Hindawi

Security and Communication Networks
Volume 2020, Article ID 8858010, 16 pages
https://doi.org/10.1155/2020/8858010

Review Article

WILEY

Hindawi

A Survey of Automatic Software Vulnerability Detection, Program
Repair, and Defect Prediction Techniques

Zhidong Shen @ and Si Chen

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan, Hubei 430079, China

Correspondence should be addressed to Zhidong Shen; shenzd@whu.edu.cn

Received 19 June 2020; Revised 13 August 2020; Accepted 11 September 2020; Published 30 September 2020

Academic Editor: Luigi Coppolino

Copyright © 2020 Zhidong Shen and Si Chen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Open source software has been widely used in various industries due to its openness and flexibility, but it also brings
potential software security problems. Together with the large-scale increase in the number of software and the increase in
complexity, the traditional manual methods to deal with these security issues are inefficient and cannot meet the current
cyberspace security requirements. Therefore, it is an important research topic for researchers in the field of software security
to develop more intelligent technologies to apply to potential security issues in software. The development of deep learning
technology has brought new opportunities for the study of potential security issues in software, and researchers have
successively proposed many automation methods. In this paper, these automation technologies are evaluated and analysed
in detail from three aspects: software vulnerability detection, software program repair, and software defect prediction. At the
same time, we point out some problems of these research methods, give corresponding solutions, and finally look forward to
the application prospect of deep learning technology in automated software vulnerability detection, automated program

repair, and automated defect prediction.

1. Introduction

With the rapid development of information technology,
software is playing an important role in various aspects all
over the world, such as the economy, military, and society.
At the same time, potential security issues in software are
becoming an emerging worldwide challenge. Software
vulnerabilities are one of the root causes of security prob-
lems. High-skilled hackers can exploit the software vul-
nerabilities to do a lot of harmful things according to their
own wishes, such as stealing the private information of users
and halting the crucial equipment.

In today’s multiuser continuous interaction environ-
ment, if a hacker uses a certain time node to launch an attack
whose loss and cost are difficult to predict. According to the
statistics released by the Common Vulnerabilities and Ex-
posures (CVE) organization [1], the number of software
vulnerabilities discovered in 2000 was less than 4600 while

the number of vulnerabilities currently covered almost
nearly 20000. It can be seen from Figure 1 that the number of
vulnerabilities has reached its peak at the past three years,
which undoubtedly increases the threats faced by many
computer users using network services. Therefore, it is
crucial to security researchers to discover and fix problems
of the software in a timely manner.

Potential security problems of software are not only
security problems faced by software developers but also
related to the development of national network security. In
the past few years, the phenomenon of cyber attacks on the
industrial and commercial has continued to increase, and
the security threats faced by enterprises and individuals have
also increased. The ransomware “WannaCry,” which
appeared in 2017, is the cyberattack that has the worst
impact, the widest coverage, and the most serious conse-
quences in recent years. Therefore, the need for automated,
scalable, machine-speed vulnerability detection, program

mailto:shenzd@whu.edu.cn
https://orcid.org/0000-0002-4880-381X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8858010

18000
16000 |
14000
12000 |
10000
8000 |
6000
4000
2000

2010 2011 2012 2013 2014

Security and Communication Networks

2018

2015 2016 2017 2019

F1Gure 1: Number of CVE vulnerabilities over the years.

patching, and defect prediction techniques are becoming
urgent when facing severe challenges posed by network
security issues.

In 2016, the CGC held by DARPA left a profound impact
on us. Judging from the CGC conference, machines can
indeed replace part of the work of human white hats, and
even in some aspects, such as operating speed, machines
have a natural advantage over humans. Especially, in recent
years, the rapid development of deep learning technology
has given us more opportunities for machine to solve
software security problems more intelligently.

In this article, we review the application of deep learning
techniques in software security research, discuss the efforts
of academia and related researchers in software security
research, and look forward to the opportunities and chal-
lenges that deep learning technology faces in the field of
software security.

To summarize the work of this paper, the key contri-
bution is three-folds:

Firstly, we review the latest research progress of deep
learning technology in software vulnerability detection,
program patching, and defect prediction. Tables 1 and 2
give an overview of these techniques.

Secondly, we focus on the advantages and disadvan-
tages of each technology from the aspects of software
vulnerability detection, program patching, and defect
prediction and propose ideas and solutions for future
research.

At last, we look forward to the opportunities and
challenges faced by existing automatic vulnerability detec-
tion, automatic program patching, and automatic defect
prediction technologies and provide some reference value of
future researchers.

2. Automatic Software Vulnerability Detection

Traditional vulnerability research methods often require
security researchers to have professional knowledge and rich
practical experience, which is less versatile and has limited
efficiency. At present, the application of deep learning and
natural language processing technologies can intelligently
process vulnerability information to assist security vulner-
ability research and improve the efficiency of security vul-
nerability mining. The binary vulnerability detection
method has high detection accuracy and wide practicability,

but is difficult to trace the structure information and type
information about the upper level code of the program. At
present, the binary code vulnerability detection uses dis-
assembly operations to disassemble binary code into as-
sembly instruction codes, from which we use program
analysis technology to extract key vulnerability code in-
formation that are vectorized to input into neural network
for training. According to the static analysis technology, the
vulnerability processing method is further divided into a
vulnerability detection method based on code similarity and
a vulnerability detection method based on code pattern.

2.1. Code Similarity-Based Vulnerability Detection. Code
similarity vulnerability detection is also called clone de-
tection, whose core idea is that similar program code has
similar software vulnerabilities. In the process of continuous
development of code clone detection technology, researchers
have defined four common clone types: Type-1 (T1), Type-2
(T2), Type-3 (T3), and Type-4 (T4) [2]. Type-1 (T1) clones
are identical code fragments which may contain variations in
whitespace, layouts, or comments. Type-2 (T2) clones are
code fragments allowing variations in identifiers, literals,
types, whitespace, layouts, and comments. Compared with
Type-2 clones, Type-3 (T3) clones allow extra modifications
such as changed, added, or removed statements. Type-4 (T4)
clones further include semantically equivalent but syntac-
tically different code fragments.

2.2. Grammar-Based Clone Detection Methods. In the pro-
cess of clone detection, the representation of source code
determines the upper limit of information extraction, which
further limits the model design and the selection of similarity
measurement algorithms and ultimately affects the detection
effect. The traditional text-based representation method,
process data only involving the removal of comments and
spaces in the program code, is mainly based on text simi-
larity measurement methods to detect text-level clones.
However, the tree-based representation method analyses the
program code through the interpreter to process data, whose
measurement algorithm takes the more program structures
information into account to detect code clones from the
grammatical level.

At present, many scholars have described the develop-
ment of code clone detection technology in the field of
software security from the dimensions of code

Security and Communication Networks

TaBLE 1: Summary of deep learning technologies on automatic vulnerability detection, automatic program patching, and automatic defect

prediction.
Method type Advantage Disadvantage
. Code similarity-based 801.1rce code-based detec.ts mulpple clone YPES Ralse negative rate high (source);
Automatic . . binary code-based achieves higher detection . . .
s vulnerability detection analytical complexity (binary)
vulnerability accuracy
detection Code pattern-based Static method achieves higher code; coverage Lack run-time information (static);

vulnerability detection

dynamic method detects faster

low code coverage (dynamic)

Grammar-based

Automatic program program patching
patching Semantic-based program

patching

Token-based method error analysis; simple text-
based method generates higher quality patches
Static method achieves good repair effect
dynamic method and accurately captures
program behavior

Poor patches interpretability (token);
unacceptable program behavior (tex)

Limited type of repair (static); high
cost (dynamic)

Within-project defect
prediction
Crossproject defect

Automatic defect L
prediction

prediction
Just-in-time defect
prediction

End-to-end implementation, accurate prediction
of defective program modules
Effectively integrates dataset resources to better
promote new project development practices
Earlier identifies faulty modules and fine-grained
analysis, efficiently identifies the number of
defects

Poor expansion

Excessive code feature extraction
granularity

Lack of extensive training data to
train the model

TaBLE 2: Various feature parameters selected of deep learning technology on software vulnerability detection, program repair, and defect

prediction.

