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Human action recognition is a trending topic in the field of computer vision and its allied fields. ,e goal of human action
recognition is to identify any human action that takes place in an image or a video dataset. For instance, the actions include
walking, running, jumping, throwing, and much more. Existing human action recognition techniques have their own set of
limitations when it concerns model accuracy and flexibility. To overcome these limitations, deep learning technologies were
implemented. In the deep learning approach, a model learns by itself to improve its recognition accuracy and avoids problems
such as gradient eruption, overfitting, and underfitting. In this paper, we propose a novel parameter initialization technique using
the Maxout activation function. Firstly, human action is detected and tracked from the video dataset to learn the spatial-temporal
features. Secondly, the extracted feature descriptors are trained using the RBM-NN. ,irdly, the local features are encoded into
global features using an integrated forward and backward propagation process via RBM-NN. Finally, an SVM classifier recognizes
the human actions in the video dataset.,e experimental analysis performed on various benchmark datasets showed an improved
recognition rate when compared to other state-of-the-art learning models.

1. Introduction

Human action recognition [1] is used for a variety of ap-
plications such as video surveillance [2], retrieval [3, 4], and
detection [5–7]. ,e action recognition is performed by
computational algorithms [8–10] that understand and detect
human actions. ,ese computational algorithms generate a
label after detecting a human action. Action recognition
involves extracting and learning human actions [11–13]. It
can be performed by using three techniques—traditional
design features, deep learning, and hybrid extraction [14].
Among these techniques, the hybrid extraction technique [15]
has gained prominence in recent years. It involves using both
traditional and deep learning techniques for recognition.

In traditional methods [16–20], artificial actions such as
spatial convolutions [21, 22], temporal convolutions, and
fusion techniques are used for extraction and recognition.
,ough they provide a good recognition rate, there have

been no recent advances. Action recognition is comprised of
two components: representation [23–27] and classification
[25].,e human actions in a video sequence are generated as
a space-time feature in 3D representation [28, 29]. ,ey are
comprised of both spatial and dynamic information; the
spatial information includes human pose, and dynamic
information includes motion. ,e movement is captured
through anchors or bounding boxes to detect the subject
from cluttered backgrounds. To capture the spatial-temporal
features in human actions, various methods use Poisson
distribution to extract the shape features [30, 31]. For action
representation and classification, the spatial-temporal in-
formation is taken as input. ,e spatial-temporal saliency is
computed from the moving parts and the local orientation is
determined. ,ese local representations are converted into
global features by computing the weighted average of each
point inside the bounding box and analyzing the different
geometrical properties [32, 33].
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Initially, the spatial-temporal points were extracted us-
ing Laptev’s [23] and Harris corner detector [24] in the
spatial-temporal domain. Gaussian kernel [34] is applied to
the video sequence to obtain a response function for the
spatial-temporal dimensions. Other prominent methods
such as 2D Gaussian smoothing [35] were applied for
obtaining the spatial features, and 1D Gabor filter is applied
for obtaining the temporal features along with other in-
formation such as raw pixels, gradient, and flow features.
Principal component analysis [36–38] is applied to the
vector features for dimensionality reduction. ,e detection
algorithms such as 3D SFIT [39], HOG3D [7, 40], HOG [41],
and HOF [41] are used for describing the trajectories
[42–44].

,e spatial-temporal point of interest [45] captures only
short-term distance. However, to describe the change in
motion, it is necessary to track the points continuously. ,e
trajectories along with the interest points are detected and
tracked using Haris3D [24] with the KLT tracker [46]. Using
this method [47], the trajectories are mapped with corre-
sponding SIFT points over consecutive frames. Using the
HOG, HOF, and MBH [48] features, the intertrajectories
and intratrajectories are described. After the action is rep-
resented, action classifiers [30, 31, 45, 49–51] are applied to
the training samples to determine the class boundaries. ,e
human actions are classified into two types: direct classifi-
cation and sequential method. ,e direct classification in-
volves the extraction of a feature vector and recognition of
actions from classifiers using SVM [36] and K-NN method
[52, 53]. In the sequential method, the temporal features
such as appearance and pose are obtained from the hidden
Markov model [54–56], conditional random fields [57–60],
and structured support vector machine [61–64]. Further-
more, representative key poses are learned for efficient
representation of human actions [33, 34, 65–72] to build a
compact pose sequence.

Deep learning techniques [73] such as 2D ConvNets
[21, 74] and 3D ConvNets [26] perform feature learning via
convolution operator and temporal modeling [75]. ,e
initialization of a deep neural network [72] is crucial for
training the model. To ensure that the state of the hidden
layers follow a uniform distribution, a model parameter
[76–78] is initialized. If the model parameter [79, 80] is not
properly initialized, it leads to gradient explosion. ,e most
commonly used technique is the Xavier initialization
method [81] modeled based on the sigmoid activation
function. Many models use ReLU activation function [82],
RBMs [83, 84], and other methods [85] for learning.

In this paper, we propose a novel parameter initialization
technique using the Maxout activation function (MAF) via
restricted Boltzmann machine-neural network (RBM-NN).

,e spatial and temporal features required for human
action recognition are obtained from the video sequence via
a feature learning process. ,e extracted spatial and tem-
poral features are trained using RBM-NN. ,e RBM-NN
converts the local features into global features using an
integrated forward and backward propagation process. An
SVM classifier is used for recognizing the human actions in
the video sequence.

Section 2 describes the process of tracking human action
from video sequences, extraction of shape features, and
construction of an RBM-NN. Section 3 describes parameter
initialization using an activation function, forward propa-
gation, backward propagation, and action recognition using
an SVM classifier. Section 4 consists of data preprocessing
and model training for analyzing the effectiveness of the
parameter initialization technique. Section 5 discusses the
experimentation setup, result analysis performed on various
benchmark datasets, influence of the learning parameter on
model accuracy, and the loss function. Finally, Section 6
consists of concluding remarks followed by references.

2. Methodology

,e spatial-temporal features [86, 87] for human action
recognition are performed via a feature learning process
[59, 62], as shown in Figure 1. ,e first step involves using
detection and sequence tracking algorithm [88] to identify
human action features. Secondly, the action tracking se-
quence is segregated into blocks to extract the shape features
using the neural network layers implemented by RBM
[83, 89]. ,e model is implemented by dividing the network
layers and feeding the output of the first layer as input to the
second layer to learn the spatial-temporal features. ,e
second hidden layer is used for dimensionality reduction of
the output from the first layer and to reduce computational
efficiency.

2.1.HumanActionTracking fromVideoSequence. ,e action
changes in the human body are detected from video frames
by posture and action changes. Target detection and tracking
such as pedestrian detection algorithm [90, 91] are used to
automatically detect and track the action sequences. A
bounding box tracks the subject of interest and is optimized
based on pose normalization. From the video dataset, the
length of the tracking sequence is set to a fixed length L. If
the length of the initial tracking sequence is greater than L,
the redundant frames are discarded. If the length of the
initial tracking sequence is lesser than L, the tracking se-
quence is extended by the zero-padding method and is set to
L frames. ,e human actions from the tracking sequence are
denoted by ai, and other actions are denoted as oi.

2.2. Extracting Shape Features. Every tracking sequence is
divided into video blocks, and the initialization parameters
are specified as vbw × vbh. ,e segregated blocks are denoted
as Vk, k ∈ K, where K � 1, 2, . . . , V

vbw×vbh

k􏽮 􏽯 corresponds to
the spatial position of the block. In the proposed method, a
deep neural network is used for extracting the spatial-
temporal features from low-level features. ,e first step
involves segregating blocks into individual frames
Bk, k ∈ K, Bk

n, where n � 1, 2, . . . , L into grid cells Cw × Ch.
Each grid cell is computed in Cd directions in the histogram
of oriented gradients (HOGs) and represents the shape
characteristics. ,e shape dimensions of each image frame
are denoted as Sw × Sh × Sw. ,e feature vector is repre-
sented as (sk

m1, sk
m2, . . . , sk

nm), wherem � Sw × Sh × Sw. ,e
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initial component of the shape feature of the image frame
IFk

m is indicated as sk
nt, where t � 1, 2, . . . , n. ,e shape

features from each block are extracted and divided into a
long vector. ,ese individual feature vectors represent the
shape features.

