
Structural text search and comparison using automatically
extracted schema

Michael Gubanov
University of Washington

mgubanov@cs.washington.edu

Philip A. Bernstein
Microsoft Researchg

phil.bernstein@microsoft.com

ABSTRACT
An enormous amount of unstructured information is present
on the web, in product manuals, e-mails, text documents,
and other information sources. However, there is not enough
support to automatically infer sufficient structure from these
data sources to be able to pose queries comparable in power
to SQL.

We present a prototype of new text database manage-
ment system capable to automatically infer schema from
text using natural language processing. It leverages ex-
tracted schema by supporting powerful structural search and
fuzzy join operator between extracted entities.

1. INTRODUCTION
Despite vast amount of unstructured data on the web,

keyword-search [7] is often the only way to find needed infor-
mation. PageRank - Google’s algorithm to rank web pages
and display the best ranked pages first to the user currently
depends on more than 500 million variables and 2 billion(!)
terms. In addition, PageRank also analyzes the full content
of a page and factors in fonts, subdivisions, the precise loca-
tion of each word, and the content of neighboring web pages
[1]. To summarize, it is, probably, the world’s most complex
algorithm and it is getting even more complicated every day,
because Google is working to improve it!

By contrast, System R [16] was the first relational data-
base management system prototype that introduced a re-
lational algebra engine for storing and querying structured
data. Structured Query Language(SQL) - a powerful lan-
guage was born from relational algebra with the purpose to
query structured data represented as entities with attributes
and relationships between them or a database schema. SQL
made possible to focus user query to a specific structure
within the database schema and retrieve quickly only the
needed information thus leveraging the structure and get-
ting focused and precise answers to the query. Of course, if
needed, it is possible to do keyword-search over databases
largely ignoring available structure (e.g. [4]).

Inferring structure (or schema) is a key problem in any
solution trying to support a richer query language than key-
word search over unstructured data in order to provide more
focused and precise results. Our main contributions are the
following novel algorithms that comprise a new text data-
base management system (TDBMS).

Copyright is held by the author/owner. Ninth International Workshop on the
Web and Databases (WebDB 2006), June 30, 2006, Chicago, Illinois..

It is implemented on top of a relational engine.

• a fully automatic algorithm to extract schema from
text and perform structural search using the schema

• algorithms for fuzzy join between entities in the ex-
tracted schema and ranking join results

• a concept matching algorithm to detect similar con-
cepts expressed by different words in text

We apply our results to perform structural search and
automatic software comparison by extracting schema from
freely available product manuals. We convert the manuals
to plain text before running the algorithms (plain text files
are 3-4 Mb each).

InnoDB

InnoDB offers all four transaction isolation levels de-
scribed by the SQL standard

InnoDB provides full ACID compliance

InnoDB supports multiple granularity locking which
allows coexistence of record locks and locks on entire
tables

...

Table 1: Structural search on InnoDB/supports

Structural search is focused on the extracted structure and
therefore returns more precise results. For instance, having
extracted the schema from the MySQL manual we can issue
a selection query on entity InnoDB1 and its attribute support
(and its synonyms and grammatical forms). This returns 26
sentences, three of which are shown in Table 1. By contrast,
keyword search on the same data using keywords InnoDB
+ (provide or support or offer) returns near 50 sentences, ≈
35% of which were not matching the focus of a structured
query ( e.g. “You can omit these command lines if you
to not require InnoDB or BDB support”). Thus, structural
search is more focused and therefore performs more precisely
than keyword-search at the expense of coverage (in this case,
missed 4 useful sentences (e.g. “Support for XA transactions
is available for the InnoDB storage engine”).

