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It is essential to develop effective analytical techniques for accurate and continuous

monitoring of various biomanufacturing processes, such as the production of

monoclonal antibodies and vaccines, through sensitive and quantitative detection of

characteristic aqueous or gaseous metabolites and other analytes in the cell culture

media. A comprehensive summary toward the use of mainstream techniques for

bioprocess monitoring is critically reviewed here, which illustrates the instrumental and

procedural advances and limitations of several major analytical tools in biomanufacturing

applications. Despite those drawbacks present in modern detection systems such as

mass spectrometry, gas chromatography or chemical/biological sensors, a considerable

number of useful solutions and inspirations such as electronic or optoelectronic

noses can be offered to greatly overcome the restrictions and facilitate the

development of advanced analytical techniques that can target a more diverse

range of key nutritious components, products or potential contaminants in different

biomanufacturing processes.

Keywords: biomanufacturing, volatile organic chemicals, bioprocess assessments, analytical methods, electronic
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INTRODUCTION

The industry of cell culture manufacturing has grown rapidly over the past decades. With the
continuous emergence of state-of-the-art bioprocess technologies, numerous types of biological
products, including therapeutic proteins, clinical enzymes, viral or recombinant vaccines, gene
therapy vectors, and cells, have been successfullymanufactured and put into real-world applications
(Carrondo et al., 2012; Pais et al., 2014; Dumont et al., 2016; Lalonde and Durocher, 2017). In
principle, conditions required for cell culture cultivation can be optimized and precisely controlled
for large-scale industrial production. Nonetheless, cellular metabolism is a complicated process of
physical and chemical changes that is subject to various environmental factors (e.g., temperature,
O2, pH) (Nielsen and Keasling, 2016). Unexpected disruption in cell behavior due to unknown
contaminations could strongly impair quality and reproducibility of bioproducts. Therefore,
uncertainty and unpredictability in biopharmaceutical manufacture has posed a great challenge
in field monitoring of relevant biological reactions.
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Methods for the measurement of bioprocess variables can
be generally divided into two broad groups: on-line and off-
line measurements (Figure 1A) (Lourenço et al., 2012; Zhao
et al., 2015). On-line measurements require the instrument to
be present in the line of bioprocess stream to ensure real-time
analysis with instant data output, while off-line measurements
deal with sample separation from a bioreactor for measurement
at a discrete location or time point. Instrumentation selected
for on-line or off-line measurements may be invasive that
requires the penetration of probes into the fluid medium
(e.g., to read pH and dissolved oxygen), or non-invasive that
allows the measurement to be performed without breaking the
boundary between the bioprocess stream and the surrounded
environment (e.g., headspace gas analysis and aqueous-phase
spectroscopic methods).

To date, standard methods for monitoring the status of
typical biomanufacturing processes involve the biomolecular

FIGURE 1 | Illustration schemes of the set-ups for biomanufacturing monitoring. (A) Scheme of in-line vs. off-line analysis of bioreactors. (B) Scheme of the

mechanism and interpretation of a typical electronic nose (E-nose) system made of optically responsive sensors. (C) Headspace VOC analysis of a growing cell culture

in a bioreactor using ambient mass spectrometry. Reproduced with permission from Chingin et al. (2014). Copyright Royal Society of Chemistry 2014. (D) Illustration

of electronic noses and pattern recognition.