Method type CNN network

RNN network

DNN network

Code similarity
vul detection
Code pattern vul
detection

gradient_rate

Grammer
program patching

Semantic
program patching

Iteration, dropout, hidden_layer,

filter_size, filter_num, hidden_layer

batch_size, iteration
Dropout, batch_size, iteration,
learning_rate, vector_dimension

learning_rate, batch_size, hidden_layer,

token_length, hidden_unit, iteration,

embedding_size, gradient_optimizer
hidden_unit, gradient_optimizer,
vector_dimension, learning_rate,

hidden_layer, network depths, dropout,

hidden_layer, iteration, dropout,
layer_size, learning_rate

iteration, dropout, hidden_dimension

filter_num, filter_size, hidden_node,
batch_size, iteration,
embedding_dimension

Within-project
defect prediction

Crossproject filter_size, filter_num, learning_rate,
defect prediction vector_size
Crossproject

defect prediction

Dropout, vector_dimension,
hidden_layer, hidden_node, batch_size,
iteration, learning_rate
Dropout, hidden_layer, hidden_node,

hidden_layer, hidden_node,
iteration, learning_rate,
gradient_optimizer, batch_size
Iteration, hidden_layer,
hidden_node
hidden_layer, hidden_node,
activation_function

batch_size

representation, model design, similarity measurement al-
gorithms, and performance metrics. However, these works
mainly summarize the early code clone detection methods
and rarely involve the application of deep learning tech-
nology in clone detection technology. This article mainly
introduces the research progress of deep learning technology
in code clone detection technology in recent years and
elaborates the related technology from the grammatical level
and the semantic level.

The code representation on the syntax level mainly
considers the syntax rules of the program source code.
Usually, an abstract syntax tree (AST) is constructed to
hierarchically display the structure information of the
program, and then further processing for detecting. At
present, the method based on deep learning intercepts key

node information by constructing abstract syntax tree,
transforms it into feature vector or hash values, then selects a
suitable neural network model for training, and finally uses
the model to achieve clone comparison.

Table 3 shows the technical implementation and tech-
nical characteristics of deep learning in grammar cloning
detection. The current mainstream method is to characterize
program code based on AST. Marastoni et al. have imple-
mented T4 type code clone detection based on the image.

Literature [3] proposed a sentence-based deep learning
code clone detection method and defined eight token types.
First, use ANTLR [7] to parse each method and extract
C1-C3, and use the Eclipse ASTParser [8] to create an
abstract syntax tree for each method to further extract
C4-C8 tokens. Then, calculate the frequency of each type of

4 Security and Communication Networks
TaBLE 3: Technical characteristics of grammar-based clone detection.

. . . Clone I .
System/writer Data preprocessing Code representation Network types Classification object
CClLearner [3] Use ANTLR and ASRParser to parse each method Token AST DNN Ti1-T3 Method pairs
CLDH [4] Parse each code fragment to AST AST LSTM T1-T4 code fragments
White et al. [5] Use ANTLR to tokenize code AST FBT olive trees RtvNN T1-T4 Method/file level
Marastoni et al. [6] Leverage tigress C to obfuscate dataset Binary image CNN T4 Image level

token in each method and the similarity between the method
pairs, which is input to the classifier for training to detect
clones of the given code base. To assess CCLearner’s sen-
sitivity to the parameter settings in DNN and the selected
features, we experimented with different configurations of
DNN and investigated different feature sets. It is observed
that CCLearner worked best with 2 hidden layers and 300
training iterations in DNN. Since the token only reveals the
code relationship of the grammatical level, the ability of this
method to measure the similarity between code functions is
limited.

CCLearner uses only lexical information about the
source code and does not consider code structure infor-
mation, which makes it difficult to detect functional clone
pairs. Literature [4] proposes an end-to-end deep learning
framework called CDLH, which captures lexical and syn-
tactic information on the functional behaviour of code
fragments in a supervised manner and hashes to further
convert real-valued representations into binary hash codes.
Compared with CCLearner, the learned features are more
compact, which significantly improves detection efficiency
and saves storage space. At the same time, writer studies the
influence of different lengths of hash code on clone detection
performance of CDLH measured by F1 value, and F1 values
of CDLH with respect to different code lengths ranging from
8 to 48 are not sensitive to hash code length in this range.

Literature [5] comprehensively considers code structure
and identifier, which are simultaneously used to model.
Different from CCLearner’s work based on token frequency
statistics, this article uses a greedy way to transform between
multiple tree structures to characterize the code, and the
RINN model is used to map similar terms in the code
fragments to similar continuous value vectors. In addition,
this model is based on the RVNN model to learn code
fragments of different levels of granularity. In the experi-
ment set, ANTLR is used to tokenize the source code and the
RNNLM Toolkit [9] to train several RtNNs for each system,
varying hidden layer sizes and depths. Then, using perplexity
[10] as a proxy for evaluating the quality of model, the higher
quality the model, the better the accuracy.

Literature [6] proposes a novel program similarity de-
tection method, which converts binary code into image data
that is input to CNN network of training model. At the same
time, the author uses Tigress C obfuscator [11] iterative
transformation grammar to expand the original dataset to
fully train the model. Since the CNN network needs to view
the entire image extracted from the binary file to complete
the classification of each file, the size of the binary executable
file limits the performance of the system.

In the experiment phase, all the weights in the CNN are
initialized with random values taken from a normal dis-
tribution with standard deviation set at 0.1 to avoid running
into local minima at early stages, and the following pa-
rameters are further fine tuned to improve the performance
of the model: test_ratio, gradient_rate, limit, random_seed,
and norm.

In order to prove the validity of the combination of
various code characterization methods of similarity task
detection, literature [12] implements four code represen-
tations: Identifiers, Abstract Syntax Trees, Control Flow
Graphs, and Bytecode, and trains a model for each repre-
sentation. The experimental results show that, by integrating
different models, the accuracy of code clone detection can be
further improved.

Compared with the method of text and token, the
grammar-based codes representation method considers the
structural information about the program code, which is
more fault tolerant for the sequence conversion to program
statements and minor modifications. However, the tree-
based method still faces some shortcomings. With the en-
hancement of the logic structure of the program, the
complexity of constructing the program abstract syntax tree
increases, which further leads to an increase in the com-
putational overhead of extracting key codes and vector
transformation operations.

2.3. Semantic-Based Clone Detection Methods. The code
representation of the semantic level not only considers the
syntax of the source code but also uses the control flow and
data flow information about the program code to solve the
code cloning detection problem of the code function level.
Data flow graphs, control flow graphs, and program de-
pendency graphs generated by programs are currently the
mainstream representation methods.

Table 4 shows the technical implementation and tech-
nical characteristics of deep learning in semantic cloning
detection. Program code is characterized by a program
dependency graph of control flow and data flow. Well-
known detection technologies are DeepSim, which uses CFG
and DFG node information; ZEEK uses code symbolization
and hash techniques; CCDLC and Sheneamer et al. use PDG
to consider program semantic information on a deeper level.

The program has a well-defined syntax, and the abstract
syntax tree can be well represented. AST has shown excellent
results from syntax-level cloning detection, but it cannot
effectively detect discontinuous code clones. Literature [13]
implements a novel clustering function, which effectively

Security and Communication Networks

TABLE 4: Technical characteristics of semantic-based clone detection.

System/writer Preprocessing Representation Network Clone types Classification object
CCDLC [13] Trimme, normalize method blocks BDG PDG AST CNN T3-T4 Method blocks
Sheneamer et al. [14] Trimme, nirmalize method blocks AST PDG BDG — T1-T4 Method blocks
ZEEK [15] Split the procedure to basic blocks Hashes NN T4 Code block
DeepSim [16] Use WALA to analysis bytecode DFG CFG DNN' T4 Method level

combines the high-level features extracted from PDG with
the low-level features extracted from BDG, closely reflecting
the relationship between the data in the program code. As
for model training, the CNN network is implemented with
dropout regularization and Rectified Linear Units, which is
run with multithreaded mini-batch descent, and the ex-
perimental result shows that CCDLC achieves good results
in code obfuscation and semantic cloning detection.
Compared with [14, 17], the CCDLC system further im-
proves the data preprocessing and feature vector conversion
process.

In order to better perform the embedding learning of
word vectors, literature [15] introduces a new vector rep-
resentation method proc2vec. First, split the program as-
sembly code into basic blocks and use the strands that
compose a code section as feature set, transforming strands
to numbers and assembling those numbers to form a vector
that represents the corresponding code. Compared with
direct token symbol numerical conversion, the numerical
vector matrix is more sparse, which can greatly reduce the
computational cost of similarity. The neural network model
is a common four-layer structure, which is trained using
crossentropy cost function, dropout regularization of 0.1,
batch size of 32, and 3 passes over the data.

Literature [16] analyses the relationship between various
variables and basic code blocks based on control flow and
data flow and considers three kinds of features for encoding
the control flow and data flow information (variable fea-
tures, basic block features, and relationship features between
variables and basic blocks). Then, a high-dimensional sparse
binary feature vector semantic matrix is generated through
the predefined code rules. Semantic feature matrix reduces
the problem of finding isomorphic subgraphs to detecting
similar patterns and makes it easy to use for the later
processes. The feature parameters of model training are
considered from layer size, epoch, learning rate, dropout,
and L2 regularization, whose appropriate values are set from
referencing the parameter settings in the classic model.
Compared with the existing state-of-the-art techniques,
DeepSim significantly outperforms better in recall, preci-
sion, and time performance.