During action recognition, the pose of the person is
estimated and the shape features are extracted from the
tracking sequence. ,e extracted shape features, i.e., pose in
individual frames are normalized.,e frame from a tracking
sequence is represented as V1

k, V2
k, . . . , V

vbw×vbh

k , where k �

1, 2, . . . , n. ,e normalized shape vectors for every frame in
the tracking sequence are given as

I
k
nt �

s
k
nt

􏽘
vbw×vbh

k�1 􏽘
s

l�1 s
k
nl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/2)

, (1)

where 1≤ t≤ s, Ik
nt is the normalized shape feature vector and

the component sk
nt is the shape factor vector that corresponds

to the normalized value. ,e shape feature for every indi-
vidual frame in the block is denoted as
Bk

n � (lkn1, lkn2, . . . , lknm), where k ∈ K, 1≤ n≤ L. ,e shape
features from the video block are represented as
Bk
1, Bk

2, . . . , Bk
L. ,e dimensional features are represented as

L × Sw × Sh × Sw · lknt ∈ [0, 1]. ,e eigenvectors of the shape
features are denoted as Bk

1, Bk
2, . . . , Bk

L and is provided as
input to train the RBM-NN.

2.3. Constructing an RBM-Neural Network. Restricted
Boltzmann machine [54, 63] is comprised of a network
architecture that consists of two neuron layers: the input
layer and the hidden layer. ,e nodes present in the input

layer and hidden layers are connected, but they are con-
nected with a particular layer. RBMs are capable of self-
learning through discrete distribution via the hidden neu-
trons.,e input layer consists of multiple RBMs, as shown in
Figure 2, to describe the distribution of action character-
istics. For each type of action category, the training samples
are fed to the RBMs with spatial features.

,e output layers from each RBM comprise ofN neurons,
and the value of N has a direct influence on the distribution of
every action learned.,e proposedmethod analyses influence
that the value N has on the experimental results. For every
RBM present in the neuron network layer, the limits are set as
k � 1, . . . , vbw × vbh. It is used for training the various shape
features from the blocks along with their corresponding
spatial position ′k′ as input. ,e input video block has the
following shape feature Ik � (ik11, ik12, . . . , ikLn)L, and the cor-
responding output is represented as
Rk � Rk � (rk

1, rk
2, . . . , rk

N)L.,e restrictions in the RBM-NN,
its state, and energy of the neurons Ik,􏼈 􏼉 is defined as
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(2)

where θk � Pk􏼈 􏼉 in which θk is the RBM parameter and Pk

represents the symmetric correlation between the input and
output neurons. Also, ak and bk indicate the deviation
among the column vectors generated in the input and the
output layer. ,e set of model parameters used in RBM is
learned using the contrastive divergence (CD) algorithm
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Figure 1: Proposed methodology for human action recognition.
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[92]. ,e CD algorithm is effective for training undirected
graphical models (RBMs) and estimates the energy gradient
given a set of model parameters along with the training data.
,e CD provides the gradient estimates and enables the
model to keep balanced and avoids the issue of gradient
explosion and overfitting. ,e distribution between the
input and output neurons for a single RBM is given as

G I
k
, R

k
; θk

􏼐 􏼑 �
1

Z θk
􏼐 􏼑

exp −E I
k
, R

k
; θk

􏼐 􏼑􏼐 􏼑. (3)

Z θk
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Ik

􏽘
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exp −E I
k
, R

k
; θk

􏼐 􏼑􏼐 􏼑, (4)

where θk is the partition function and the conditional
probability distribution is derived from equation (3):
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(5)

,e proposed method trains the RBM in the first layer of
the neural network architecture. ,e network parameter set
of themultiple RBMneural network layers for every action is
denoted as θ � θ1, θ2, . . . , θn.

,e proposed work is used for training the two-layer
neural network for every action category. ,e second layer
of the neural network is also an individual RBM and solely
used for dimensionality reduction of the output obtained
from the first layer. ,e parameter of the network layer is
denoted as (W, a). For every action category, the input
from an action sequence will provide the feature vectors as
output.

,e output of the trained two-layered neural network is
modeled based on spatial-temporal shape feature learning
from the block. ,e spatial-temporal individualities are
represented as R � (r1, r2, . . . , rA), whereA is the set gen-
erated based on experience and is denoted as
A � 16 × vbw × vbh × N.

3. Parameter Initialization Using
Activation Function

3.1. Importance ofEffectiveParameter Initialization. To build
an efficient model for human action recognition, an RBM-
NN architecture is defined in the proposed work and it is
trained to learn the parameters.,e RBM-NN architecture is
trained using the following steps: parameter initialization,
optimization algorithm, forward propagation, cost function
computation, gradient cost computation using back prop-
agation, and parameter updation.

When testing data are provided, the network uses the
trained model to predict the class. For a network to perform
efficiently, it is crucial to initialize the right parameter to
avoid the problem of gradient explosion and vanishing.

Case 1. If the initialized parameter is large, it leads to a
gradient explosion:

initializedweight ≫ identity matrix. (6)

Case 2. If the initialized parameter is small, it leads to
vanishing gradients:

initializedweight ≪ identity matrix. (7)

To prevent the problem specified above, a set of rules
have to be adhered to while initializing the network pa-
rameter. Initially, the mean value of the activation function
must always be zero. Finally, the variance of the activation
function must remain uniform throughout the network
layers. If the rules are not followed, it gives rise to a locally
optimal solution which renders the model untrainable and
improper feature extraction.

,e model parameter is initialized based on two cate-
gories: parameter initialization by pretraining a model and
parameter optimization by training the neural network. In
the first method, a model is trained using the unsupervised
model, and an AutoEncoder [93] is used to build a layer-by-
layer unsupervised objective function. ,e layer-by-layer
training is performed on equal depth neural networks to
obtain the feature representations from the input. Pre-
training a model involves computational overhead, and the
training efficiency is affected. ,e second method involves
initializing the parameter and its optimization using neural
networks. ,e parameter can be initialized using a nonlinear
activation function and backpropagation.

3.2. Parameter Initialization Using Maxout Activation
Function. In this paper, the parameter initialization tech-
nique is modeled using a Maxout layer. ,e layer consists of
an activation function which takes the maximum of the
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Figure 2: Multiple restricted Boltzmann machines.
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inputs. When compared to other activation functions,
Maxout activation function [94] performs well due to the
dropout technique. Dropout is a model averaging technique
where a random subnetwork is trained for every iteration and
the weights are averaged at the end. An approximation has to
be used as these weights cannot be averaged explicitly. ,e
inputs to the Maxout layer are not dropped using the cor-
responding activation function.,e input with the maximum
value for the data point is not affected as the dropout occurs in
the linear part. ,us, it leads to efficient model averaging as
the averaging approximation is for linear networks.

In the proposed work, it is assumed that the state of the
neuron node follows a uniform distribution required for a
Maxout activation function. It is an activation function that
is capable of training itself in our model. It performs a
piecewise linear approximation on ReLU, absolute function,
and quadratic function to a random convex function. It
considers the maximum value from a set of linear values that
are determined beforehand. ,e Maxout implements ReLU
and absolute function using two linear functions and the
quadratic function using four linear functions. It can ap-
proximate any function using multiple linear functions and
is known as piece-wise linear approximation.