quantification using PCR or ELISA techniques (Riahi et al.,
2016; Valente et al., 2018; de Bournonville et al., 2019), which is
sensitive and specific but dependent on cumbersome analyzing
protocols. Other methods based on measuring the content of
dissolved oxygen, carbon dioxide or pH have proven ineffective
as they usually predict the occurrence of abnormal states (e.g.,
contamination) at very late stage of cell cultivation (Bachinger
et al., 2002). Moreover, those methods sometimes are not reliable
as it could be difficult to observe subtle differences in case an
in-line bioreactor control system is used to adjust deviations
in oxygen or pH. Other indirect analyses of relevant aqueous
or gaseous analytes in a production container, however, involve
the complicated and cumbersome incubation of a media sample
drawn from the bioreactor. Consequently, the success in early
diagnosis of biomanufacturing status is largely dependent on the
development of new analytical devices that can perform real-time
detection of key metabolites in any cell cultivation process.
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Off-gas analysis is a simple, rapid and non-invasive approach
for monitoring cell status during bioproduction. Although such
gas detection focuses mainly on oxygen and carbon dioxide,
other characteristic volatile compounds are also of great interest
to analytical chemists or biologists. It is well-known that the
cultivation of a particular cell culture produces a diverse set
of volatile organic chemicals (VOCs) as featured metabolites.
A wide variety of standard analytical techniques have been
applied to the determination of the identities and contents of
different gaseous targets, including gas chromatography (GC)
(Langejuergen et al., 2015; Lavra et al., 2015; Tang et al.,
2017), mass spectrometry (MS) (Schmidberger and Huber, 2013;
Chingin et al., 2014; Chippendale et al., 2014; Schmidberger
et al., 2014), near-infrared (NIR) spectroscopy (Cimander and
Mandenius, 2002; Zhang et al., 2009; Nespeca et al., 2017;
Zavala-Ortiz et al., 2020), and multi-wavelength fluorimetry
(Faassen and Hitzmann, 2015; Rowland-Jones et al., 2017). Most
of those methods, however, suffer from one or more of the
drawbacks below: demand on bulk instrumentation, lack of
portability, high cost, and long-term sample preparation and
analysis. A facile and cost-effective profiling of biological media
for precise identification of key components and correlation of
the fingerprint to physiological parameters measured by gold
standard analytical techniques is highly desirable.

Developing detection methods for continuous and real-
time analysis of effluent off-gases has consequently become a
pressing demand. The array-based sensors, or “electronic noses”
(Hines et al., 1999; Rock et al., 2008; Berna et al., 2009), aim
to construct a class of sensor elements with diverse physical
and chemical properties for molecular recognition. The first
example of an artificial nose was reported by Persaud et al.
that mimicked the biological olfactory system using three metal
oxides as semiconductor transducers to detect similar biological
mixtures (Persaud and Dodd, 1982). This was one of the earliest
attempts to use sensor arrays and to successfully distinguish an
extensive range of odors. Since then, a similar idea pertaining
to array-based sensing technology using an increasing number
of analytical devices with cross-reactive sensing elements have
emerged that show impressive potentials in sensing applications
ranging from environmental monitoring (Su et al., 2012; Wei
et al., 2014; Jayawardane et al., 2015), to security screening (Hu
et al., 2014; Bright et al., 2015; Li et al., 2015), to biomedical
diagnosis (Konvalina and Haick, 2014; Ulrike and Hossam, 2014;
Huang et al., 2015; Tomita et al., 2016), and to food inspection
(Maynor et al., 2007; Narsaiah et al., 2012). Innovations in
relevant areas are continuing and improvements in sensing
technology are constantly needed for resolving limitations of
traditional electronic noses that heavily rely on non-specific
physical adsorptions of analyte molecules, such as to enhance
sensitivity (i.e., limit of detection, or LOD) or selectivity (i.e.,
limit of recognition, or LOR) of relevant VOCs (Feuz et al., 2010;
Li et al., 2019). Array-based optical sensing (i.e., optoelectronic
noses) that integrates a diverse range of chemoresponsive and
photoactive sensing elements with portable imaging tools proves
to be an excellent technique for those goals.

In an attempt to demonstrate the advances and challenges met
in the field of bioprocess assessment, we will extensively review

the recent development of state-of-the-art techniques for analysis
of key components in biomanufacturing process, and mainly
focus on optical methods, mass spectrometry, and modern
electronic noses. We will cover significant progresses in on-line
or off-line monitoring devices and their applications in quality
control of typical examples of microbial and mammalian cell
cultivation processes, particularly by analyzing the characteristic
volatile compounds. Finally, a systematic discussion will be
carried out regarding the limitations and future perspectives in
bioengineering monitoring technologies.