Compared with the general natural language text
characteristics, the semantic-based method fully considers
the program structure, sequence, and special grammar in-
formation and deepens the semantic features. However,
semantic-based representation technology requires the use
of generators to generate program dependency graphs for
each programming language, which has poor scalability, and
seldom talks about the selection and optimization of neural
network models.

In the existing code similarity detection methods, a four-
layer network structure model is commonly used. RNN and
CNN have their own advantages in data relationship pro-
cessing and feature extraction, whose advantages can be
considered to design a new network structure. For the se-
lection of feature parameters, we can learn from the training
method of k-fold crossvalidation.

3. Code Pattern-Based Vulnerability Detection

The code pattern-based vulnerability detection technology
mainly involves two stages. In the training phase, control
flow and data flow technology are used to extract key codes
in the program, which are transformed into vector, with the
help of current mainstream tool (such as word2vec), which is
input them into appropriate neural networks for supervised
training. In the detection phase, the same data processing is
performed on the new software program, which is used to
detect the existing vulnerabilities through the learned model.
According to whether the program needs to be run, the code
pattern-based vulnerability detection methods are divided
into static detection methods and dynamic detection
methods, whose network structures currently used for
model training include CNN, RNN, and LSTM [18-20].

3.1. Static Detection Methods. Static analysis refers to the
process of program analysis by constructing abstract syntax
trees and program dependency graphs, without running the
software, whose analysed object usually refer to source code
or executable code. Compared with executable code, source
code analysis can obtain more semantic information,
comprehensively considers the information on the execution
path, therefore finding more vulnerabilities and improving
the hit rate.

Figure 2 shows the principle of code static analysis and
neural network training. The whole process includes the
following steps: sample code construction, feature extrac-
tion, word vector generation, and neural network model
training and classification. Among them, vulnerability fea-
ture extraction mainly involves how to select appropriate
granularity to represent software programs and vulnerability
detection. Since deep learning or neural networks take
vectors as input, we need to represent programs as vectors
that are semantically meaningful for vulnerability detection.
We should use some intermediate representation as a
“bridge” between a program and its vector representation,
which is the actual input to deep learning. Vulnerability
feature extraction is to transform programs into some in-
termediate representation that can preserve (some of) the

Feature
extraction

History Il

corpus Vector

pattern

Vulnerable

code Learning

Network
model

classification

Security and Communication Networks

Sample

code

Sample
construction

Vector
pattern

Defect code

FiGURre 2: Principle of code static analysis and neural network training.

semantic relationships between the programs’ elements (e.g.,
data dependency and control dependency) through CFG
and PDG technology. Word vector generation is based on
feature extraction, applying the most mainstream word
vector generation technology so that intermediate repre-
sentation can be transformed into a vector representation,
that is, the actual input to neural networks. Neural network
training classification involves two stages of training and
detection. The training phase takes the code vector repre-
sentation extracted from the historical code base as input,
whose output is neural network of fine-tuned model pa-
rameters. In the detection phase, the code vector repre-
sentation extracted from the new software program is taken
as input, and the output is the classification result.

Table 5 shows the technical implementation and tech-
nical characteristics of deep learning in static code vul-
nerability detection. VulDeePecker for the first time
demonstrated the potential of deep learning technology in
vulnerability detection; SySeVR and CPGVA started from
PDG and made better use of program control flow graphs;
Lee et al. started from the binary level of the program to
study the issue of assembly instruction-level code detection.

Traditional vulnerability detection methods require
human experts to manually define the characteristics of the
vulnerability, which is heavy and tedious. In addition, each
person’s perception of the characteristics of the vulnerability
and the level of experience are different, making it difficult to
achieve the desired results.

In order to tap the potential of deep learning in vul-
nerability detection, literature [21] proposed VulDeePecker,
a vulnerability detection system based on deep learning,
which proposes the concept of code gadgets that is some
intermediate representation that can preserve (some of) the
semantic relationships between the programs’ elements (e.g.,
data dependency and control dependency). Then, the in-
termediate representation can be transformed into a vector
representation that is the actual input to neural networks.
Considering the relationship between variables and state-
ments in the program code, the author uses the BLSTM
network structure. This is because the arguments of a
program function call may be affected by earlier statements
of the program and may be also affected by the later
statements. During model training, article adopts a 10-fold
crossvalidation to train a BLSTM neural network and varies
the number of hidden layers for each BLSTM neural network
to observe the influence on the resulting F1-measure.

VulDeePecker uses data flow analysis to generate code
gadgets, failing to implement the control flow analysis

process, and the types of vulnerabilities detected are limited.
In addition, the feature parameters selected for model
training are mainly selected based on the experience in the
NLP task, and how to select more appropriate feature pa-
rameters requires further research.

Aiming at the existing shortcomings of VulDeePecker,
the literature [22] further considers the program control
flow and proposes a grammar-based and semantic and
vector-based vulnerability detection system framework.
Similar to VulDeePecker extracting code gadgets, data flow
analysis is used to extract and generate SyVCs from the
program that then are used to generate program slices
through the PDG and converted into SeVCs. The main
parameters for learning BLSTM are dropout is 0.2, batch size
is 16, number of epochs is 20, output dimension is 256,
default learning rate of 0.002, dimension of hidden vectors is
500, and number of hidden layers is 2. Compared with
VulDeePecker, SySeVR proposed its own word vector
generation algorithm that avoids the problems of the
word2vec model and optimized the selection of feature
parameters of the neural network model.

As mentioned earlier, it is difficult to fully discover
multiple vulnerabilities by considering program structure,
data flow, and control flow dependencies. Literature [23]
proposes a novel source code representation method—code
attribute graph—which is a novel representation of source
code and merged concepts of classic program analysis,
namely, abstract syntax trees, control/data flow graphs, and
program dependence graphs into a joint data structure. In
the process of program preprocessing, CPGVA uses Stream
extraction to consider the sequence of program points that
may be taken by various flow graphs of the program,
avoiding program dependencies that cannot be considered
in traditional PDG. The article does not discuss in detail the
impact of network structure feature parameters on the
performance of model detection, which mainly compared
the state—of-art source code review methods related to deep
learning the results of SARD [25] dataset, depending on
CNN (AlexNet, Lenet, Tcnn, etc.) or RNN (LSTM, BLSTM,
GRU, etc.).

In order to better evaluate the performance of deep
feature learning vulnerability detection technology, the lit-
erature [26] compares three kinds of vulnerability detection
methods. The experimental results are not good in cross-
project and class imbalance problems of software vulnera-
bility detection, but good research ideas for future research.

In addition, literature [24] proposes the Instruction2vec
model to vectorize assembly code in the research process of

Security and Communication Networks 7
TaBLE 5: Technical characteristics of deep learning in static code vulnerability detection.

System/writer Analysis object Vulnerability types Vector techniques Network Dataset

VulDeePeckke r [21] Code gadgets Library/API function word2vec BLSTM SI\IIX\II{]%
1 . NVD

SySeVR [22] Code gadgets 126 types of vulnerability Custom algorithm 6 deep neural networks SARD

CWE-78 CNN, RNN
CPGVA [23] Code stream CWE-90 word2vec (variant net) SARD
Lee et al. [24] Function CWE-121 instruction2vec Text-CNN Juliet

binary program vulnerability detection. Compared to the
method of generating word vectors based on the word2vec
model, the process of Instruction2vec utilizes the word2vec
results for all words in the assembly code. At the same time,
most instructions use one opcode and two operands, which
also have a fixed length. NLP uses a high-dimensional vector
to represent a large number of word vectors, but the as-
sembly code does not need a high-dimensional vector be-
cause the number of words is small, instruction2vec better
retains the potential relationships of opcodes, operands, and
registers. This article explores the impact of different con-
volution kernel sizes and the number of hidden layers on
model performance; Text-CNN uses 9 types of filters, each
128 in count, to maximize performance. The experimental
results can be seen that increasing the number of filters in the
CNN network of a certain range can significantly improve
the detection accuracy.

Deep learning-based static vulnerability detection
methods analyse program code dependencies on the source
code level and preprocess the vulnerable code based on the
idea of program slicing. In the existing research, the labelling
of each sample code needs to be carried out manually, and
the model is only for specific languages and types of vul-
nerabilities and is not suitable for extension to large projects.
At the same time, the influence of the selection of different
feature parameters on the neural network model is not
explained too much in the existing methods of the article.