,e Maxout unit is implemented using the following
function:

f(x) � max w1x + b1, w2x + b2, . . . , wnx + bn( 􏼁, (8)

where n is the number of linear combinations. If w1 is set to
one, all the other values take the value zero such that the
proposed activation function becomes equivalent to the
traditional activation functions.

As mentioned earlier, any continuous piece-wise linear
approximation can be expressed as a difference between two
convex functions:

g(x) � f1(x) − f2(x), (9)

where f1(x) and f2(x) are the convex functions and g(x) is
a continuous piece-wise linear approximation function.
From equation (9), it can be deduced that a Maxout layer
comprising two Maxout units can be used to approximate
any continuous function randomly.

Also, both ReLU and leaky ReLU are considered to be
special cases of a Maxout unit and enjoy all the benefits of a
ReLU unit. It implements linearity of operations with no
saturation and avoids the issue of dying ReLU. AMaxout can
be formed with more units, but this will increase the capacity
of the network and requires more training. ,us, Maxout
units are considered as universal approximators.

,e MAF is modeled based on theoretical derivation for
parameter initialization of the model. Both forward prop-
agation and backward propagation process in the network
are analyzed to ensure that every neuron follows a uniform
distribution.

3.3. Forward Propagation Process. To perform forward
propagation, the following assumptions are made: (1) the
input vector vb and the parameter vector W must be

independent; (2) the input vector vb and the parameter
vector W must follow the same distribution; (3) the initial
distribution of the parameter vector W must be symmetrical
about the zero-point; and (4) the offset value b of each layer
must always be zero.

,e response of the hidden convolution layer in the
RBM-NN is given as

zt � x
L
t Wt + bt, (10)

where t denotes the nth hidden layer of the RBM-NN, among
which xt ∈ Ap, xt is the original input vector, and the mean
value is set to zero after processing.

p � u
2
i, (11)

where p is the number of input nodes connected to one
neuron node, u is the size of the convolution kernel, and ′i′ is
the number of input channels to the model. ,e output of
every neuron node is passed through the MAF provided as
follows:

f(x) � max w1x + b1, w2x + b2, . . . , wnx + bn( 􏼁, (12)

where n is the number of linear combinations. If w1 is set to
one, all the other values take the value zero such that the
proposed activation function becomes equivalent to the
traditional activation functions. ,e problem of local line-
arity in the proposed activation function eliminates the issue
of gradient explosion, but there is an increase in compu-
tational overhead during the training process.

,e variance of the initialization parameter can be ob-
tained as follows:

Var zt􏼂 􏼃 � ptVar Wtxt􏼂 􏼃. (13)

,e weight Wt and hidden layers have to adhere to
Gaussian distribution with a mean value of zero as per
assumptions 2 and 3. ,e initial state and the parameter
vectors are assumed to be independent of each other as per
assumption 1. ,us, the variance in the initialization pa-
rameter is provided:

Var zt􏼂 􏼃 � ptVar Wt􏼂 􏼃E x
2
t􏽨 􏽩, (14)

where E[x2
t ] is the exception function. ,e proposed acti-

vation function can be simplified by considering two linear
functions given as follows:

xt � rt−1 xt−1( 􏼁 � max zt−1,1, zt−1,2􏼐 􏼑. (15)

Based on assumption 4, the offset value bt−1 is always set
to zero and the mean weights Wt are also set to zero. ,e
values zt−1,1, zt−1,2 are assumed to be symmetrical at the
mean point and follow the same distribution.

,e expectation function E[x2
t ] and the variance

Var[zt−1] are defined as follows:

xt �
zt−1,1 + zt−1,2 + zt−1,1 − zt−1,2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
. (16)

,e expectation E[x2
t ] value is obtained by substituting

equation (15):
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E x
2
t􏽨 􏽩 �

1
2

Var zt−1,1􏽨 􏽩 + Var zt−1,2􏽨 􏽩􏼐 􏼑. (17)

As per assumption 2, the values zt−1,1 and zt−1,2 follow
the uniform distribution and the new variance is obtained as
follows:

Var zt−1􏼂 􏼃 � Var zt−1,1􏽨 􏽩 � Var zt−1,2􏽨 􏽩. (18)

Substituting the variance value obtained from equation
(17) into equation (16), we get

E x
2
t􏽨 􏽩 � Var zt−1􏼂 􏼃. (19)

,e relationship between the variances is obtained by
substituting equation (17) into equation (13) as follows:

Var zt􏼂 􏼃 � ptVar Wt􏼂 􏼃Var zt−1􏼂 􏼃. (20)

,e difference in variance between the first hidden layer
and the last hidden layer is obtained as follows:

Var zT􏼂 􏼃 � 􏽙
T

t�2
ptVar Wt􏼂 􏼃⎛⎝ ⎞⎠Var zt􏼂 􏼃. (21)

,e initialization parameter for a neural network model
must follow the necessary condition:

ptVar Wt􏼂 􏼃 � 1, ∀t. (22)

When t is set to 1, equation (21) is satisfied without the
interference on the input vector by the activation function.
Based on the theoretical assumption, each node in the
hidden layer behaves similarly to a neural network. Also, the
model parameter initialization for every node in the hidden
layer satisfies the Gaussian distribution.

3.4. Backpropagation Process. In backpropagation, the fol-
lowing assumptions are made similar to forward propaga-
tion: (1) the gradient Δrt and the parameter vector W must
be independent of each other; (2) the gradient Δrt and the
parameter vector W must follow the same distribution; and
(3) the gradient Δrt and the parameter vector W must have
zero symmetry for E[Δxt] � 0.

,e concentration of gradients obtained by the convo-
lution parameter is shown as follows:

Δxt � WtΔ
Δ

rt, (23)

where Δxt and Δrt are the gradients that represent the loss
functions. ,e value of the activation function is obtained
when a � 0:

Δzt, n � f′ zt, n( 􏼁Δxt+1, n ∈ 1, 2{ }. (24)

If f′(zt, n) � 1 and f′(zt, n) � 0, each has half proba-
bility of occurrence. Moreover, f′(zt, n) � 1 and Δxt+1 are
independent of each other based on assumption 1.

,e initial condition n ∈ 1, 2{ } is provided:

E Δrt􏼂 􏼃 � E Δxt, n􏼂 􏼃,

E Δrt( 􏼁
2

􏽨 􏽩 � Var Δrt􏼂 􏼃 �
1
2
Var Δxt+1􏼂 􏼃.

(25)

,e variance function for the gradient is obtained as
follows:

Var Δxt􏼂 􏼃 �
1
2

r∧tVar Wt􏼂 􏼃Var Δxt+1􏼂 􏼃. (26)

,e relationship between Var[Δx2] and Var[ΔxT+1] can
be defined as follows:

Var Δx2􏼂 􏼃 � Var ΔxT+1􏼂 􏼃 􏽙

T

t�2

1
2

r∧tVar Wt􏼂 􏼃⎛⎝ ⎞⎠. (27)

For the gradient to move smoothly, the following initial
condition has to be satisfied:

1
2

r∧tVar Wt􏼂 􏼃 � 1, ∀t ∈ [2, T]. (28)

,e parameter for neural network model W also follows
the same distribution based on assumption 2:

Wt ∼ N 0,
2

r∧t
􏼠 􏼡. (29)

It is not possible to perform both forward and backward
propagation at the same time. ,us, the parameter has to be
optimized as follows:

minτt
τt − rt( 􏼁

2
+ τt −

1
2

r∧t􏼒 􏼓
2
. (30)

,e optimized solution for the proposed initialization
parameter for RBM-NN based on uniform distribution is
obtained:

Wt ∼ N 0,
4

2rt + r∧t
􏼠 􏼡. (31)

3.5. SVMClassifier forActionRecognition. An SVM classifier
is built for each action category. ,e training of the RBM-
NN is categorized into two samples: positive samples and
negative samples. ,e samples which correspond to action
categories ai are classified as positive samples ′u′ and other
actions oi as negative samples ′v′. ,e parameter vector W

and the other variables are optimized. If there is an im-
balance in the positive and negative samples, the classifi-
cation accuracy in the training phase is affected. To
overcome the issue of accuracy, a penalty coefficient pa-
rameter ′P′ is introduced. If the training set has less positive
samples, a higher penalty coefficient P is enforced and the
negative samples are introduced to a lesser penalty coeffi-
cient P.