MAJOR TARGETS IN
BIOMANUFACTURING MONITORING

Aqueous Analytes
Biomolecules such as glucose, lactate, and amino acid (Schmidt
et al., 1998; Roychoudhury et al., 2007; Fan et al., 2016)
are important nutrients or metabolites in biomanufacturing.
Environmental parameters such as pH, dissolved O2 or CO2 also
play pivotal roles on the growth of cell culture media (Meunier
et al., 2016; Michl et al., 2019). Monitoring of those major targets
during cell culture cultivation is of great value for the regulation
and management of biological production. The complexity of the
culture medium, however, poses a great challenge to the real-
time detection and analysis of target molecules. Especially for off-
line methods, pretreatment of culture medium such as filtration
and isolation could significantly improve the detection sensitivity
and specificity. Nevertheless, sampling frequency (once every
12–24 h) in off-line contexts is often too low to monitor highly
dynamic metabolic processes (Tulsyan et al., 2019), which may
result in limited spatiotemporal resolution of the cell metabolic
features. Moreover, the pretreatment procedures are usually
time-consuming and laborious, and the cultivation fluid is
subject to contamination caused by repetitive sampling.

The on-line monitoring methods are expected to resolve
those problems mentioned above. Since the detecting units are
integrated in the reactor, on-line monitoring methods require
no additional steps for sample separation and purification, thus
significantly simplifying the analytical procedures and reducing
the possibility of sample contamination. In this respect, the
non-invasive and contactless spectroscopic techniques are more
widely employed in industrial applications. For example, the
ultrasound-assisted near-infrared spectroscopy as developed by
Kambayashi et al. (2020) used ultrasonic standing waves to
generate acoustic radiation force and concentrate the suspended
targets at the nodal planes, so that the incoming near-infrared
light could precisely quantify target molecules in the colloidal
suspension. The measurement error of glucose using this method
was as low as 0.6%. In addition, owing to fast data acquisition,
high accuracy, and capability of multiparameter analysis, Raman
spectroscopy is considered a promising tool in monitoring
a wide range of aqueous biological samples (Shaw et al.,
1999). For instance, Santos et al. (2018) monitored monoclonal
antibody (mAb) cultivations in situ using Raman spectroscopy
by adjusting calibration models; an automatic and real-time
calibration framework was established by Tulsyan et al. (2019)
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that enabled the integration of traditional Raman models in
variable culturing conditions without specific calibration steps,
thus increasing the feasibility of Raman techniques in inspecting
culture media with highly changeable composition.

Combining withmachine-learning techniques (Li et al., 2020),
Raman spectroscopy allows for the detection of a large number
of analytes or metabolic indices simultaneously, including
glucose, glutamate, lactate, metal ions and anions, cell viability
and density, which permits multidimensional data analysis for
comprehensive profiling of the biological signatures (Henriques
et al., 2009). Other optical measurements in bioengineering
involve UV/Vis (Noui et al., 2002), mid-infrared or fluorescence
spectroscopy (Figure 1B); electrical approaches include terahertz
spectroscopy (Plusquellic et al., 2007) and electrochemical
sensors (Joo and Brown, 2008). Each technique has its own
advantages and limitations that call for further optimization in
detection mechanism and instrumentation.

Volatile Organic Chemicals
Carbon dioxide and oxygen are most commonly targeted
volatiles in the off-gas stream, and studies of CO2 or O2

monitoring using infrared (Cimander and Mandenius, 2002)
or paramagnetic (Parente et al., 2004) spectrometry have been
well-established. In addition to regular gas emissions from a
general bioprocess, there are a wide variety of VOCs with
distinctive chemical functionalities for targeting. For example,
ethanol, methanol, and isoprenoids are abundantly present in
various microbial production processes, and are among the most
commonly measured metabolic species in bioproduction (Wang
et al., 2020).