3.2. Dynamic Detection Methods. Dynamic analysis is the
process of verifying or discovering the vulnerability of the
software by running a specific program and obtaining in-
formation such as the output or internal state-of-the pro-
gram, whose object of analysis is executable code. Compared
with the static methods, the dynamic methods analyse
vulnerabilities to obtain specific operating information, so
the analysed vulnerabilities are generally more accurate and
have a lower false alarm rate.

Static analysis tools have proven to be particularly ef-
fective in specific application areas, such as embedded
systems or aerospace applications. However, it is much more
difficult to use these techniques on more common software.
Literature [27] proposes a deep learning-based dynamic
analysis software vulnerability detection method. The final
execution state was determined through the three steps of
binary executed, events hooked, and events collected and the
VDiscover tool [28]. Then, use the zzuf tool to implement
data labelling. Finally, the sequence of 9872 function calls is

analysed as a feature to represent the mode of the binary
program during execution. Limited by the amount of data
and the length of the sequence in data preprocessing, some
specific types of vulnerabilities may be missed in actual
detection.

Literature [29] starts with the generation and selection of
intelligent seeds to reduce the exploration of useless paths.
The solution proposed in this article is NeuFuzz, which uses
deep neural networks to learn hidden vulnerability patterns
from a large number of vulnerable and clean program ex-
ecution paths. During online guided fuzzing, use the pre-
diction model to determine whether an unseen path is
vulnerable, and the seed is marked according to the pre-
diction result and then added to the seed queue. At last,
vulnerable seeds will be prioritized and assigned more
mutation energy in the next seed selection process and seed
mutation process.

Deep learning technology can reduce human feature
engineering, which is expected to replace traditional vul-
nerability detection methods in the future research process
and significantly improve vulnerability detection perfor-
mance. However, deep learning in vulnerability detection
methods face many shortcomings, where the model is often
trained based on the program source code, which is not
available in most cases. In addition, detection granularity
and limited models further limit the detection effect.

In order to further advance the development of auto-
mated vulnerability detection technology, in the future re-
search process, abstract modelling of programming
languages with similar grammar and syntax can be con-
sidered to achieve software vulnerability detection between
multiple languages with the same model. At the same time,
transfer learning can be considered to implement the
learning process of small pieces of data to solve the lack of
large-scale vulnerability datasets. In addition, the optimi-
zation of neural network structure and the selection of
feature parameters have always been problems faced by
relevant practitioners [30]. Existing code vulnerability de-
tection technologies are often based on 10-fold cross-
validation training methods to obtain optimal parameters,
the way of which is often compromised of training time and
model performance for large-scale project data.

4. Automatic Software Program Repair

Early automated patching technology was mainly used to
prevent the spread of worms, and automated patching

technology slowly penetrated into all aspects of computer
software security with the development of technology. The
automatic program repair technology can assist in the au-
tomatic repair of some defects in the software program,
thereby effectively reducing the program debugging time of
the software developer.

4.1. Patching Process. The automated patching technology is
divided into the following three phases: the software fault
location phase, the patch generation phase, and the patch
evaluation phase.

Software fault location is a prerequisite for automatic
program repair and is mainly used to identify the location of
potential defects or vulnerabilities in the program. At
present, the commonly used fault location technologies are
divided into two categories: static fault location technology
and dynamic fault location technology. The static fault lo-
cation technology [31-33] mainly obtains the control de-
pendence and data dependency relationship between the
tested program codes through program analysis technology,
thereby confirming and locating the fault location. The
dynamic fault location technology [34] obtains the execution
information of the program by executing the preselected test
case and locates the position of the defect statement in the
tested program by analysing the execution flow of the
program.

The build patch phase defines some operational rules by
examining the program code structure and analysing the
sample code submission and modification information, and
then modifying the defect statement through the defined
operations. Two patch generation methods are commonly
used based on search and semantics. The search-based patch
generation method is a process of finding a patch in a search
space and verifying it, often improving the patch generation
efficiency by scaling the search space size and optimizing the
search strategy. The semantic-based patch generation
method generates patches by integrating techniques such as
fault location, constraint solving, and program synthesis.

The patch evaluation phase evaluates the generated
candidate patches until a patch is found that enables all test
cases to be executed by the program.

5. Grammar-Based Patching Technology

The grammatical error-based program repair technique
modifies the error code by learning the code grammar
features to achieve certain language specifications.

5.1. Token-Level Learning and Repair Technology.
Standard LR parsers often have difficulty in resolving
grammatical errors and their precise location and may even
draw a misleading conclusion about where the actual error
is. The source code of a computer program is a plain text
representation that is similar to natural language of gram-
matical structure, where the development of natural lan-
guage technology and deep learning technology makes it
possible to learning-based repair.

Security and Communication Networks

Neural networks that learn similar grammatical struc-
ture information can enhance the effect of program repair,
and the literature [35] proposes a technology that provides
teedback on grammatical errors, which uses recurrent neural
networks (RNN) to simulate grammatically valid token
sequences. For a given program, a set of grammatically
correct code submissions are first modelled based on the
RNN network, which is queried using the prefix token se-
quence to predict the effective token sequence pair for code
submissions with grammatical errors.

The experiment with both the RNN and LSTM networks
with 1 or 2 hidden layers and each with either 128 or 256
hidden units and several other indicators (such as learning
rate, batch size, and gradient threshold) are fine tuned
during training. The article focuses on analysing that adding
additional hidden layers with more hidden units will actually
reduce the performance of the network on our dataset. The
current method only uses the prefix token sequence to repair
and does not consider the relationship between the context
of the token sequence, which cannot guarantee the cor-
rectness of the repair sequence semantically and repair
multiple errors at the same time.

Literature [36] trains two opposite language models
based on the LSTM network, which comprehensively
considers the token context content to solve a single token
syntax error. The neural network is trained from varying the
number of neurons in the hidden layer, while keeping the
number neurons per layer constant while adjusting the other
feature parameters. On the premise of a token vocabulary
formed by training with a large number of examples, the
model can guarantee the accuracy of both positioning errors
and correcting error bits, however, which in turn limits the
time efliciency of the model. The target audience of this tool
is experienced programmers, and it is difficult for novice
developers to use this tool. Therefore, the data corpus, time
dimension, and scalability issues limit the performance of
GrammarGuru.

The GrammarGuru scheme is limited to the error code
and the training data being in the same domain, of which
literature [37] overcomes problem and uses n-gram model
and LSTM model modelling to correct grammatical errors.
For hyperparameters’ impact, the article tests 985 different
configurations, varying the hidden layer size (50, 100, 200,
300, 400, and 1000), the context size (5, 10, 15, and 20), and
optimizer (RMSprop and Adam), and Adam optimizer
outperforms the impact of all other parameters. Evaluating
the Blackbox corpus, the experimental results show that the
language model can successfully locate and repair gram-
matical errors in manually written codes without parsing.

5.2. Text-Based Learning and Repair Technology. Due to the
dependencies between the various parts of the program, even
a single error may require analysis of the entire program.
Repair accuracy is an important indicator in program repair
techniques, and the previous literature [35-37] locates and
repairs program errors based on token-level accuracy, whose
generated error patches cannot completely repair pro-
gramming errors.

Security and Communication Networks

In order to improve the effect of error repair, the lit-
erature [38] proposes an end-to-end solution called DeepFix
comprehensively considering the token context text, which
uses a multilayer sequence neural network of attention to
capture program text dependencies. The article uses the
attention-based sequence-to-sequence architecture imple-
mented in Tensorflow and does a 5-fold crossvalidation to
give an accurate evaluation of our technique and select best
feature parameters. The effectiveness of iterative repair
shows that if the network fails to produce a fix for a program
in an iteration, and the subsequent iterations are not exe-
cuted for that program as applying the same network again
will not change the outcome.

DeepFix calls the model output in an iterative manner to
fix multiple errors in the program one by one, but most of
the repairs only involve reducing compilation errors and
cannot fundamentally solve the problem. Literature [39]
proposes the DeepRepair learning framework, which uses
redundant or repeated codes in the program and based on
the principle of code similarity to prioritize and convert the
statements in the code library to generate program repair
components. The article selects word2vec to train word
embedding, which is used to initialize the embeddings for
the recursive autoencoders. Deep Repair’s search strategy
using the embedding-based ingredient transformation al-
gorithm, which yields patches in fewer time and finds higher
quality patches than jGenProg [40].

Literature [41] proposes a system TRACER for fixing
errors, which improved the repair accuracy by error local-
ization, abstract code repair, and concrete three-module
code repair. The writer conducts an extensive grid search to
set hyperparameters, whose best configurations are chosen
upon crossvalidation based on the performance measure of
Precision at the Top and Smoothed Precision at the Top. At
the same time, the modular approach adopted by TRACER
focuses on a small set of sentences, which greatly improves
the ability of the RNN framework to propose relevant local
corrections.

