = 2, then T = 8 time is required to fulfill the given 

demands. It shows that lane reversal configuration improves 

the quickest time by 25% even in ∆-condensed network. 
We summarize the Example 1 from the following 

Table 1. 

 

Table 1: Quickest time with and without lane reversals 

Case Without LR With LR %Change 

Normal 7 5 28.5 

Length bound 7 6 14.3 

∆-condensed 8 6 25 

LR = Lane Reversals 

 

 
 (a) 
 

 
 (b) 
 

 
 (c) 
 
Figure 3: (a) Network having capacity, transit time on the arc for first commodity after lane reversals. (b) ∆-condensed network with 

condensed capacity and condensed transit time of (a) with ∆ = 2. (c) ∆-condensed time expanded network of (b). 
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Conclusion 

Routing of several commodities from the origin to 

the destination through a network is one of the main 

problems in operations research. The minimization of 

time (cost) is a vital issue. To fulfill the demands in 

minimum possible time, a well-known quickest flow 

problem has been investigated. The quickest flow 

problem for a single commodity can be solved 

efficiently, but the multi-commodity case is weakly 

NP-hard. However, a polynomial-time approximation 

algorithm by length-bounded function and an FPTAS-

Core by using ∆-condensed time-expanded network 

have been obtained. 

To improve the quickest time in the two-way 

network a lane reversals strategy is an important tool. 

We incorporate this technique for length-bounded 

approximation as well as condensed time-expanded 

network. 

In this paper, we investigated the quickest multi-

commodity flow problem with partial lane reversals. 

We introduced its mathematical model and presented 

two algorithms, one a polynomial-time approximation 

and another an FPTAS. As we have studied the 

quickest multi-commodity flow problem with constant 

transit time, we are further interested in elongate these 

approaches for flow-dependent attributes. The results 

obtained in this study are both theoretical and 

practical interests. 

This work will be helpful to the researchers who 

intended to extend their ideas for time-dependent, flow-

dependent and load-dependent attributes. 
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