Unlike microbial species, mammalian cells can feed on lipids
and produce accordingly different classes of metabolites that
are rarely found in the culture of microorganisms (Fernández-
García et al., 2020). Those products typically consists of ketones,
long-chain (> C5) alcohols, alkanes or alkenes, esters, etc.
The unique composition of emitted VOCs can be utilized for
discrimination of different mammalian cell lines, and examined
by an extensive selection of analytical methods, including gas
chromatography (Filipiak et al., 2010), optical spectroscopy, mass
spectroscopy (MS) (Biasioli et al., 2011), and electronic noses
(E-noses) comprising an array of metal oxide or conductive
polymer sensors. Recently, proton transfer reaction - mass
spectroscopy (PTR-MS) (Brunner et al., 2010) has shown great
potential in the detection of VOCs during fed-batch cultivation
of recombinant CHO cell cultures (Schmidberger et al., 2014).
By applying a soft ionization technology, this technique can
avoid producing excessive molecular fragments and therefore
simplify spectral interpretation. The method is able to identify
eight most abundant VOCs in the bioreactor off-gases, including
small molecules such as methanol, acetaldehyde, as well as some
long-chain organic species such as 3- or 4-methyl-2-pentanone,
hexanoic acid, or C6 ester. The study demonstrates the great
advantage of PTR-MS technology in off-gas monitoring of
cultivated cell cultures over electronic noses in terms of chemical
specificity, and over gas chromatographic methods in terms of
data accuracy and discriminatory efficiency.

ANALYTICAL METHODS

Modern techniques in bioengineering are urgently needed for
a total bioprocess assessment, aiming significant transitions
from batch to on-line and instantaneous monitoring (Teixeira
et al., 2009; Roch and Mandenius, 2016; Holzberg et al.,
2018). Conventional techniques constantly used for bioprocess
monitoring are well-established yet relatively outdated (e.g.,
the classical Clark electrodes), thus demanding the invention
of novel and easy-to-use devices. In this context, the utilization
of analytical methods is expanding rapidly from laborious
PCR/ELISA methods or chromatographic/spectroscopic
systems to recently developed electronic noses/tongues using
electrochemical, optical or other solid-state sensors. In this
section, we will summarize several most common approaches for
biomanufacturing analysis.

Gas Chromatography (GC)
GC is one of the most popular and active analytical technologies
in bioengineering (Mcnair and Miller, 2010). The analytes
of interest could be in gas, liquid or solid, with molecular
weight ranging from 2 to 1,000 Da, which has shown extensive
applications in food inspection (Bianchi et al., 2006), pesticide
detection (Zhang et al., 2006), environmental monitoring
(Viola et al., 2019), forensic investigation (Alexandrino et al.,
2019), and quality control of petroleum products (Coutinho
et al., 2018). In addition, GC analysis is widely used in
the inspection of human organ functions (Young et al.,
2019) and screening of cancer cells, such as hematological
malignancies (Tang et al., 2017) and breast cancer (Lavra et al.,
2015). GC is also considered the gold standard technique
for biomanufacturing monitoring. For example, McConnell
and Antoniewicz (2016) exploited GC with MS detector
(GC-MS) to measure the carbohydrate composition in the
culture medium of chlorella vulgaris. Compared to former
methods for carbohydrate analysis, GC is advantageous in
data reproducibility, accuracy, and the capability of multiplexed
detection. Recently developed two-dimensional GC-MS benefits
from two-step separation (apolar vs. polar) that greatly
improves the spatiotemporal resolution of GC (Yu et al., 2017).
However, particularly for off-line analysis, sample collection
and pretreatment would complicate the analyzing procedures,
and even bring in unexpected contamination. As an indirect
but effective method, headspace sampling is a field-deployable
method that can integrate the GC system directly into the
bioreactor, so as to skip the sampling step, speed up analyzing
rate, and reduce the possibility of sample contamination.
The concept of monitoring characteristic VOCs have been
successfully demonstrated in the identification of microalgae
(Guidetti Vendruscolo et al., 2019) and pathogenic bacteria
(Chen et al., 2017). With the continuous progress on new
columns (packed or capillary), separation mechanisms, and
expansion of molecular data library, it is expected to further
improve GC detection sensitivity and resolution of relevant
species regarding particular applications in bioengineering, such
as proteomics/lipidomics.
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Mass Spectrometry (MS)
The rapid development of MS since the past few decades have
dramatically expanded the fields research to many aspects in
bioengineering, such as cellular proteomics or metabolomics
(Ali et al., 2018; MacMullan et al., 2019; Li and Shui, 2020);
in particular, the invention of matrix assisted laser desorption