In the existing online programming courses, the pro-
gram repair generated by TRACER has more teaching value
than the built-in error correction function of the compiler.
However, TRACER uses a compiler-based heuristic method,
which has the problem of inaccurate error location. At the
same time, the input data of TRACER fails to consider the
types of errors that require global context information,
which makes the model difficult to deal with type errors such
as opening/closing missing parentheses. In addition,
TRACER and DeepFix use supervised learning techniques to
train error correction models.

Literature [42] proposes a reinforcement learning
framework RLAssist, which overcomes the compiler-based
TRACER heuristic. The model does not require any su-
pervision during the training process, whose agent learns
from the original program to generate candidate repairs. The
model is implemented following an open source imple-
mentation 2 of A3C, a suitable configuration of feature
parameters for our task through experimentation. The ex-
periment result shows that the greater the number of epi-
sodes is, the more the error messages resolved. At the same

time, the other parameters have different degrees of influ-
ence on the proportion of error repair degree.

The grammar-based program repair technology still
faces some problems that some methods still borrow the
compiler to locate the error location and verify the error
repair. Compilers usually cannot provide accurate error
location information, which makes it difficult for novice
programmers to perform accurate repairs based on the
information provided by the compiler. In addition, it is
difficult to ensure the semantic validity of program state-
ments through the compiler to repair errors, which in turn
changes the behaviour and results of the program.

The RNN network has greater advantages in processing
sequence data relationships and generating text data, and its
variant network structure models are often selected to
achieve program repair due to the program repair process
which involves the process of data generation. In terms of
model performance improvement, it is often achieved by
optimizing the following feature parameters: learning_rate,
batch_size, hidden_layer, token_length, embedding_size
gradient_optimizer, hidden_unit, and iteration. In future
repair techniques, researchers should consider the above
information in the program text and develop better models
to locate and fix grammatical errors.

6. Semantic-Based Patching Technology

A semantic error-based program repair technique generally
refers to modifying the program code so that the actual
program behaviour is substantially consistent with the be-
haviour expected by the programmer. In order to repair the
errors in the program from the semantic level, the literature
[31] proposes a novel neural network architecture, which
separates the nonstatistical process of generating and ap-
plying repair suggestions from the statistical process of
scoring and sorting repair. The rule-based processor is first
used to generate the repair candidate, and then the statistical
model is scored using the novel neural network architecture
so that different repair candidates can compete in the
probability space to fix the error with higher precision. In the
experiment stage, a small amount of hyperparameter, such
as training epochs, hidden dimensions, embedding size, and
dropout, are tuned to train the model, which drastically
outperforms the attentional sequence-to-sequence model.

Literature [31] predicts the repair of all program loca-
tions by performing an enumeration search operation and
then calculates the score of the fix to select the best fix, which
causes a training/test data mismatch problem during the
repair process. On this basis, the literature [32] uses the
multihead pointer to jointly perform classification, posi-
tioning, and repair, which can achieve fine-grained posi-
tioning of specific variables and complete the repair process.
The article defines two parameters to filter the predictions,
where the influence of feature parameters on neural network
performance is not discussed. This result show that the
network is able to perform the localization and repair tasks
jointly, efficiently, and effectively, without the need of an
explicit enumeration.

10

In order to overcome the semantic incomprehensibility
of patch collection generated by semantic patch technology,
literature [33] mines semantic-related repair patterns based
on iterative triple clustering strategy, using abstract syntax
tree, editing operation tree, and code context tree for pattern
representation, making full use of the similarities between
change information and token changes in the AST diff tree.
The evaluation of thousands of software patches collected in
open source projects shows that the pattern generated by
FixMiner is associated with the semantics of the errors
addressed by the relevant patches, sufficient to generate
patches with high probability of correctness, and can be
correctly repaired using the mining model.

The grammatical- and semantic-based program repre-
sentation differences are expressed as follows.

First, during the running of the program, the state-
ments in the program are generally not learned in the order
in which the corresponding markup sequence is presented
to the deep learning model. Second, control dependencies
and data dependencies in programs play an important role
in program semantics, but these dependencies are not well
represented in tokens and ASTs. Third, from the per-
spective of program performance, even a similar gram-
matical structure may lead to large differences in program
semantics.

The literature studies [31-33] analyse the source code of
the program and can only capture the dependencies between
the sequential data and cannot handle the relationship such
as jump or recursion. Program states of contiguous tuples of
real-time variable values can accurately capture such pro-
gram semantics while also providing natural results for the
neural network model. Literature [34] proposes a novel
semantic program embedding system, which combines
variable tracking embedding, state tracking embedding, and
hybrid embedding to learn semantic information from the
program execution trajectory. All encoders in each of the
trace model have two stacked GRU layers with 200 hidden
units in each layer except that the state encoder in the state
trace model has one single layer of 100 hidden units.
Comparing dynamic program embeddings with syntax-
based program embedding in predicting common error
patterns made by students, the embeddings trained on ex-
ecution traces significantly outperform those trained on
program syntax.

At present, the semantic-based program repair technol-
ogy mainly learns the semantic features of the program by
constructing the program AST and can only analyse the
dependencies between the sequential data. Like the grammar-
based program repair technology, the existing technologies
are also implemented based on RNN and its variant networks
due to the program repair process involving the process of
data generation. However, the current technology rarely
discusses the influence of characteristic parameters on neural
network model training and mainly focuses on algorithm
optimization, which limits the performance of current
technology to a certain extent.

In the future program repair technology, we can learn
from the vulnerability detection technology that combines

Security and Communication Networks

with AST and PDG technology to enhance the performance
of the existing program semantic repair technology and
analysis of the impact of feature parameters on the model
performance to further promote the applications of deep
learning technology in the program repair technology.

7. Automatic Software Defect Predicting

Software defects refer to any deficiencies in the product
description, design, and coding stages. Software defect
prediction can help software developers find errors quickly,
allocate limited resources reasonably, and prioritize their
testing work. In recent years, software developers have used
various deep learning algorithms to analyse software defects
and increase software testing to improve software quality,
reduce software costs, and enhance software maintainability.

This section describes the latest research results of deep
learning technology in software defect prediction in recent
years according to the difference in data sources and pre-
diction granularity, whose content mainly covers within-
project defect prediction, crossproject defect prediction, and
just-in-time defect prediction.

8. Within-Project Defect Prediction

Within-project defect prediction can be further divided into
intraversion defect prediction and crossversion defect pre-
diction, and the former uses a specific version data training
model of the software system for defect prediction, and the
latter uses different version data training models of the
software system for defect prediction.

Table 6 shows the technical implementation and tech-
nical characteristics of deep learning in the project defect
prediction. Wang et al. use CLNI to complete the data la-
belling task, and the Tree-LSTM model is trained in an
unsupervised manner; CAP-CNN comprehensively con-
siders code review information to implement code defect
prediction, and other methods start with network models to
improve prediction performance.

In order to improve the quality of the software, devel-
opers put a lot of effort into the testing and debugging
process. However, in most cases, developers have limited
resources and time constraints. In this case, automated
software defect prediction techniques can better help them
find errors and prioritize testing.

Literature [43] adopts the edit distance similarity
computation algorithm [49] and CLNI [50] to eliminate data
with potential incorrect labels to eliminate the influence of
data noisy and uses the AST analysis program source code to
obtain syntactic information, which is converted into feature
vector that is input to DBN network for building effect
prediction models.

In the training phase, three parameters are fine tuned to
train an effective DBN for learning semantic features. The
deeper the network structure, the more nodes, which will
increase the model convergence time, and the performance
improvement will be limited. Furthermore, the proposed
semantic feature generation approach is only evaluated on

Security and Communication Networks

11

TaBLE 6: Technical characteristics of within-defect prediction methods.

System/writer Datasets Metrics Feature generation Data labeled
Wang et al. [43] PROMISE P F1 Parse source code, handle noise, and map tokens, generate feature CLNI
Recall via DBN
P F1 Parse source code, map AST nodes, generate feature via Tree- Model
Dam et al. [44] Samsung Recall LSTM generation
P F1 Parse source code, extract and encode token, generate feature via Repository
DP-CNN [45] PROMISE Recall CNN provided
- .. oo Repository
SDNN [46] NASA F1 AUC Delete repeated entities, replace missing value, data normalization provided
CAP-CNN [47] PROMISE Fl Split source modules, encoded as vector via pretrained word2vec, Reposlltory
generate feature via CNN provided
DefectLearner 12 open source P F1 Remove comment, use word embedding method, generate feature Proiects provided
[48] projects Recall via LSTM Jectsp

open source java projects, whose performance on closed
source software and projects written in other languages is
unknown. Furthermore, the proposed semantic feature
generation approach is only evaluated on open source java
projects, whose performance on closed source software and
projects written in other languages is unknown.