Next, we applied our fuzzy join algorithm to compare in-
dexing support in PostgreSQL and MySQL database servers.
Comparing software is a widely known complex problem. It
is especially important for large enterprises that commonly
have to choose between expensive products. Usually, the

1one of the MySQL storage engines



Storage engine PostgreSQL rank optrank

Storage engine allowable index types are MyISAM: B-
TREE, InnoDB: B-TREE, Memory: HASH B-TREE

PostgreSQL provides several index types: B-
tree R-tree Hash GiST

4.2 1 6
15

MEMORY storage engine implements both HASH and
B-TREE indexes

The PostgreSQL query planner will consider
using an R-tree index whenever an indexed
column is involved in a comparison using one
of these operators: ¿ À ¿| À| ...

1 1
20

1 1
20

All storage engines support at least 16 indexes per
table and a total index length of at least 256 bytes

PostgreSQL supports partial indexes with ar-
bitrary predicates, so long as only columns of
the table being indexed are involved

0.1 1
20

Table 2: Compare indexing support of MySQL and PostgreSQL by joining Storage engine and PostgreSQL
concepts

problem is solved by hiring specialists in the art or by sub-
contracting to an external company to do the analysis man-
ually. Our TDBMS can be used to alleviate this problem
by partially automating this task. Table 2 shows top dis-
tinct results of comparing MySQL and PostgreSQL database
servers by supported index types (ranking is described in
Section 4). This is done by joining the entity Storage engine
in the text database generated from the MySQL manual
with the entity PostgreSQL from the database generated
from the PostgreSQL manual. Clearly, this is not an ex-
haustive comparison of two database servers. However, it
does demonstrate what can be done automatically, without
human intervention to help resolve this complex problem.

As a general algorithm operating on concepts extracted
from text fuzzy join can be used to automatically compare
any concepts from any text. For example, it also can be
applied to compare skills in resumes, product features in
manuals, or concepts in research papers.

Finally, we applied the concept matching algorithm to
match similar concepts expressed by different words in two
database servers manuals. For instance, the following con-
cepts were detected to be similar even though they do not
have any textual similarity: command and statement, you
and user, section and chapter, storage engine and Post-
greSQL.

Similarly to fuzzy join, concept matching is a general algo-
rithm operating on extracted concepts and it can be applied
to any text. More generally, it can be used as a document
similarity semantic metric.

The rest of the paper is structured as follows. Section
2 describes automatic schema extraction algorithm and ex-
perimental results. Structural search and intuition behind
the algorithm is described in Section 3. Automatic com-
parison, fuzzy join and ranking of join-results are in Section
4. Our concept matching algorithm and experimental re-
sults are described in Section 5 in more detail. Section 6
describes query language for the new TDBMS. We review
related work in Section 7 and conclude in Section 8.

2. AUTOMATIC SCHEMA EXTRACTION
We use natural language processing to parse the MySQL

and PostgreSQL manuals and incrementally construct two
separate schemas using a state-of-the art English sentences
parser.

The grammar in Figure 1 shows the parsing algorithm.
Each sentence S is split into an arbitrarily long sequence
of N noun phrases and V verb phrases. For instance, the

S → NVS N ε
V → ε

Figure 1: Sentence parsing grammar

sentence “MySQL supports indexes widely used to improve
performance” will be split into the sequence“MySQL[N1],
supports[V1], indexes[N2], used to improve[V2],
performance[N3]”. After that, we load all the parsed sen-
tences into the table T with columns (N1, V1, N2, V2, ...) in
a relational databases. Each text file is processed separately
and is loaded in a separate table.

To start schema extraction, we notice that the first col-
umn in T usually contains the subject of a parsed sentence
(MySQL in the example above). Clearly, it is not always
true, e.g. for questions or complex sentences, but it is still
more the rule than the exception. We leverage this to retrive
the main concepts (sentences’ subjects) of the documents
loaded into T by taking the most frequent values from T.N1.