,e SVM objective function for our proposed method is
defined as follows:
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minω,ε
1
2
‖ω‖

2
+ P + 􏽘

u

i�1
εi + P − 􏽘

u+v

j�u+1
εj

s.t. yi ωL
Ri􏼐 􏼑 + b􏽨 􏽩≥ 1 − εi, i � 1, 2, . . . , u + v,

ε ≥ 0,

(32)

where i � 1, 2, . . . , u + v, Ri is the spatial-temporal feature of
the ith action sample and (Ri, yi) is the input of the SVM
classifier. Also, u + v is the total number of training samples
used for training the SVM classifier. ,e SVM classifier is
trained for each action category and represented as an action
model (θ, W, a, b) comprising two-layer RBM-NN for hu-
man action recognition.

4. Result Analysis and Discussion

,e parameter initialization proposed in the paper is verified
and analyzed on the MS-COCO [95], ImageNet [96], and
CIFAR-100 [97] datasets respectively. ,e RBM-NN com-
prises four convolution layers for analysis along with the loss
function. ,e loss function considered in the model is the
logistic loss layer obtained after downsampling. To prevent
overfitting, the dataset is separated into batches and trained
as submodels.,e parameter is initialized randomly, and the
submodels are trained using the dropout technique by
randomly setting the output nodes to zero before updating
the training set. ,e dropout probability for the model
validation is set as 50% to determine the classification error
rates.

4.1. Data Preprocessing. ,e training data are preprocessed
by applying global contrast normalization and zero com-
ponent analysis whitening [98]. ,e GCN technique pre-
vents the images from exhibiting various levels of contrast.
,e mean value is subtracted, and the image is rescaled such
that the standard deviation across the pixels is constant. ZCA
whitening process ensures that the average covariance be-
tween the whitened pixel and the original image is maximal.
For instance, it makes the data less redundant by removing
the neighboring correlations in adjacent pixels.

4.2. Model Training. ,e models were initially trained using
the Xavier initialization method [81] for parameter initial-
ization and the model parameters. ,e Xavier initialization
method is chosen since it keeps the variance uniform across
each network layer as per the assumptions followed during
the forward propagation process. ,e initial and model
parameters must follow a uniform distribution specified
below:

W ∼ U −

�
6

√

��������
nk + nk+1

√ ,􏼢 􏼣

�
6

√

��������
nk + nk+1

√ , (33)

where nk is the number of input nodes and nk+1 are the
number of output nodes. ,e datasets MS-COCO [95],

ImageNet [96], and CIFAR-100 [97] were considered as
input for the proposed parameter initialization method and
also compared with parameter initialized via the Xavier
model. ,e proposed parameter initialization method
showed similar results in the classification accuracy of the
activation function. ,e improvement in classification ac-
curacy has been attributed to the fact that nodes and states of
the various hidden layers follow the same distribution
pattern and avoids the problem of gradient explosion.

,e dataset ImageNet comprises a 1000-class image
problem and required 120 epochs. ,e MS-COCO com-
prises 80 classes and required 64 epochs for training. ,e
CIFAR-100 dataset is comprised of 100 classes and required
200 epochs for training. ,e model required more layers for
analysis along with the introduction of convolution kernels.
,e deep neural network model was able to perform iter-
ation for 500,000 times with a learning rate set to 0.1.
However, it was found that the learning rate decreased with
an increase in the number of iterations. ,e comparison of
the test error rates between the proposed initialization
method and the Xavier initialization method is provided in
Table 1. ,e analysis shows that the error rates obtained
from the proposed method showed better results for both
small (MS-COCO) and large datasets (ImageNet and
CIFAR-100).

,e model parameters along with the slack variables are
initialized and optimized by the objective function used by
the SVM classifier. During the training process, it was no-
ticed that there was an imbalance between the positive and
negative samples.

For instance, there were fewer positive samples in the
training set when compared to the negative samples. ,us, a
higher penalty coefficient ′P′ was introduced to the positive
samples to balance the training samples.

5. Experimentation Setup and Analysis

,e human action recognition using the proposed method is
performed using the datasets specified in Table 2 along with
their classes, modalities, and environment type. ,ese
benchmark datasets are comprised of actions performed in
both simple and cluttered background scenes. ,e datasets
are divided into training and testing sets. ,is discriminative
action is used for segmentation to reduce the background
correlation between the training and the testing set. ,e
model is trained using small samples, and the data expansion
method [108] is used increasing the number of video
samples present in the training set.

Initially, the actions are detected from the video blocks to
extract the spatial-temporal features. ,e features are fed to
the RBMs for training along with suitable model parameters
via forward and backward propagation process. ,e output
from the RBMs is fed to the SVM classifier for human action
recognition. During the experiment analysis performed on
the dataset, the influence of the N parameter is analyzed
along with the penalty coefficient P.,e effect of the number
of output neurons for each RBM is obtained by adjusting the
value of the parameter N. ,e number N of the output
neurons is influenced by the average recognition rate of the
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action sequence. ,e value of N determines the number of
spatial-temporal features based on RBM-NN.

,e SVM classifier is used for action recognition of
multiple types of actions. ,e SVM classifier model calcu-
lates the shape features of the video blocks for each action
category. After the classification values are compared, the
largest classification value is set as an action label for the test
video sequence. ,e actions from the tracking sequence are
detected from the action video.

,e proposed algorithm operates on the image se-
quences with varied focus points, deep learning is used for
learning all the features, and SVM classification is per-
formed. ,e proposed action recognition feature is more
specific than other methods. Finally, the model is compared
with other state-of-the-art techniques to compare the
classification accuracy rate of the model.

5.1.WeizmannDataset. ,eWeizmann dataset [99] is made
available by the Weizmann Institute of Science and consists
of two datasets. ,e event-based analysis dataset consists of
long sequences of around 6000 frames comprising various
people. ,e actions are divided into four categories: running
in place, walking, running, and waving. ,e ground truth
dataset is action annotated for every frame and can be
temporally segmented. ,e second dataset Weizmann ac-
tions as space-time shapes dataset was created for human
action recognition systems that are suitable for spatial and
temporal volumes. ,e videos were recorded on a simple
background with nine persons performing ten actions. ,e
human actions have been divided into ten categories such as
walking, running, jumping, galloping, bending, one-hand
waving, two-hands waving, jumping in place, jumping jacks,
and skipping, as specified in Figure 3. It is a database of 91
low-resolution video sequences. ,e dataset comprising 91
video sequences is divided into 60 video samples for the
training set and 31 action samples for the testing set.

During experimentation, every action in the tracking
sequence was divided into 180×144 (25 fps) video blocks.
,e parameter N is set to 300, where N represents the
number of output neurons of each RBM present in the first
neural network layer. ,e proposed method is compared
with the reference method [109]. For determining the SVM
classifier, set the penalty coefficient P � 10, and other slack
variables are determined by the objective function. ,e
neural network parameters are obtained by adaptive
matching with the processed image data.,e proposed work
correctly identifies the rotation action of the Weizmann
actions as space-time shapes dataset such as walking, run-
ning, jumping, bending, waving, and skipping.

,e proposed method is compared with the reference
model [110] proposed by Haiam et al. ,ey proposed a
trajectory-based approach for human action recognition to
obtain the temporal discriminative features. ,e trajectories
are extracted by detecting the STIPs andmatching themwith
the SIFT descriptors in the video frames. ,e trajectory
points are represented using the bag of words (BoW) model.
Finally, an SVM-based approach is used for action recog-
nition. From the confusion matrix shown in Figure 4, it can
be noticed that there are some confusions in some frames for
actions such as walking, running, jumping, and skipping.
Also, the action two-hand waving is similar to jumping jacks.
,ese confusions influence the classification accuracy of the
proposed model.