The state-of-the-art method [43] leverages Deep Belief
Network in learning semantic features of token vectors
extracted from programs’ ASTs, which outperforms tradi-
tional feature-based approaches in defect prediction.
However, it overlooks the structural information about
programs which can lead to more accurate defect prediction.
Literature [44] uses a novel attention mechanism to im-
plement a tree-based LSTM network, which uses the strong
predictive ability of the tree network structure to avoid the
influence of noisy data and is trained in an unsupervised
manner. In model training, dropout is considered to prevent
overfitting in neural networks, which is further combined
with perplexity evaluation metric for choosing the best
model. The effectiveness of this method has been demon-
strated in Samsung open source projects.

As reported by deep learning researchers in speech
recognition [51] and image classification [52], Convolutional
Neural Network (CNN) is more advanced than DBN since
the former can capture local patterns more effectively.
Literature [45] borrows the method of [43], selects three
same types of nodes on ASTs as tokens, and wraps word
embedding as a part of CNN architecture. The feature pa-
rameter fine tuning is a key to train a successful CNN, which
directly affects the convergence of the model. The article
mainly varies the values of these three parameters: the
number of filters, the filter length, and the number of nodes
in hidden layers, whose best values are obtained from val-
idation experiment. During the evaluation of seven open
source projects, experimental results show that, on average,
DP-CNN improves existing technology methods by 12%.

Literature [46] explores the advantages of Siamese
networks to propose a novel SDP model, which integrates
similarity feature learning and distance metric learning into
a unified approach. Compared to previous methods
[43, 49, 50], SDNN uses the two identical fully connected
networks to learn the highest-level similarity features and
the metering function as the distance measure for between

the highest-level features. In experiment process, the author
explores the impact on the number of hidden layers on the
performance of the model and obtains the best results from 3
hidden layers, which is the best model through experiments.
In addition, cell units, mini-batch size, learning rate, and
dropout are considered to further improve the accuracy of
model.

Previous techniques have been often based on the pro-
gram code itself, without considering information such as
program code comments. Literature [47] proposes a novel
defect prediction model named CAP-CNN, which is a deep
learning model that automatically embeds code comments
into generating semantic features of the source code for
software defect prediction. CAP-CNN combines source code
and comments for software defect prediction, which generates
a more semantic feature representation indicating the
structure and functionality of source modules. In this ex-
periment, the author refers to the conventional CNN network
structure model and parameter settings, which do not further
explore the influence of various feature parameters on the
model performance. Experimental results of widely used
software defect prediction datasets show that code comments
help improve defect prediction performance.

From the perspective of code naturalness, the literature
[48] introduces crossentropy as a new software metric into
the typical defect prediction of the file level, which is based
on the RNN structure mining code token set of the LSTM
unit to capture common mode in the program. At the same
time, the paper adopts several optimization strategies of
dropout, gradient clipping, and adaptive learning rate to deal
with overfitting, gradient disappearance, and gradient ex-
plosion problems. In a series of comparative experiments,
the fine tuning of various performance evaluation indexes
turther confirmed the important role of various character-
istic parameters in model performance. The experimental
results show that crossentropy metric is more discriminative
than the traditional metrics.

Within-project defect prediction technology focuses on
file-level defects, which constructs AST parsing program
source code, generates word vectors using word embedding
technology, and uses common network models for training.
For each feature parameter of deep learning technology on
within-project defect, dropout is a key parameter that can be

12

used to prevent model overfitting, and several other pa-
rameters (such as learning rate and the number of hidden
layers) are commonly used to accelerate the convergence of
the model.

In addition, within-project defect prediction method
mainly focuses on whether the new file contains defect
information, which cannot effectively feedback the reason
for the introduction of the defect or locate the position of the
defect. In actual software engineering practice, it is difficult
to ensure the repeatability and effectiveness of the model
trained in open source projects.

9. Crossproject Defect Prediction

Affected by factors such as development processes and
programming languages between different projects, previous
research focuses on defect prediction within the project. In
practice, a new project usually does not have enough defect
data to build a predictive model, so crossproject defect
prediction is necessary, which uses data from other projects
to train the model to apply to the new project.

With the rapid development of artificial intelligence
technology, especially the powerful learning and presenta-
tion capabilities of deep learning technology, which provides
a good application basis for the research of defect prediction
between different projects. Traditional research focuses on
manually designing coding program features and simply
exploring the performance of different machine learning
algorithms, unable to capture the semantic differences of the
program, and the built predictive model has low accuracy.

In order to effectively compensate for the gap between
program semantics and defect prediction features, the lit-
erature [43] uses DBN to automatically learn the charac-
teristics of token vectors extracted from the program’s AST
and then use these features to train the defect prediction
model. In the experimental stage, the article explores how
three parameters of the number of hidden layers, the
number of nodes in each hidden layer, and the number of
training iterations affect the model precision, F1, and recall.
The experimental results show that the semantic features
significantly improve the CPDP mode compared to tradi-
tional features, and appropriate feature parameters can
better improve the performance of the model.

In order to bridge the gap between program semantics
and defect characteristics, literature [44] develops a novel
predictive model that captures the contextual information
that is far apart in the program by constructing a tree-shaped
LSTM neural network to match the abstract syntax tree
representation using the program source code. In the
training phase, the article focuses on the impact of dropout
on the performance of the model. Literature [53, 54] pro-
poses to use deep neural networks in assembly instruction
sequences rather than AST, which use C++ compilers to
compile C++ programs into assembly code and then apply
convolutional neural networks to learn the datasets of as-
sembly instruction sequences, whose prediction effect is
significantly better than the AST-based method.

In the previous forecasting model, only the program
code data was focused on, and the program code comment

Security and Communication Networks

information was rarely paid attention to. Literature [47]
proposes a new defect prediction model CAP-CNN, which
can automatically embed code annotations to generate se-
mantic features of the source code of software defect pre-
diction. At the same time, the model uses network coding
and absorption of comment information to automatically
generate semantic features during the training process, ef-
fectively overcoming the problem of missing comments in
the program. Experimental results from several widely used
software datasets show that comment features can improve
defect prediction performance.

Existing software prediction models are mostly limited
to source code, but the files obtained in the prediction work
are usually binary executables. Due to software copyright
and source code protection restrictions, it is difficult for the
defect prediction research community and third-party se-
curity companies to obtain source code. Literature [55]
proposed the smali2vec method to capture the features of
smali in apks and use deep neural networks for training. The
model focus on fine tuning three parameters including the
number of hidden layers, the number of neurons in each
hidden layer, and the number of iterations, which train an
effective DNN for predicting defects in apks. The three
parameters are fine tuned by conducting experiments with
different values of these parameters on our training data and
find the best configuration of the parameters from the AUC
value and the error rate. Compared with the within-project
defect prediction technology research, the research on
crossproject defect prediction based on deep learning
technology is still too little, and the research process of
crossproject should be further promoted in future research.

10. Just-In-Time Defect Prediction

In actual scenarios, it is difficult for us to apply the error-
proneness recommendations given by the software system to
overcome these problems, of which developers introduce just-
in-time defect prediction technology to solve. In just-in-time
defect prediction, modules that are prone to failure can be
identified at an early stage and fed back to developers for
changes and repairs. At present, just-in-time defect prediction
technology is carried out at the code change level, whose fine-
grained analysis enables developers to more efficiently solve
the problems encountered in the software development
process.

Literature [56] first combines deep learning methods to
improve the performance of instant defect prediction, which
uses the Deep Belief Network that is consisting of three
restricted Boltzmann machines and a logistic regression
classifier to build a deeper model for detecting more ex-
pressive features. In the article, the neural network structure
of model is a general configuration, whose numbers of
hidden units are based on a range of numbers using a
strategy similar to greedy search. At the meanwhile, the
performance of the model is evaluated through ten-fold
crossvalidation, whose cost effectiveness and F1-score are far
better than the previous method.

Different from the literature [56], the literature [57] uses
three fully connected backpropagation (BP) neural networks

Security and Communication Networks

to construct a regression model rather than a classifier
model. In addition, the Model Neural Network Regression
(NNR) method utilizes ten numerical metrics of code
changes and then feeds them to a neural network whose
output indicates how likely the code change under test
contains bugs. The article does not give too much expla-
nation on the selection of model feature parameter values,
which mainly introduces how to select the best model based
on the crossvalidation training method. Given the inspection
resources, the number of defects can be identified more
efficiently based on the effort-aware instant defect
prediction.