A better metric, called concept weight counts only distinct
sentences for a given subject. This is a stricter metric, be-
cause it ignores all sentences that have the same predicate
and object for a given subject and therefore promotes the
concept only for participating as a subject in substantially
different sentences. Table 3 illustrates the main concepts
extracted from two database servers’ user manuals, sorted
by concept weight. Notice, that all top concepts are ex-
actly what one would expect for a database server manual.
Moreover, the lists were generated independently from two
different text databases (each populated from a manual, ex-
cluding noise words), but the top concepts are very similar
(see Table 3).

We further construct the concept structure by extracting
the most frequent actions it can perform and defining them
to be its attributes. They can be extracted from T by tak-
ing the most frequent values of T.V1 for a given concept in
T.N1. For instance, the action allows occurred 7 times as
a predicate in the sentences where MySQL was the subject.
Similarly to concept weight discussed above a better metric
is to count the number of distinct objects that appear in
the sentences with a given subject and predicate. This is
a better metric (define it to be attribute weight) than pred-
icate frequency, because it ignores the sentences that have
the same predicate and object for a given subject. Table 4
illustrates the extracted structure of two concepts MySQL
and You sorted by attribute weight.



Concept Weight
you 350
we 105
function 50
PostgreSQL 42
option 34
query 24
table 22
command 21
file 19
server 19
user 19
application 18
value 17
system 17
database 16
index 15
frontend 14
view 14
column 14
row 13
... ...

Concept Weight
you 990
we 142
MySQL 110
server 58
table 57
statement 50
option 42
value 40
Innodb 38
file 33
function 31
variable 25
column 23
section 22
query 20
client 19
slave 18
user 18
mysqld 18
privilege 18
row 17
... ...

Table 3: MySQL and PostgreSQL concepts

The set of structured concepts inferred from parsed text
using the algorithms above is the schema for our text data-
base. Notice, that no data is stored in the inferred schema.
Parsed sentences are in table T (N1, V1, N2, V2, ...) in the re-
lational database.

Also, notice that this is a very general algorithm, since it
relies only on the natural language sentence structure and
does not depend on any specific terms, words or patterns
[6]. It is also not restricted to any specific area of interest
and therefore works for text on any topic.

3. STRUCTURAL SEARCH
Below we describe how we can do structural search by

leveraging inferred schema.
Consider the problem to find in MySQL manual (auto-

matically) what InnoDB (a MySQL storage engine) sup-
ports. One of the approaches would be to do keyword search
through the manual on ’InnoDB’ + (provide or support or
offer). This returns near 50 sentences, ≈ 35% of which do
not match the focus of structured query (e.g.“You can omit
these command lines if you to not require InnoDB or BDB
support”).

On the other hand, we can use the schema extracted from
MySQL manual and issue a selection query on entity Inn-
oDB and its attribute support. It will be automatically
mapped by our engine into a select statement on the under-
lying relational table T (N1, V1, N2, V2, ...) and retrieve the
sentences that contain InnoDB as a subject and provide or
support or offer or their synonyms and derived forms as a
predicate. This returns 26 sentences, three of which are
shown in Table 1. We missed only 4 useful sentences (e.g.
‘Support for XA transactions is available for the InnoDB
storage engine’), but filtered out ≈ 20 that do not match the
focus of structured query. Thus, structural search performs
more focused and therefore more precise at the expense of
coverage.

You Weight
have 34
can use 23
must own 14
need 14
must have 10
can create 8
can do 8
get 6
want 6
write 6
will need 4
... ...

MySQL Weight
uses 40
supports 21
is 10
has 7
converts 7
does not support 6
can use 6
allows 6
creates 5
provides 4
handles 4
... ...

Table 4: Concept structure

4. AUTOMATIC COMPARISON
Consider another problem of comparing two concepts from

text. For example, let us compare Storage engine from the
MySQL manual and PostgreSQL from the PostgreSQL man-
ual. Similarly to the previous section, as a first approach,
consider doing keyword search by Storage engine over the
MySQL manual and by PostgreSQL over the PostgreSQL
manual and matching all the resulting sentences. There
should be good matches, but it is very hard to find them
in a large result set even with high quality sentence match-
ing and further ranking. This is because it is important for
matching where in the sentence the matching terms occur.