,e proposed approach is evaluated with the classifi-
cation accuracy obtained by the following descriptors: TD,
HOG, HOF, MBH, and the combinations, as shown in
Figure 5. Table 3 shows the average recognition rate for the
dataset along with the reference method. It can be noticed
that the accuracy rate for the HOG, HOF, and combined
features achieved better accuracy when compared to the
proposed method due to variations in the codebook sizes
and model representation. ,e vector patches are converted
to codewords to produce a codebook comprising similar

Table 1: Comparison of test error rates of the initialization method.

Dataset
Test error rates

Xavier parameter initialization method (%) Proposed parameter initialization method (%)
MS-COCO 10.25± 0.02 8.15± 0.09
CIFAR-100 19.38± 0.19 17.51± 0.22
ImageNet 23.19± 0.12 21.25± 0.17

Table 2: Action video datasets used in our proposed work.

Dataset Year Videos Classes Modality Environment type
Weizmann [99] 2005 90 10 RGB Controlled
CAVIAR [100] 2005 390 13 RGB Controlled
UCF sports action [101] 2009 1,100 11 RGB Uncontrolled
KTH [102] 2004 599 6 RGB Controlled
CASIA [103] 2007 1446 8 RGB Controlled
i3DPost [104] 2009 104 13 RGB Controlled
JHMDB [105] 2011 316 12 RGB Uncontrolled
UCF101 [106] 2012 13,320 101 RGB Uncontrolled
HMDB51 [107] 2011 7000 51 RGB Uncontrolled
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patches. Moreover, it was observed that the average rec-
ognition of the model decreases based on the influence of the
number of output neurons.

5.2. CAVIAR Dataset. ,e context-aware vision using
image-based active recognition (CAVIAR) is a video
dataset [100]. ,e dataset consists of seven activities such
as walking, slumping, fighting, entering, exiting, brows-
ing, and meeting, as shown in Figure 6. ,e video se-
quences were recorded at different locations using a wide-

angle camera lens in the INRIA Labs located in France and
at a shopping center in Lisbon. ,e ground truth file is
available in the CVML format. ,e file contains two types
of labeling: activity label and scenario label. For every
individual, the tracked target comprises 17 sequences and
the pixel positions depend on image scaling. ,e second
video sequence displays the frontal view and is syn-
chronized frame by frame. ,e sequences are 1500 frames
longer than the first sequence. ,e France sequence is
categorized as “d1,” and the Lisbon sequence is classified
as “d2.”

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: AWeizmann dataset with the actions considered for the proposed approach: (a) walking; (b) running; (c) jumping; (d) galloping;
(e) bending; (f ) one-hand waving; (g) two-hand waving; (h) jumping in place; (i) jumping jacks; (j) skipping.
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Figure 4: Confusion matrix for the Weizmann dataset.
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,e size parameter is set to N � 100 and the effectiveness
of the recognition method involved classifying two datasets.
For the SVM classifier, the penalty coefficient was fixed as

P � 10 and other slack variables are fixed by adaptive
matching. ,e training set was categorized into 20 actions
for the validation set and 9 actions for the training set. From
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Figure 5: Evaluation of the classification accuracy of the Weizmann dataset.

Table 3: Average recognition rate for Weizmann dataset.

Method type Average recognition rate (%)
Reference method using TD [110] 94.44
Reference method using HOG [110] 97.77
Reference method using HOF [110] 96.66
Reference method using MBH [110] 95.55
Reference method using combined methods [111] 96.66
Proposed method 96.3

(a) (b) (c) (d)

(e) (f) (g)

Figure 6: CAVIAR dataset with the sample actions: (a) walking; (b) browsing; (c) meeting; (d) slumping; (e) fighting; (f ) exiting; (g)
entering.
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the confusion matrix shown in Figure 7, it can be seen that
some confusions are observed for the actions walking, en-
tering, and exiting.Moreover, similarities were also observed
for the actions of fighting and meeting. ,e other actions in
the dataset are classified accurately.

,e proposed method was compared with the reference
method [112] implemented using the MFS detector and
OpenCV classifier.

,e results from Table 4 and Figure 8 show that the
recognition rate from our proposed method for both
labels “d1” and “d2” is significantly better than the ref-
erence method. Negri et al. [112] proposed an approach
for pedestrian detection using movement feature space
(MFS) to detect the movements and descriptor genera-
tion using a cascade of boosted classifiers. ,e validation
of the MFS detector is performed using an SVM classifier.
,e reference method considered only the frontal view of
the dataset resulting in only a few samples used for
validation purposes. ,e less recognition rate achieved by
the OpenCV detector 20 (20 stages) and OpenCV de-
tector 25 (25 stages) because both classifiers require more
stages for training to reduce the occurrence of false
detection.

5.3. UCF Sports Action Dataset. ,e UCF sports human
dataset [101] is comprised of 150 videos with 10 action
categories. ,e ten categories of actions include walking,
kicking, lifting, golfing, running, diving-side, horse-driving,
swing-side angle, skateboarding, and bench swinging, as
shown in Figure 9. ,e 150 video samples are divided into
102 samples for the training set and 48 samples for the
testing set.

,e N parameter for each cell is set to 200, and the
penalty coefficient is set to P � 10 along with slack variables.
,e confusion matrix shown in Figure 10 shows a perfect
accuracy rate with confusion observed only in the activities
running and skateboarding as the model displayed false
classification between these two action categories.

,e recognition rate for the referencemethods [113–116]
is specified in Table 5.

Mironică et al. [113] proposed an approach to combine
the frame features to model a global descriptor. ,e rec-
ognition accuracy of this method is affected when all the
features are aggregated within a single descriptor and the
BoW representation. Le et al. [114] proposed an unsuper-
vised feature learning technique to learn the features directly
from the video. ,ey also explore an extended version of the
ISA algorithm for learning the spatial-temporal features
from the unlabeled data. ,e classification was performed
using a multiclass SVM where the labels are predicted for all
clips except the flipped versions resulting in a drop in
accuracy.

An action region proposal method was provided by
Rezazadegan et al. [115] using optical flows. Action de-
tection and recognition were performed using CNN based
on pose appearance and motion. Souly et al. [116] proposed
an unsupervised method for detection using visual saliency
[117] in videos. ,e video frames are divided into

nonoverlapping cuboids and segmented using hierarchical
segmentation to obtain the supervoxels from the cuboids.
,e features are decomposed into sparse matrices using
PCA. When compared with the reference methods, the
proposed method shows a better accuracy rate, as shown in
Figure 11.

5.4. KTH Action Dataset. ,e KTH action dataset [102] is
collated by the KTH Royal Institute of Technology. It is a
video database that is comprised of human actions captured
in various scenarios. It consists of six actions that include
walking, boxing, running, waving, jogging, and clapping.
,e dataset is comprised of 600 video files that are a
combination of 25 individuals, 6 actions, and 4 different
types of scenarios, as shown in Figure 12.

,e experimental analysis is carried out using the ref-
erence methods [118–122]. Only one-third of the video
samples are considered for experimentation. ,e 200 video
samples are divided into 140 samples for the training set and
60 samples for the testing set. ,e confusion matrix for the
dataset is shown in Figure 13. It can be observed that the
classification rate was affected by the action category run-
ning, as it was detected as walking. ,e action category
jogging was classified as running.

During experimentation, the parameter is fixed as
N � 300 with four scenarios labeled as “d1,” “d2,” “d3,” and
“d4.” ,e penalty coefficient is set as N � 10, and the slack
variables are obtained by adaptive data matching. ,e av-
erage recognition rate for the dataset is shown in Table 6.

