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Abstract: We present a mesh generation algorithm which
is able to produce smooth meshes from point clouds
derived from histological slices. In this work, the shrinking
tube mesh generation is used on histologic images
depicting pathologic vessels. Our mesh generation is
modeled after the behaviour of a shrinking tube. A start
shape is fitted iteratively to the point cloud. The presented
algorithm was successfully used to generate meshes of the
inner and outer contour from vessels in histologic images.
While histologic slices have a high in-plane resolution, the
large slice distance and deformations during tissue de-
formations are challenging for 3D model generation.
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1 Introduction

3D models from medical images are commonly used to
support diagnosis and treatment decisions. Using 2D his-
tologic images we want to generate a 3D model for visu-
alisation and simulation. Several model-based algorithms
for mesh generation from medical images exist [2–4].
Frangi et al. [3] developed an algorithm using a deformable
model to derive vessel models from 3Dmagnetic resonance
angiograms. Similar, Yim et al. [4] used a tubular deform-
able model to reconstruct vessels. While providing good
results, these algorithms are restricted to the specific use
case (imaging modality and organ) they were designed for.

Due to several reasons, mesh generation is especially
challenging when working with histologic images. The
images are very large (approximately 11,000 × 8,000 pixel)

and several artefacts can influence the tissue shape (folding,
dissecting tissue, deformations during tissue collections).
The first problem is addressed byworking with the points of
the outer contour of the tissue instead of the images. By
registering the images and extracting the contour points, a
point cloud is derived. The point cloud has a very aniso-
tropic distribution (close points in x–y-direction, large gaps
along the z-axis) anddue to the artefacts it does not correctly
represent the outer aneurysm border. Here, a process to
generate smooth meshes from noisy pathologic vessel point
clouds is described. In contrast to healthy vessels the
pathologic vessels used here can only be roughly approxi-
mated by a cylinder and do not allow for more detailed
assumptions to guide the model generation.

Salman et al. [5] proposed a mesh generation from
point clouds, which includes a feature selection step before
the mesh generation. The approach preserves sharp edges
well and is therefore suitable for objects with sharp edges
like buildings or technological components. Often the
meshes derived frompoint clouds require a post processing
step to smooth the meshes [6]. Some algorithms require
extensive preprocessing, for example the calculation of
point normals [7]. Although this preprocessing is justified,
the normals are error-prone in case of incorrect segmen-
tations. Mostly, a point cloud is available consisting of
points which are nearly evenly spaced over the object, for
example from a 3D scan of an object. In the images the
inner and outer contour is segmented. To get a 3D point
cloud of these contour points, a z-coordinate based on the
slide number and distance between slides is added. Due to
the high resolution of histolgic images, the reduction to
contours and point clouds allows for a more efficient pro-
cessing. Figure 2 shows an exemplary case of our data, a
point cloud of segmented histologic slices. Hence, the
equal distribution criterion is not fulfilled yielding a
problematic result of the Poisson surface reconstruction
[8]. The ball pivoting algorithm [9] only produces a few
faces along the points of one slice and cannot handle the
large distance between points from different slices.

We use the knowledge of the elongated structure of
vessels to generate the 3D model. While being robust
against the challenges of histologic images (large slice-
distance, artefacts distorting the border) our algorithm
does not use image specific information and therefore can
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be applied to different histologic stainings or other image
modalities. The presented algorithmmodels the behaviour
of a shrinking tube., as illustrated in Figure 1A shrinking
tube is plastic tubewhich canbeused to isolatewires and is
tightly fitted to them by applying heat.

2 Shrinking tube mesh generation

We consider three different possibilities for the start shape:
a straight cylinder (CS), the convex hull of the point cloud
(CH) or a cylinder based on the maximum diameter of each
slice (Cmax). For Cmax, the maximum diameter of each slice
is determined. A cubic smoothing spline is fitted through
these values yielding a function f(x). Next, f(x) is rotated
around the x-axis to get a cylinder. This can be varied by
smoothing f(x) which will result in a smoother cylinder.
The choice of the optimal start shape depends on the point
cloud and expected shape of the structure. CS results in a
smooth mesh and is able to avoid the generation of pseu-
dostenosis due to poor image quality or segmentation. It is
only suitable for elongated structures which can be
approximated with a cylinder, like a vessel. Cmax better
preserves the underlying structure and is better suited
when variation is expected, like plaque-ridden vessel
walls. CH is suitable for a large range of point clouds and is
not limited to cylinder-like structures. In contrast to the
cylinders, the CH is at higher risk to contain sharp edges.