The first important (and probably obvious) observation
is that by the nature of language sentences are about sim-
ilar concepts if their subjects are similar or mean similar
concepts (see the next section on how to detect similar con-
cepts expressed using different words). The next important
observation is that if two sentences, in addition to having
similar subject, have the same or similar predicate in com-
mon, they should match even better, because they are about
a similar concept that does a similar action. So, how can we
leverage this inferred structure to filter them out and match
better?

To do much more precisely than just using keywords, con-
sider selecting the sentences only with the subject containing
storage engine for the MySQL manual and PostgreSQL for
the PostgreSQL manual and predicate containing verbs is,
support, implement, has, can or their synonyms and derived
grammatical forms (e.g. are, provide(s), allow(s), ...). This
significantly reduces the number of retrieved sentences and
makes both result sets strictly focused on these two concepts
performing specified actions.

Next, we describe two algorithms for fuzzy join between
these two sentence sets and a ranking function to sort join
results.

4.1 Fuzzy join and ranking function
To match most similar sentences, consider tokenizing the

sentences’ tails2 for both sets into words and then extract-
ing stems from these words. This results in a set of stems
for each sentence in both sentence sets. After that, we join
the sentences from both sets pairwise by matching the ex-
tracted stems for each sentence and sorting the join result
by computed join rank. Only the best match for each sen-

2a sentence without subject, predicate and other verbs -
T.N2 + T.N3 + T.N4 + ...



tence is included in join result. Table 2 illustrates joining
Storage engine from MySQL manual with PostgreSQL from
PostgreSQL manual on is, support, implement, has, can and
their derived grammatical forms. To further narrow the fo-
cus of comparison, we require the sentences to contain the
keyword index. This guarantees the concepts are compared
only on indices.

To rank join results we use the following ranking function:

joinrank(s1, s2) =

nX
i=1

kti ·
1

weight(ti)

where s1, s2 are the joined sentences, n is the number of
tokens in one of the sentences tails (assume w.l.o.g. s2), ti

is the token, kti is the number of matches that generates
tth
i stem, weight(ti) is tth

i concept weight computed during
automatic schema extraction.

This formula conveys the idea that the matches of more
specific concepts are more valuable than those of general
ones (therefore weight(ti) is in the denominator). In addi-
tion, it encourages multiple matches of the same term(or
stem) by multiplying the inverse weight by the number of
successful matches. For example, the top row in Table 2 has
the following rank: 3 · 1/3 + 3 · 1/1 + 1 · 1/5 = 4.2. Since
B-tree from s2 tail matched b-tree from s1 three times and
the concept b-tree has concept weight 3, therefore the first
sum item is 3 · 1/3. The stem of R-tree tree, matched three
times and R-tree has weight 1. Hash matched once and has
weight 5, which sums up to 4.2.

The complexity of this join algorithm is O(n2) where n is
the number of words in text. We can significantly improve
performance by using full-text indexing on sentence tails by
slightly sacrificing precision. Consider the same algorithm,
which instead of counting the number of matches kti does
full-text index search on each token stem. This will raise the
complexity to O(log(m)) · smax · s ≤ O(log(n)) · smax · s ≤
O(log(n) · n

smin
) ∝ O(nlog(n)) where m is the number of

distinct indexed terms (whose upper bounded is the num-
ber of words n), smax is the constant specifying the number
of words in the longest sentence, s is the number of sentences
to join (which has upper-bound n

smin
), n is the number of

words in text, and smin is the number of words in the short-
est sentence.

The second algorithm performs much faster at the expense
of slightly decreased accuracy, because full-text index lookup
is unable to detect the number of matches. We compute
joinrank for the second algorithm by using the same formula
and setting kti ≡ 1, ∀i (optrank column in Table 2).