Sreeraj et al. [118] proposed a multiposture human
detection system based on HOG and BO descriptors. ,is
approach shows a slightly better accuracy rate as the system
uses a fast-additive SVM classifier. ,is combined ap-
proach retains the HOG precision rate to improve the
detection rate. Yang et al. [119] constructed a neighbor-
hood by adding weights on the distance components.
SONFs and MONFs are generated by concatenating
multiple SONFs. ,e method also uses LGSR classifier for
obtaining the multiscale-oriented features and achieves
better classification. Ji et al. [120] proposed an improved
interest point detection to extract the 3D SIFT descriptors
from single and multiple frames by applying PCA. ,e
quantification of combined features using SVM increases
computational cost and causes a drop in accuracy rate.
STLPC descriptor was proposed by Shao et al. [121] and
learns the spatial-temporal features from the video se-
quence. A Laplacian pyramid is constructed by maxpooling
to capture the structural and motion features efficiently.
,e proposed method shows a slight decrease in 0.11% and
1.4%. ,e classification accuracy for the KTH dataset is
shown in Figure 14.

5.5. CASIA Action Dataset. ,e CASIA dataset [103] is
comprised of 8 human actions such as running, walking,
jumping, crouching, punching, wandering, bending, and
falling. ,e video action sequences were captured using a
static camera from various angles and views. ,ere are 1446
video sequences performed by 24 different subjects, as
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shown in Figure 15. For the experimental analysis, 250 video
sequences are analyzed. ,ey are split into 190 samples for
the training set and 60 samples for the testing set. ,e N

parameter is set as 300 for every cell, while the penalty
coefficient is set as P � 10 along with the respective slack
variables. ,e reference framework [123] using the EM
technique using an M-class SMV classifier and other clas-
sifiers is provided in Table 7.

,e confusion matrix in Figure 16 shows that the action
category falling achieves a full accuracy rate. Similar action
categories such as running, walking, crouching, and bending
have a 99% accuracy rate. ,e categories of punching and
wandering show the least accuracy rate of 98%.

Table 7 shows the average recognition rate for the
CASIA dataset. Sharif et al. [123] proposed a hybrid
strategy for human action classified by the integration of
four major techniques. Initially, the objects in motion are
uniformly segmented, and the features are extracted using
LBP, HOG, and Haralick features. ,e feature selection is
performed by the joint entropy-PCA method, and the
classification is performed using multiclass SVM. ,e
following classifiers multiclass SVM, DT, LDA, KNN, and
EBT are used for experimental analysis. If high-resolution
videos are used, there is a drop in efficiency due to com-
putation overhead.

Figure 17 shows that our proposed method has a better
recognition rate when compared to the classifier used in the
reference method.

5.6. i3DPost Multiview Dataset. ,e i3DPost dataset is a
multiview/3D human action/interaction database [104]
created by the University of Surrey and CERTH-ITI (Center
of Research and Technology Hellas Informatics and Tele-
matics Institute). ,e dataset consists of multiview videos
and 3D posture model sequences. ,e videos were recorded
using the convergent eight-camera setup for capturing high-
definition images with twelve people performing twelve
different types of human motions. ,e actions performed by
the subjects include walking, running, bending, jumping,
waving, handshaking, pulling, and facial expressions, as
shown in Figure 18.,e 104 video sequences are divided into
60 samples for the training set and 44 samples for the testing
set. ,is is because the action in this dataset is much more
complex than the UCF sports action dataset. ,e N pa-
rameter is set as 150 for every cell, while the penalty coef-
ficient is set as P � 10 along with the respective slack
variables.
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Figure 7: Confusion matrix for the CAVIAR dataset with labels (a) d1 and (b) d2.

Table 4: Average recognition rate for CAVIAR dataset.

Method type Average recognition
rate(%)

Reference with MFS detector [112] 81.82
Reference with OpenCV detector 20 [112] 79.84
Reference with OpenCV detector 25 [112] 73.61
Proposed method d1 99.14
Proposed method d2 99.28
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Figure 8: Evaluation of the classification accuracy of the CAVIAR
dataset.
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,e confusion matrix obtained in Figure 19 shows that
action categories jumping, bending, waving, stand-up, run-
fall, and walk-sit have a full recognition rate. ,e actions

running and walking have a misclassification rate in a few
scenarios. Also, the actions handshaking and pulling are
misclassified due to similar poses in some frames leading to a
decrease in recognition rate.

In Table 8, Gkalelis et al. [124] and Iosifidis et al. [125]
proposed an approach using binary masks obtained from
multiview posture images for vectorization. ,is technique
was used to extract the low-dimensional feature descrip-
tors. DFT, FVQ, and LDA are applied for action recog-
nition and classification. ,e authors tested their method
with a limited testing set comprising only eight actions

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Actions considered for the proposed approach in the UCF sports action dataset: (a) walking; (b) kicking; (c) lifting; (d) golfing; (e)
running; (f ) diving side; (g) horse riding; (h) swing-side angle; (i) skate boarding; (j) bench swinging.
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Figure 10: Confusion matrix for the UCF sports action dataset.

Table 5: Average recognition rate for UCF sports action dataset.

Method type Average recognition rate (%)
Rezazadegan et al. [115] 93.3
Mironică et al. [113] 74.1
Souly et al. [116] 88.6
Le et al. [114] 86.8
Proposed method 98.2
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Figure 11: Evaluation of the classification accuracy for UCF sports action dataset.
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Figure 12: Actions considered for the proposed approach in the KTH dataset: (a) walking; (b) jogging; (c) waving; (d) clapping; (e) boxing;
(f ) running.
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Figure 13: Continued.
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when compared to 13 actions used in our proposed
approach.

Holte et al. [126] proposed a score-based fusion tech-
nique for extracting the spatial-temporal features. ,ese
feature vectors are efficient for high frame data capture with
different densities and views. Based on the evaluation of the
accuracy rate in Figure 20, the proposed method achieves

significant performance when compared to other reference
methods with 13 actions.

5.7. JHMDB Action Dataset. ,e joint-annotated human
motion database [105] is categorized into 12 action types.
,e twelve actions shown in Figure 21 include walking,
climbing, golfing, kicking, jumping, pushing, running, pull-
up, catching, picking-up, baseball playing, and throwing.

,e dataset comprises of three segmentation methods
for the training and the testing set. For our experimentation,
we are using only one segmentation method where only 316
videos are considered. ,ey are further divided into 224
video segments for the training set and 92 video segments for
the testing set. ,e N parameter is set as 350 for every cell,
while the penalty coefficient is set as P � 10 along with the
respective slack variables.

,e confusion matrix from Figure 22 shows that the
action categories climbing, golfing, kicking, pushing, pull-
up, and pick-up have a 100 percent recognition rate. ,e
action categories such as jumping, running, and catching
showed recognition rates ranging from 91 to 98 percent. ,e
action categories that showed the least performance were
walking that was misclassified with running. ,e action
jumping was misclassified as catching and vice versa, while
the action baseball playing was misclassified as golfing.

From Table 9, Jhuang et al. [105] performed a systematic
performance evaluation using the annotated dataset. ,e
baseline model was evaluated by categorizing the poses in
the sample into three categories: low-, middle-, and high-
level features. ,e dataset is annotated using a 2D puppet
model, and the optical flow or the puppet flow is computed.
,e low- and mid-level poses are evaluated using the dense
trajectory technique, while the high-level poses are evaluated
using NTraj. Yu et al. [127] proposed a multimodal three-
stream network for action recognition. PoseConvNET is
used for detecting the 2D poses using the 2D CMU pose
estimator, and the interpolation method is introduced for
joint completion. ,e analysis performed on the individual
cues showed a less recognition rate when compared with the
proposed method.
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Figure 13: Confusion matrix for the KTH dataset with labels (a) d1, (b) d2, (c) d3, and (d) d4.