Literature [58] proposes a novel method, TLEL, which
uses decision trees and integrated learning to improve the
performance of immediate defect prediction. In the inner
layer, the decision tree and the bag are combined to con-
struct a random forest model. In the outer layer, random
undersampling is used to train many different random forest
models and they are assembled again using the stack. The
article presents the effect of varying the values of the two
parameters, NTree and NLearner, on the performance of
TLEL on six datasets and uses ten-fold crossvalidation to
evaluate the performance of TLEL based on two evaluation
metrics of cost effectiveness and F1-score.

Just-in-time defect prediction technology can identify
modules that are prone to failure at an early stage and feed
them back to developers for changes and repairs, whose fine-
grained analysis enables developers to more effectively solve
problems encountered in the software development process.
The problem of defect prediction is to determine whether the
current software program contains defective code, which can
be regarded as a two-class problem to a certain extent. In the
field of nlp and images, various CNN network models
perform well in classification tasks, which should be pro-
moted in the application of the just-in-time defect prediction
in future research.

11. Future Directions and Challenges

It is essential to ensure the reliability of the software, during
the entire life cycle of software development to deployment,
where application of deep learning technology accelerates
the software development cycle and saves manpower and
time costs. However, it is difficult for the existing technology
to analyse and process the increasing number of security
issues in a unified manner with the continuous development
of software technology, which further makes the application
of deep learning technology in the field of software security
face some challenges. As shown in Table 7, there are still
some challenges in applying deep learning techniques to the
field of software security.

11.1. Feature Generation. The selected features play an im-
portant role in the neural network training process, whose
quality is higher, the better the model training effect. In
vulnerability detection, a method based on tokens, trees, and
graphs is usually used to abstract the program source code,
and then feature mapping and vector transformation

13

TaBLE 7: Opportunities and challenges for deep learning applied to
software security research.

Challenges Opportunity

Deep learning model automatic
feedback
Tree and graph model combined
Fine-grained program feature
representation
DL combined with static, dynamic
program analysis technology
Establish an open source unified
dataset standard library

Tool review
Feature extraction
Semantic feature learning

High false negatives and
false positives

Dataset

Crossproject
vulnerability detection
Code metric

Transfer learning

New code attribute

techniques are used to generate word vectors, which are used
as the input of the deep learning model. The current main-
stream methods analyse the source code, and the program
behavior cannot be effectively tracked in feature selection,
which limits the performance of the model to a certain extent.
Analyzing the binary code can better understand the behavior
of the program, which makes the constructed model better
locate the location of the vulnerability. Therefore, it is nec-
essary to explore binary-oriented deep learning vulnerability
detection technology.

11.2. Model Selection. Various deep learning models were
initially mainly used in the field of computer vision and
image processing, which is still in its infancy in the appli-
cation of software security research, and how to use the
powerful learning capabilities of deep learning models to
deal with software security issues needs to be resolved ur-
gently. Various models of deep learning have different
learning capabilities for the same data, and how to select a
suitable model to learn feature data requires further
exploration.

11.3. Datasets. Model training requires a lot of data, which is
obtained from open source projects, in the current research.
There are differences in data between open source projects
and closed source projects, which makes model trained in
open source projects may not be applicable in closed source
projects. In addition, the data used for model training often
suffers from the problem of unbalanced data types, which
turther limits the performance of many models.

11.4. Performance Evaluation. Traditional vulnerability de-
tection requires human experts to manually define features,
which is tedious and time consuming, and often faces the
risk of high false positive rates and high false negative rates.
Deep learning technology can handle natural language tasks
well, and program code can be regarded as text data to a
certain extent, and we can learn from the processing
methods and evaluation indicators of text data to improve
the performance of existing methods in natural language
specific tasks.

14

11.5. Feature Parameters. The selection of feature parameter
values plays an important role in various deep learning
technologies, whose unreasonable parameter values’ setting
will greatly influence model performance. Many feature
parameter values of the current techniques are selected based
on experience, whose rationality has not been verified. For
different tasks, setting the same value for the feature pa-
rameters corresponding to the same network model may
have different effects.

12. Conclusions

In the process of software system development, it is the
common goal of software developers to improve software
quality and safety. Traditional detection methods require
domain experts to spend a lot of time and energy to create
feature engineering, and it is vital to combine deep learning
technology with program analysis technology to assist
software security research to further promote the develop-
ment of automated detection technology. This article in-
troduces in detail the latest research progress of deep
learning technology in software vulnerability detection,
software program repair, and software defect prediction, of
which expounds and discusses the existing shortcomings.
Looking at the development trend of automation technology
in the software security field in recent years, deep learning
technology will play an increasingly important role in the
research of software security automation technology in the
future. For the majority of researchers, deep learning
technology is a historical opportunity that will promote an
innovation in software engineering technology research.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program
of China (Grant n0.2018YFC1604000) and Natural Science
Foundation of Hubei Province (Grant no.2017CFB663).

References

[1] CVE, http://cve.mitre.org/.

[2] S. Bellon, R. Koschke, G. Antoniol et al., “Comparison and
evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577-591, 2007.

[3] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder,
“CClearner: a deep learning-based clone detection approach,”
in Proceedings of the 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 249-260,
IEEE, Shanghai, China, September 2017.

[4] H. Wei and M. Li, “Supervised deep features for software
functional clone detection by exploiting lexical and syntactical
information in source code,” in Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
pp- 3034-3040, Melbourne, Australia, August 2017.

[5] M. White, M. Tufano, C. Vendome et al., “Deep learning code
fragments for code clone detection,” in Proceedings of the 31st

Security and Communication Networks

IEEE/ACM International Conference on Automated Software
Engineering, ACM, pp. 87-98, Singapore, September 2016.

[6] N. Marastoni, R. Giacobazzi, and M. Dalla Preda, “A deep
learning approach to program similarity,” in Proceedings of
the 1st International Workshop on Machine Learning and
Software Engineering in Symbiosis, ACM, Montpellier, France,
pp- 26-35, September 2018.

[7] ANTLR, http://www.antlr.org/.

[8] Use JDT ASTParser to Parse Single, Java Fles, http://www.

programcreek.com/2011/11/use-jdt-astparser-to-parsejava-file/.

[9] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and

J. Cernocky’, “RNNLM—recurrent neural network language

modeling toolkit,” in Proceedings of the ASRU’11, Waikoloa,

HI, USA, December 2011.

D. Jurafsky and J. Martin, Speech and Language Processing,

Pearson, London, UK, 2nd edition, 2009.

[11] ChristianCollberg, TheTigressCdiversifier/Obfuscator, 2015.

[12] M. Tufano, C. Watson, G. Bavota et al., “Deep learning
similarities from different representations of source code,” in
Proceedings of the 2018 IEEE/ACM 15th International Con-
ference on Mining Software Repositories (MSR), IEEE,
Gothenburg, Sweden, pp. 542-553, May 2018.

[13] A. Sheneamer, “CCDLC detection framework-combining
clustering with deep learning classification for semantic
clones,” in Proceedings of the 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA),
IEEE, pp. 701-706, Orlando, FL, USA, December 2018.

[14] A. Sheneamer, H. Hazazi, S. Roy, and J. Kalita, “Schemes for
labeling semantic code clones using machine learning,” in
Proceedings of the 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), 1EEE, pp.
981-985, Cancun, Mexico, December 2017.

[15] N. Shalev and N. Partush, “Binary similarity detection using
machine learning,” in Proceedings of the 13th Workshop on
Programming Languages and Analysis for Security, ACM,
Toronto, Canada, pp. 42-47, October 2018.

[16] G. Zhao and J. Huang, “Deepsim: deep learning code func-
tional similarity,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ACM,
Lake Buena Vista, FL, USA, pp. 141-151, November 2018.

[17] A. Sheneamer, S. Roy, and J. Kalita, “A detection framework
for semantic code clones and obfuscated code,” Expert Sys-
tems with Applications, vol. 97, pp. 405-420, 2018.

[18] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A con-
volutional neural network for modelling sentences,” 2014,
https://arxiv.org/abs/1404.2188.

[19] T. Mikolov, M. Karafiat, L. Burget et al., “Recurrent neural
network based language model,” in Proceedings of the Eleventh
Annual Conference of the International Speech Communica-
tion Association, Makuhari, Japan, September 2010.

[20] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term
memory recurrent neural network architectures for large scale
acoustic modeling,” 2014.

[21] Z. Li, D. Zou, S. Xu et al,, “VulDeePecker: a deep learning-
based system for vulnerability detection,” 2018, https://arxiv.
org/abs/1801.01681.