5. CONCEPT MATCHING
To detect similar concepts in text that are expressed us-

ing different words we present a concept matching algorithm
that works on the extracted schema. For instance, it can de-
tect that the concept PostgreSQL in the PostgreSQL manual
is similar to MySQL and InnoDB3 from the MySQL manual
even though there is no textual similarity between them.

The basic intuition behind the algorithm is that two con-
cepts are similar if they do similar actions on similar objects.
In terms of inferred schema (see Table 4) this implies that:

• the more attributes two concepts have in common (e.g.
PostgreSQL and MySQL both have supports attribute)

3MyISAM, InnoDB, Memory are MySQL storage engines

Concept1 Concept2 Sim
section chapter 4.62
MySQL PostgreSQL 2.75
you user 1.75
server PostgreSQL 1.66
InnoDB PostgreSQL 1.54
statement command 0.29
MaxDB PostgreSQL 0.21
MySQL query 0.14
... ...

Table 5: General concept matching

Concept1 Concept2 Sim
Storage engine PostgreSQL 0.12
MyISAM PostgreSQL 0.12
index PostgreSQL 0.036
table PostgreSQL 0.036
column PostgreSQL 0.036
user PostgreSQL 0
MySQL PostgreSQL 0
... ...

Table 6: Focused concept matching

• the more similar objects in the original sentences cor-
respond to the common attributes (e.g. PostgreSQL
supports indexes ...; MySQL supports indexes ...)

then the more similar the concepts are.
In addition, there is a difference between detecting gener-

ally similar concepts and detecting concepts that are simi-
lar in some specific way (focused concept matching). Con-
sider comparing indexes in PostgreSQL and MySQL by us-
ing fuzzy join between concepts PostgreSQL and MySQL.
The result will be a table similar to Table 2, however it
will contain many fewer rows. This is because supported
index types in MySQL server depend on the storage en-
gine3, whereas PostgreSQL does not support multiple stor-
age engines. Therefore the majority of sentences about in-
dex types have a specific storage engine as a subject instead
of MySQL. Therefore, the concept PostgreSQL has more in
common with the concept Storage engine than with MySQL
for purposes of comparing indexes, whereas in general it is
more similar to MySQL.

Briefly, the algorithm works by iterating over the con-
cept list (Table 3) and accumulating (for each concept) all
distinct predicates that appear in the sentences containing
a concept in the subject. After that it computes pairwise
concept similarity using the following similarity function:

sim(c1, c2) = m ·
mX

i=1

1

w(ai)
+ n2 ·

mX
i=1

log wmax
w(ai)Pn(i)

j=1 w(oij)

where m is the number of distinct attributes ai two con-
cepts c1, c2 have in common, n is the number of common
distinct objects, and n(i) is the number of distinct common
objects for ith common attribute.

The first summand is a sum of inverse weights of con-
cepts’ common attributes multiplied by the number of dis-
tinct common attributes. Having a rare attribute in com-
mon is more important than having a frequent one. This is
why inverse weights are summed.



If in addition to the attribute (such as supports in the
example above), the concepts have a common object (e.g.
indexes), it is taken into account by second summand, which
is a sum of inverse weights of distinct common objects. Ac-
cording to the experiments, it is considered to be quadrat-
ically more important than having common attributes and
is reflected by multiplying the second sum by n2.

The absolute value how much a common object contributes
to concept similarity also depends on the attribute to which
the common object corresponds. This is the intuition behind
why all sum members are weighted by log(wmax/w(ai)).
How important for concept similarity an attribute is de-
termined by the ratio of the absolute maximum attribute
weight wmax and the attribute weight w(ai). log is used
to reduce potentially large absolute values for rare objects.
Several similar concepts are shown in Table 5 as an example
of applying this metric.

Focused concept matching works similarly, except it ac-
cumulates for each concept all the distinct predicates that
appear in the sentences containing a concept in the subject
and a specific focus keyword in the object. The results of
concept matching focused on indexes (focus keyword is in-
dex) are in Table 6.