Table 6: Average recognition rate for KTH dataset.

Method type Average recognition rate (%)
Sreeraj et al. [118] 95.21
Yang et al. [119] 96.50
Ji et al. [120] 94.92
Shao et al. [121] 95
Proposed method d1 94.5
Proposed method d2 92.9
Proposed method d3 94.8
Proposed method d4 95.1
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Figure 14: Evaluation of the classification accuracy for KTH
dataset.
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However, when all the cues are combined, the reference
method proposed by You et al. shows better recognition by
1.34 percent when compared to our proposed method. ,e
evaluation of the accuracy rates for the model is shown in
Figure 23.

5.8. UCF101 Action Dataset. ,e UCF101 [106] is a col-
lection of human action dataset [128] and is an extended
version of the UCF50 dataset. It is comprised of 101 human

behaviors, and they are categorized into 25 groups, as shown
in Figure 24. Every group is comprised of 13320 behavioral
segment videos.,e training and testing sets are divided into
three categories. ,e average recognition rate from the three
sets is analyzed from the dataset. ,e N parameter is set as
400 for every cell, while the penalty coefficient is set as
P � 10, whereas other parameters are provided by pattern
matching the image data to the processed image data.

,e effectiveness of the algorithm is measured using the
following reference algorithms [9, 93, 111, 129, 130], as
shown in Table 10.

Ryoo [111] proposed a dynamic and integral BoWmodel
for action prediction. ,e human activities are predicted
using 3D spatial-temporal local features along with the
interest points. ,e features values are clustered to form
visual words using K-means and the Integral BoW used
HOG descriptors. ,e method showed a drop in recognition
rates during the early stages of detection. Cao et al. [129]
proposed a probabilistic framework for action recognition.
Sparse coding is applied to spatial-temporal features, and the
likelihood is obtained using MSSC. ,e datasets were tested
using SC and MSSC methods; the recognition rate was less
satisfactory and required more training due to model
complexity.

Kong et al. [130] proposed the MTSSVM model for
predicting the temporal dynamics of all the observed
features. ,is approach showed an improvement in the
recognition rate when compared to other reference
methods. ,e drop in recognition rate is because the
model requires prior knowledge of the temporal action
that can be achieved only via prolonged training. A mem-
LSTM model was proposed by You et al. [9] for recording
the hard samples. ,e model used CNN and LSTM on the
partially observed videos. ,e model has an improved
recognition rate as it does not require prior knowledge of
the features, and the global memory is sufficient for
prediction. From Figure 25, it can be observed that the
proposed method outperforms all the other reference
methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15: Action samples in the CASIA dataset: (a) wandering; (b) walking; (c) running; (d) crouching; (e) punching; (f ) bending; (g)
jumping; (h) falling.

Table 7: Average recognition rate for CASIA dataset.

Method type Average recognition rate
(%)

Reference framework with M-class
SVM [123] 98.70

Reference framework with DT [123] 97.90
Reference framework with LDA [123] 98.20
Reference framework with KNN [123] 98.10
Reference framework with EBT [123] 98.10
Proposed method 98.75
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Figure 16: Confusion matrix for the CASIA dataset.
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5.9. HMDB51 Action Dataset. ,e HMDB51 action dataset
[107] is comprised of 51 behavior categories that contain
100 videos each and 6676 action sequences, as shown in
Figure 26. ,e data are divided into three training and
testing sequences for action recognition, 60 training videos,
and 30 test videos. From Table 11, the proposed method is
evaluated with other techniques. ,e N parameter is set as
150 for every cell, while the penalty coefficient is set as
P � 10.

Jiang et al. [131] proposed a fuss-free method for
modeling motion relationships by adopting the global and
locale reference points. ,e code words are derived from the
local feature patches and tested. Jain et al. [48] proposed a
technique for decomposing the visual motion into dominant
motions to compute the features and their respective tra-
jectories. A DCS descriptor along with the VLAD coding
technique is used for action recognition.

Heng et al. [132] introduced a technique for matching the
feature points between the frames using the SURF descriptor
and optical flow. ,ese matched features are graphed with
RANSAC for human action recognition. Zhang et al. [133]
proposed a deep two-stream architecture for action recog-
nition using video datasets.,e knowledge is transferred from
optical CNN to motion vector CNN to reduce computation
overhead and to boost the performance of the model.

Karen et al. [135] proposed a two-stream ConvNet ar-
chitecture to combine spatial-temporal features. ,e model is
trained on dense multiframe optical flow to achieve enhanced
performance. Figure 27 shows that the proposed method
surpasses all the techniques considered for evaluation.

5.10. Influence of theN Parameter, Model Accuracy, and Loss
Function. Restricted Boltzmann machine (RBM) is a

0 20 40 60 80 100 120
EPOCH

70

60

65

75

80

85

90

95

100

Ac
cu

ra
cy

Our method
RM (M-Class SVM)
RM-DT RM-EBT

RM-KNN
RM-LDA

Figure 17: Evaluation of the classification accuracy for CASIA dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18: Actions considered in the i3DPost multiview dataset: (a) walking; (b) running; (c) bending; (d) jumping; (e) waving; (f )
handshaking; (g) pulling; (h) face expressions.
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Figure 19: Confusion matrix i3DPost multiview dataset.

Table 8: Average recognition rate for i3DPost multiview dataset.

Method type Average recognition rate (%)
Gkalelis at al. [124] (with 8 actions) 90.00
Iosifidis et al. [125] (with 8 actions) 90.88
Holte et al. [126] (with 8 actions) 92.19
Proposed method (with 13 actions) 97.07
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Figure 20: Evaluation of the classification accuracy for i3DPost multiview dataset.
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stochastic autoencoder that functions as both encoder and
decoder. It is used for weight initialization in a neural
network before training using stochastic gradient descent
(SDG) for backpropagation. During training, multiple RBMs
are stacked on top of each other to form a neural network.
,e RBM layer in the neural network inherits the func-
tionality of the network. ,us, it can function as both an
autoencoder or as a part of the neural network. As men-
tioned earlier, the RBM-NN comprises a two-layer neural
network that is fully connected to other layers. ,e visible
layer functions as the input layer, and the hidden layer
corresponds to the features of the input neurons. During
training, the RBMs adjust their weights automatically. ,e
weight fed to one output neuron corresponds to one feature
of the input. For instance, each weight originates from an
input pixel, and the value determines the strength of the
connection towards the activation function. ,e parameters
generated by RBM are dynamic, and minor changes can
cause huge differences in network behavior and perfor-
mance. Every neuron is assigned to an activation function,
and the node output is either set as 1 (on) or 0 (off).

From Figure 28, we can observe that the classification
accuracy of the model is influenced by the number of
neurons provided to the RBM.,e classification rate reaches
the highest when it satisfies the N parameter and gradually
decreases after crossing the threshold layer. ,e influence of
the parameter for the all the datasets shows similar results.

Deep learning neural networks are trained using the
SDG optimization algorithm. As a part of the optimization
problem, it is essential to evaluate the error rate for the
current state of the model continuously. ,e error function
used for our proposed method is a logistic regression loss
function that estimates the loss of the models for weight
updation. ,e loss function for our model is evaluated by
generating a regression problem with a set of input variables,
noise, and other properties. For evaluation, 100 input fea-
tures are defined as input to the model. A total of 1000
samples will be randomly generated, and the pseudorandom
number generator is fixed to 1 to ensure that the same
number of samples is considered every time the model is
evaluated. Each input and the output variable follows
Gaussian distribution for data standardization. ,e model

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 21: Actions considered for training in the JHMDB action dataset: (a) walking; (b) climbing; (c) golfing; (d) kicking; (e) jumping; (f )
pushing; (g) running; (h) pull up; (i) catching; (j) picking up; (k) baseball playing; (l) throwing.
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Figure 22: Confusion matrix for JHMDB action dataset.