Themesh is then fitted to the point cloud. This step has
three parameters. In analogy to a shrinking tube (Figure 1),
the first two parameters are the number of time steps (it-
erations) and the temperature (speed). The third parameter
is the influence area factor. This factor describes howmany
vertices a point of the point cloud influences. In each
iteration, the points of the mesh are moved closer to the
point cloud. How far the mesh points are moved in direc-
tion of the point cloud depends the temperature and the
distance of the point to the mesh. The factor for the
displacement based on the distance is calculated using a
quadratic function. Small distances have only a small
impact, as they are likely noise and very large distance
have a small impact on themesh as they are expected to be
artefacts of the segmentation. For each mesh point, the

closest point of the point cloud is determined and themesh
point is moved in direction of this point. Then the neigh-
bours of the mesh point are moved in the direction of the
new position of the mesh point. This is iterative repeated
for the neighbours of the neighbours, depending on the
distance from the point cloud and the influence area factor.
The start shape and the number of vertices in the start
shape have a large influence on the resulting mesh. The
results of different start shapes are shown in Figure 4.
Using CH the fitting progress is faster. After sufficient time
steps, CS and Cmax will converge to similar results.

3 Experiments

Next, the influence of the parameters are analysed. While
allowing for adaption to different problems and point
clouds, the algorithm has a large number of parameters
and optimising these can be time consuming. Here we
show the results of different parameters for one point
cloud. For each vertex of the mesh the distance to the
closest point of the point cloud is calculated. The sum of
these distances estimates the distance between mesh and
point cloud. The mesh should be close to the point cloud,
therefore the added up distance should be low. As some
noise in the point cloud is expected, the distance should be
non-zero as the mesh should be smooth. Additionally, the

Figure 1: (a) Shrinking tube, (b) during heat,
(c) fitted shrinking tube [1].

Figure 2: (a) Point cloud from vessel contours. (b) The result of
MeshLabs screened poisson surface reconstruction algorithm.
(c) The result of MeshLabs ball pivoting algorithm, triangles are only
generated between points derived from the same slide; both
algorithms have major problems with the uneven distribution of the
points. (d) The mesh generated by our shrinking tube mesh
algorithm [9].
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calculation time is measured. Varying only the tempera-
ture (between 0 and 1), the difference between the points of
the mesh and the nearest points of the point cloud de-
creases as shown in Figure 5. A larger influence area leads
to a smoother, closer to the points fitted mesh. The time
needed for the shrinking tube mesh generation increases
with the influence area factor as shown in Figure 5 (Ex-
periments were run on a computer with an Intel i7 pro-
cessor with 16 GB RAM). While the time linearly increases
with the number of time steps, the mesh does not improve
linearly (Figures 3 and 5). As a result, the optimal values for
the parameters depend on the point cloud shape, target
structure and the number of vertices of the start shape.
Therefore, no general recommendation for parameter set-
tings can be given.

The movement of a vertex depends on the temperature
parameter and the distance from the vertex to the point
cloud. The connection between distance to the point cloud
and movement of the vertex is described by the moving
factor function. As mentioned above, a small distance
(likely noise) or a very large distance (likely artefact)
should lead to small vertex movements.

4 Discussion

The selection of the start shape has a large influence on the
produced mesh. With a higher temperature or higher
number of time steps the mesh is closer fitted to the point
cloud. The optimal fit depends on the individual applica-
tion and quality of the point cloud. The moving factor
function indirectly describes the expected noise in the
point cloud and should be chosen appropriately.

The shrinking tube mesh generation produces smooth
meshes without additional postprocessing. It can be
applied to noisy segmentations. Compared to image stacks,
point clouds from contours requiere less memory. The al-
gorithm is robust against uneven distribution of points.
There is a large number of factors which influence the
behaviour and outcome of the algorithm. With enough
time steps or a high value for the temperature parameter
the resulting mesh will be tightly fitted to the point cloud.
As it was developed for medical applications, where sharp
edges rarely occur, it might not preserve these. Futurework
could include an interactive mesh improvement. The al-
gorithm does make some assumptions about the relevance
of the points. The influence of the points is based on their
distance to the mesh. Finally, we were able to successfully
generate meshes from the inner and outer contour of our
histologic data yielding inner and outer vessel walls with
the presented approach.

Figure 3: Increasing of calculation time with increasing influence
area.

Figure 4: Start shapes and behaviour: (a) Start shape: CH,
(b) corresponding result, (c) Start shape: CS, (d) corresponding
result, (e) Start shape: Cmax, (f) corresponding result.
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5 Conclusion

The presented approach is suitable to generate smooth
meshes from noisy point clouds derived from histologic
images. It is developed for vessels and could be transferred
to different imagemodalities. Several parameters influence
the result and can lead to a smoother mesh or a mesh
closely fitted to the point cloud.
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Figure 5: Influence of parameter on the fitting of the mesh to the
point cloud: (a) temperature, (b) factor influence area, (c) timesteps.
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