[22] Z. Li, D. Zou, S. Xu et al., “SySeVR: a framework for using
deep learning to detect software vulnerabilities,” 2018, https://
arxiv.org/abs/1807.06756.

[23] W. Xiaomeng, Z. Tao, W. Runpu, X. Wei, and H. Changyu,
“CPGVA: code property graph based vulnerability analysis by
deep learning,” in Proceedings of the 2018 10th International

[10

http://cve.mitre.org/
http://www.antlr.org/
http://www.programcreek.com/2011/11/use-jdt-astparser-to-parsejava-file/
http://www.programcreek.com/2011/11/use-jdt-astparser-to-parsejava-file/
https://arxiv.org/abs/1404.2188
https://arxiv.org/abs/1801.01681
https://arxiv.org/abs/1801.01681
https://arxiv.org/abs/1807.06756
https://arxiv.org/abs/1807.06756

Security and Communication Networks

Conference on Advanced Infocomm Technology (ICAIT), IEEE,
pp. 184-188, Stockholm, Sweden, August 2018.

[24] Y.J. Lee, S. H. Choi, C. Kim et al., “Learning binary code with
deep learning to detect software weakness,” in Proceedings of
the KSII the 9th International Conference on Internet (ICONI)
2017 Symposium, Pittsburgh, PA, USA, July 2017.

[25] https://samate.nist.gov/SRD/.

[26] X. Ban, S. Liu, C. Chen, and C. Chua, “A performance
evaluation of deep-learnt features for software vulnerability
detection,” Concurrency and Computation: Practice and Ex-
perience, vol. 31, no. 19, p. €5103, 2019.

[27] F. Wu,]J. Wang, J. Liu, and W. Wang, “Vulnerability detection
with deep learning,” in Proceedings of the 2017 3rd IEEE
International Conference on Computer and Communications
(ICCC), 1EEE, pp. 1298-1302, Chengdu, China, December
2017.

[28] G. Grieco, G. L. Grinblat, L. Uzal et al., “Toward large-scale
vulnerability discovery using machine learning,” in Pro-
ceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, pp. 85-96, New Orleans, LA, USA,
March 2016.

[29] Y. Wang, Z. Wu, Q. Wei et al., “NeuFuzz: efficient fuzzing
with deep neural network,” IEEE Access, vol. 7, pp. 36340—
36352, 2019.

[30] R. Zhang, W. Li, and M. Tong, “Review of deep learning,”
Information and Control, vol. 47, no. 4, pp. 385-397, 2018.

[31] J. Devlin, J. Uesato, R. Singh et al., “Semantic code repair using
neuro-symbolic transformation networks,” 2017, https://
arxiv.org/abs/1710.11054.

[32] M. Vasic, A. Kanade, P. Maniatis et al., “Neural program
repair by jointly learning to localize and repair,” 2019, https://
arxiv.org/abs/1904.01720.

[33] A. Koyuncu, K. Liu, T. F. Bissyandé et al., “Fixminer: mining
relevant fix patterns for automated program repair,” 2018,
https://arxiv.org/abs/1810.01791.

[34] K. Wang, R. Singh, and Z. Su, “Dynamic neural program
embedding for program repair,” 2017, https://arxiv.org/abs/
1711.07163.

[35] S. Bhatia and R. Singh, “Automated correction for syntax
errors in programming assignments using recurrent neural
networks,” 2016, https://arxiv.org/abs/1603.06129.

[36] E. A. Santos, J. C. Campbell, A. Hindle, and J. N. Amaral,
“Finding and correcting syntax errors using recurrent neural
networks,” Peer], vol. 5, Article ID e3123v1, 2017.

[37] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and
J. N. Amaral, “Syntax and sensibility: using language models
to detect and correct syntax errors,” in Proceedings of the 2018
IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, pp. 311-322,
Campobasso, Italy, March 2018.

[38] R. Gupta, S. Pal, A. Kanade et al., “Deepfix: fixing common ¢
language errors by deep learning,” in Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, San Francisco,
CA, USA, February 2017.

[39] M. White, M. Tufano, M. Martinez, M. Monperrus, and
D. Poshyvanyk, “Sorting and transforming program repair
ingredients via deep learning code similarities,” in Proceedings
of the 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, pp.
479-490, Hangzhou, China, February 2019.

[40] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and
M. Monperrus, “Automatic repair of real bugs in java: a large-
scale experiment on the defects4j dataset,” Empirical Software
Engineering, vol. 22, no. 4, pp. 1936-1964, 2017.

15

[41] U.Z. Ahmed, P. Kumar, A. Karkare et al., “Compilation error
repair: for the student programs, from the student programs,”
in Proceedings of the 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), 1IEEE, Gothenburg,
Sweden, pp. 78-87, May 2018.

[42] R. Gupta, A. Kanade, and S. Shevade, “Deep reinforcement
learning for programming language correction,” 2018, https://
arxiv.org/abs/1801.10467.

[43] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 2016
IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), IEEE, Austin, TX, USA, pp. 297-308, May
2016.

[44] H.K.Dam, T. Pham, S. W. Ngetal.,, “A deep tree-based model
for software defect prediction,” 2018, https://arxiv.org/abs/
1802.00921.

[45] J. Li, P. He, J. Zhu et al., “Software defect prediction via
convolutional neural network,” in Proceedings of the 2017
IEEE International Conference on Software Quality, Reliability
and Security (QRS), IEEE, pp. 318-328, Prague, Czech Re-
public, July 2017.

[46] L. Zhao, Z. Shang, L. Zhao et al, “Siamese dense neural
network for software defect prediction with small data,” IEEE
Access, vol. 7, pp. 7663-7677, 2018.

[47] X. Huo, Y. Yang, M. Li, and D.-C. Zhan, “Learning semantic
features for software defect prediction by code comments
embedding,” in Proceedings of the 2018 IEEE International
Conference on Data Mining (ICDM), 1EEE, pp. 1049-1054,
Singapore, November 2018.

[48] X. Zhang, K. Ben, and J. Zeng, “Cross-entropy: a new metric
for software defect prediction,” in Proceedings of the 2018
IEEE International Conference on Software Quality, Reliability
and Security (QRS), IEEE, pp. 111-122, Lisbon, Portugal, July
2018.

[49] G. Navarro, “A guided tour to approximate string matching,”
ACM Computing Surveys, vol. 33, no. 1, pp. 31-88, 2001.

[50] S.Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proceedings of the 33rd International
Conference on Software Engineering—ICSE’11, pp. 481-490,
New York, NY, USA, 2011.

[51] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn,
“Applying convolutional neural networks concepts to hybrid
NN-HMM model for speech recognition,” in Proceedings of
the 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, Lake Tahoe, NV, USA, December 2012.

[53] A. V. Phan and M. Le Nguyen, “Convolutional neural net-
works on assembly code for predicting software defects,” in
Proceedings of the 2017 21st Asia Pacific Symposium on In-
telligent and Evolutionary Systems (IES), IEEE, pp. 37-42,
Hanoi, Vietnam, November 2017.

[54] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional
neural networks over control flow graphs for software defect
prediction,” in Proceedings of the 2017 IEEE 29th International
Conference on Tools with Artificial Intelligence (ICTAI), IEEE,
pp. 45-52, Boston, MA, USA, November 2017.

[55] F. Dong, J. Wang, Q. Li, G. Xu, and S. Zhang, “Defect pre-
diction in android binary executables using deep neural
network,” Wireless Personal Communications, vol. 102, no. 3,
pp. 2261-2285, 2018.

https://samate.nist.gov/SRD/
https://arxiv.org/abs/1710.11054
https://arxiv.org/abs/1710.11054
https://arxiv.org/abs/1904.01720
https://arxiv.org/abs/1904.01720
https://arxiv.org/abs/1810.01791
https://arxiv.org/abs/1711.07163
https://arxiv.org/abs/1711.07163
https://arxiv.org/abs/1603.06129
https://arxiv.org/abs/1801.10467
https://arxiv.org/abs/1801.10467
https://arxiv.org/abs/1802.00921
https://arxiv.org/abs/1802.00921

16 Security and Communication Networks

[56] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning
for just-in-time defect prediction,” in Proceedings of the 2015
IEEE International Conference on Software Quality, Reliability
and Security, IEEE, pp. 17-26, Vancouver, Canada, August
2015.

[57] L. Qiao and Y. Wang, “Effort-aware and just-in-time defect

prediction with neural network,” PLoS One, vol. 14, no. 2,

Article ID e0211359, 2019.

X. Yang, D. Lo, X. Xia, and J. Sun, “TLEL: a two-layer en-

semble learning approach for just-in-time defect prediction,”

Information and Software Technology, vol. 87, pp. 206-220,

2017.

(58