Table 9: Average recognition rate for JHMDB action dataset.

Method type Average recognition rate (%)
Reference baseline model [105] 56.6
Reference baseline with low/mid-level pose [105] 69.00
Reference baseline with high-level pose [105] 76.00
Reference method with RGB+flow [127] 95.04
Reference method with RGB+pose [127] 91.67
Reference method with flow+pose [127] 97.10
Reference method with all combinations [127] 98.41
Proposed method 97.07

0 20 40 60 80 100 120
EPOCH

40

50

60

70

80

90

100

Ac
cu

ra
cy

Our method
RM-BM
RM-BM (L/M)
RM-BM (H)

RM (RGB + F)
RM (RGB + P)
RM (F + P)
RM (Combinations)

Figure 23: Evaluation of the classification accuracy for JHMDB action dataset.
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has the learning rate set to 0.1 with learning momentum set
to 0.9. ,e model is trained for 100 epochs, and the testing
set is evaluated at the end of every epoch to compute the loss
function for the model. Figure 29 shows the performance of
the model for the training and testing sets. Since the input
and target variable for the model follow Gaussian distri-
bution, the average of the squared differences between the
actual and predicted values are computed.

If the difference is large, a strict penalty is enforced on
the model for making a misclassification. From Figure 30(a),
we observe that model was capable of learning the problem
by achieving near-zero error for MSE loss. ,e model
converges reasonably for the training and the testing set with
a good performance rate.

In case, if the target value consists of widespread values
or the difference is large, punishing the model by enforcing a

Figure 24: Action samples in the UCF101 action dataset.

Table 10: Average recognition rate for UCF101 action dataset.

Method type Average recognition rate (%)
Dynamic BoW [111] 53.16
Integral BoW [111] 74.39
MSSC [129] 61.79
MTSSVM [130] 82.39
DeepSCN [93] 85.75
Mem-LSTM [9] 88.37
Proposed method 88.64
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Figure 25: Evaluation of the classification accuracy for JHMDB action dataset.
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Figure 26: Action samples in the HMDB51 action dataset.

Table 11: Average recognition rate for the HMDB51 dataset.

Method type Average recognition rate (%)
Jiang et al. [131] 40.7
Jain et al. [48] 52.1
Heng et al. [132] without HD 55.9
Heng et al. [132] with HD 57.2
Zhang et al. [133] 50.6
Wang et al. [134] 46.7
Karen et al. [135] 59.4
Proposed method 59.21
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Figure 27: Evaluation of the classification accuracy for HMDB51 action dataset.
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Figure 28: Influence of N parameter on the classification rate.
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Figure 29: Model performance for the training and testing sets.
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large penalty may affect the performance of the model. To
avoid performance issues, the logarithm value for every
predicted value is calculated, and then, the MSE is computed
to obtain MSLE. MLSE reduces the penalty enforced on the
model if a large spread of values is obtained. ,e same
configuration is followed, and the model is tested for
widespread values usingMSE andMLSE. From Figure 30(b),
it can be observed that theMSE loss is significantly higher for
the training and testing sets. ,is indicates that the model
may be showing signs of overfitting as there is a significant
drop in the beginning and the model starts to recover
gradually. Moreover, convergence between the training and
the testing set occurs at a later stage.

For cases with large or small values when compared to
the mean value, the model might run into outliers.,emean
absolute error loss is considered to be suitable for handling
outliers. It is used for calculating the absolute difference
between the target and the predicted values. In Figure 30(c),
the training and the testing set do not converge, and nu-
merous spikes in values are observed, making it not a good
fit in the case of outliers.

Figure 31 shows the overall performance evaluation of all
the datasets that have been considered for human action
recognition. ,e respective actions and the corresponding
classification accuracy are provided for 41 action categories.
For the training and testing, the individual actions such as
walking, running, jumping bending, waving, jumping jacks,
and skipping display better top-1 accuracy rates as the
classification matches the target. However, combined ac-
tions such as run-fall, walk-sit, and run-jump-walk also
show a better classification rate when compared to indi-
vidual instances. ,e classification accuracy for standalone
actions such as catching, entering, exiting, diving side, horse
riding, skate boarding, facial expressions, and wandering
was also classified accurately due to the probability of top-5
accuracy as the model considers the top five probabilities
that match the target label.

,e restricted Boltzmannmachine is composed of binary
visible units and binary hidden units. ,e parameters for the
RBM are estimated using stochastic maximum likelihood
(SML). ,e time complexity of the RBM network is esti-
mated to be O(n), where n is considered to be the input
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Figure 30: (a) Mean squared error (MSE) loss over training epochs; (b) mean squared logarithmic error (MSLE) loss over training epochs;
(c) mean absolute error (MAE) loss over training epochs.
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features or the number of components. ,e parameters
estimated using SML are the number of components, the
learning rate for weight updation, batch size, number of
iterations, verbose level, and random state.,e random state
determines the random number generation for sampling the
visible and hidden layers and initializing the components
required for sampling the layers during fitting. It also en-
sures that the data remain uncorrupted, and the scoring
sample must obtain accurate results across multiple func-
tions. ,e attributes considered for training the RBM are the
biases of the hidden and visible units; the weight matrix and
the hidden activation obtained from the model distribution
are computed from the batch size and components.

Table 12 shows the computational complexity with re-
spect to time for the various datasets. ,e table displays the
dataset considered, number of videos, number of classes,
pixel resolution, frames per second, the input sample con-
sidered for training the model, testing sample, training
sample, testing and training accuracy, training time, and
average epochs. From Table 12, it can be inferred that the
training time increases when the video sample and the pixel

resolution increase. ,e input samples are divided into mini
batches and tested with various iterations. ,e training time
after each iteration is recorded, and the time after individual
iterations is averaged to obtain the training time of the
dataset. ,e training time for JHMDB and UCF101 datasets
is high as the input size and the pixel resolution are high.
However, the training times of the datasets can be decreased,
and better computation complexity can be achieved with
better computational resources.

6. Conclusion

In this paper, a parameter adaptive initializationmethod that
uses a neural network is proposed. ,e parameter initiali-
zation method is modeled based on Maxout activation
function using RBM-NN. ,e spatial and temporal features
are learned from various human action datasets. From the
experimental analysis, the model learns the spatial-temporal
features from the shape feature sequences. An RBM-based
neural network model is designed with two layers, and an
SVM classifier recognizes multiclass human actions. ,e
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Figure 31: Performance evaluation in terms of accuracy of human action detection.

Table 12: Computational complexity with respect to time for the various datasets.

Dataset Classes Resolution Frames per
second (fps)

Input
video
sample

Training
set sample

Testing
set sample

Testing
accuracy (%)

Training
accuracy (%)

Training
time

Average
epochs

Weizmann 10 180×144 25 91 60 31 94.1 96.3 53.05 60
CAVIAR 13 384× 288 25 29 20 9 97.4 99.1 47.08 40
UCF SA 11 720× 480 10 150 102 4 94.6 98.2 74.87 39
KTH 6 160×120 25 200 140 60 94.52 98.33 102.12 59
CASIA 8 320× 240 25 250 190 60 95.7 98.75 146.12 75
i3DPost 13 1920×1080 15 104 60 44 93.19 97.09 51.91 40
JHMDB 12 320× 240 25 316 224 92 88.71 90.83 203.72 45
UCF101 101 320× 240 25 600 400 200 84.21 88.64 283.87 80
HMDB51 51 320× 240 30 90 60 30 82.11 87.12 54.12 40
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proposed method is tested on various benchmark datasets
and compared with existing state-of-the-art techniques. ,e
experimental results showed that the proposed method
accurately identifies various human actions. ,e recognition
rate was found to be significantly better than other state-of-
the-art specific and multiclass human action recognition
techniques.
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