Our prototype caches concept similarity and suggests sim-
ilar concepts to the user for each join query. For example,
for a query PostgreSQL fuzzy join MySQL on index along
with the join result it will output as a suggestion top simi-
lar concepts for both PostgreSQL and MySQL resulted from
focused matching (i.e. storage engine, MyISAM).

6. QUERY LANGUAGE
In this section we describe the query language of the new

text database management system (TDBMS) prototype. Its
schema consists of entities with attributes. Table 4 illus-
trates two sample entities You and MySQL and their at-
tributes.

Two types of queries are currently supported - selection
and fuzzy join queries. Both of them return a set of sentences
as a result set. The result set for fuzzy join queries is sorted
by join rank (described in Section 4.1) in descending order.
Everything that is in square brackets is optional.

• e1[, .., en]/[a1, .., am] [where K]

• e1[, .., en]/a1[, .., am]
fuzzy join e1[, ..,ek]/a1[, .., al] [on K]

The first one is a selection query on entities e1, .., en and
their attributes a1, .., am or its synonyms and grammatical
forms. As an example consider the query InnoDB/supports
and its result set in Table 1. A selection query on several en-
tities and/or attributes returns the union of results of selec-
tion queries from all the entities and attributes involved. For
instance, the query MyISAM, InnoDB/requires, allows will
return all the sentences containing MyISAM or InnoDB in
the subject and requires or allows (and its synonyms and
grammatical forms) in the predicate. If where K clause is
specified the result set is filtered by requiring all the sentence
tails4 to contain the set of keywords K.

The second one is a fuzzy join query. First, it will select
two sentence sets according to the semantics of the selection

4a sentence without subject, predicate and other verbs -
T.N2 + T.N3 + T.N4 + ...

queries. If K - a set of keywords is specified, all the sen-
tences in both intermediate result sets will be restricted to
contain K in their tails (equivalent to specifying where K
clause for both participating selection queries). Finally, it
will execute fuzzy join algorithm between two intermediate
result sets and sort the output by join rank in descending
order. As an example, consider the query
Storage engine/supports, is, implements fuzzy join
PostgreSQL/supports, is on index and its result set in Ta-
ble 2.

7. RELATED WORK
In [6] Brin introduced an algorithm to extract tuples from

the Web that are similar to a small“training set” of pairs
(e.g. ¿ author, title À). The basic idea was to match a
given set of tuples against web pages to generate a general
pattern that can be further bootstraped to retrieve more
results. In [3] Agichtein extended this idea by using named-
entity tagging (e.g. location, organization), weighting and
confidence metrics to compose better patterns. Downey
et al. in [11] suggested using learned patterns as extrac-
tors and discriminators to improve both coverage and ac-
curacy of information extraction. Banko et al. in [5] de-
scribed a question-answering system reformulating the spe-
cific questions into likely substrings of declarative answers
to the question and submitting them to Google. E.g. for
“Where is the Louvre Museum located” the reformulations
will be“+the Louvre Museum +is located”,“+the Louvre
Museum +is +in”, “+the Louvre Museum +is near”, etc.
Ask.com is, probably, the most widely known commericial
question-answering system that also works by reformulating
specific questions and matching the resulting phrases against
the Web.

Our approach is substantially different as it is neither re-
stricted to a specific pattern format, nor aims to extract a
specific relation or answer a specific question.

Etzioni et al. in [13] uses a more general approach to ex-
tract hyponym relation from Web pages by using domain
independent patterns (cf. Hearst [14]). Crescenzi in [9] tries
to generalize wrapper generation by matching dynamically
generated HTML pages of data-intensive web sites (e.g. on-
line book stores) and approximating the underlying data-
base schema. Mindnet [17] is, probably, the most general
system to automatically construct an approximation of a
semantic network [10] that is a graph representing seman-
tic relationship between words. [12] is a question-answering
system capable to construct a meta-repository of semantic
objects either automatically by extracting triples of form
¿ N, V, N À from text or manually through the user in-
terface. It is able to match user requests to its semantic
objects and output relevant results. In [8] Cafarella et al.
build a large-scale (from 90-million Web-page corpus) ex-
traction graph from triples similar to [12] and show experi-
mental results of keyword-based spreading-activation search
with depth 1 over this graph.

Our approach is substantially different from [17], [12],
and [8], because instead of constructing a semantic net-
work, meta-repository or extraction-graph, we first extract
the main concepts from text and infer schema that is built
around them reflecting their structure. Therefore, we are
able to support structural search, join as well as concept
matching that are not available in either [17], [12] or in [8].

[15] is an exhaustive survey of typical web data extraction



approaches and tools classified into six groups: Language
for wrapper development, HTML-aware tools, NLP-based
tools, Wrapper induction tools, modelling-based tools, and
ontology-based tools. Finally, [2] is a search-engine that
leverages NLP to resolve part-of-speech-, phrasal-, and con-
textual ambiguity and provide better search experience.

8. CONCLUSION
In this paper we presented a new text database manage-

ment system (TDBMS) based on novel algorithms to au-
tomatically extract schema from text, perform fuzzy join
between extracted entities, and detect similar semantic con-
cepts expressed using different words (Table 5, Table 6). We
applied it to perform powerful structural search (Table 1)
and automatic software comparison (Table 2). Our experi-
mental results justify that structural search is more focused
and therefore performs more precisely than keyword search
at the slight expense of coverage. Demonstrated results of
automatic software comparison can be used by end-users,
software consultants, and large enterprises that commonly
have to choose between software products.

Finally, all the presented algorithms are very general be-
cause they operate on concepts extracted from text. There-
fore, fuzzy join can be used to automatically compare con-
cepts from any text, e.g. to compare skills in resumes, prod-
uct features in manuals, or concepts in research papers. Sim-
ilarly, concept matching can be used as a document similarity
semantic metric.

9. REFERENCES
[1] http://www.google.com/corporate/tech.html.

[2] The infocious web search engine: Improving web
searching through linguistic analysis. Infocious Inc.,
2005.

[3] E. Agichtein and L. Gravano. Snowball: Extracting
relations from large plain-text collections. In ACM
DL, 2000.

[4] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A
system for keyword-based search over relational
databases. In ICDE, 2002.

[5] M. Banko, E. Brill, S. Dumais, and J. Lin. Askmsr:
Question answering using the worldwide web. In
EMNLP, 2002.

[6] S. Brin. Extracting patterns and relations from the
world wide web. In EDBT, 1998.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[8] M. Cafarella, M. Banko, and O. Etzioni. Relational
web search. Technical Report UW-CSE-06-04-02,
2006.

[9] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web
sites. In VLDB, 2001.

[10] F. Crestani. Application of spreading activation
techniques in informationretrieval. Artif. Intell. Rev.,
11(6):453–482, 1997.

[11] D. Downey, O. Etzioni, S. Soderland, and D. Weld.
Learning text patterns for web information extraction
and assessment. In AAAI, 2004.

[12] M. Elder. Preparing a data source for a natural

language query. United States Patent Application
20050043940, 2004.

[13] O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Web-scale information extraction in
knowitall. In WWW, 2004.

[14] M. A. Hearst. Automatic acquisition of hyponyms
from large text corpora. Technical Report S2K-92-09,
1992.

[15] A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira.
A brief survey of web data extraction tools. In
SIGMOD Record, 2002.

[16] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD Record, 1979.

[17] L. Vanderwende, G. Kacmarcik, H. Suzuki, and
A. Menezes. Mindnet: An automatically-created
lexical resource. In HLT/EMNLP, 2005.


	page1: 2
	page2: 3
	page3: 4
	page4: 5
	page5: 6
	page6: 7