ionization (MALDI)-MS (Hillenkamp et al., 1991) pave the
path for rapid and simple fingerprinting of biomacromolecules
(Kawano et al., 2019). Advances in recent years have led to a
variety of novel ionization methods or detection mechanisms
for biomanufacturing assessment. As a typical example, GC-
MS tandem technique is considered the gold standard for

TABLE 1 | List of techniques of mass spectrometry or electronic noses employed for off-gas monitoring of specific cell cultivation.

Cell culture Bioprocess monitored Mass spectrometry Volatiles detected References

MASS SPECTROMETRY

Escherichia coli JM 109 Accidental infection by

comamonas testosteroni

Time-resolved SIFT-MS Ethanol, acetaldehyde, hydrogen sulfide

and ammonia

Chippendale et al.,

2011

JEKO and SHI-1 cell lines Tissue culture SPME-GC–MS Dimethyl sulfide, 2,4-dimethylheptane,

methylbenzene, o-xylene, dodecane,

1,3-di-tert-butylbenzene, ethanol, hexanal,

and benzaldehyde

Tang et al., 2017

Streptococcus

thermophilus, and

bulgaricus

Lactic acid fermentation

of milk

PTR-TOF-MS Acetaldehyde, 2-propanone, diacetyl,

acetoin, etc.

Soukoulis et al., 2010

A549 epithelial cell line, and

Pseudomonas aeruginosa

Co-culture of lung

epithelial cell line with

Pseudomonas

aeruginosa

thermal

desorption-GC-MS

3-methyl-1-butanol, acetone, ethylidene

cyclopropane, ethanol, tert-butyl ethyl

ether, methyl tert butyl ether, etc.

Lawal et al., 2018

Lactobacillus fermentum

IMDO130101

Submerged

fermentations

SIFT-MS Ethanol Van Kerrebroeck et al.,

2015

Lactobacillus pentosus Milk fermentation SPME-GC-MS Twenty-four kinds of VOCs including

acetaldehyde, acetone, etc.

Pan et al., 2014

Nodulisporium TI-13 Beet pulp fermentation PTR-MS Ethanol, methanol, acetaldehyde,

terpenes, and terpenoids

Schoen et al., 2016

Escherichia coli

HMS174(DE3)

Escherichia coli

cultivation

PTR-MS Total VOCs Luchner et al., 2012

S. cerevisiae Mead fermentation PTR-MS Total VOCs Cuenca et al., 2016

Eleven lactic acid bacteria

including E. casselliflavus

FMAC163, et al.

Caciocavallo Palermitano

cheese fermentation

SPME-GC-MS Alcohol, aldehydes, ketones, esters,

aromatic, organic acid, hydrocarbons, etc.

Guarrasi et al., 2017

Cell culture Bioprocess monitored E-nose type Volatiles detected References

E-NOSE

Recombinant CHO Early detection of

bacterial infection

10 MOSFET, 12 MOS O2 Bachinger et al., 2002

Saccharomyces cerevisiae

(a yeast)

Non-volatile metabolites

during fermentation

18 MOS Ethanol, acetic acid, and acetaldehyde Liden et al., 2000;

Calderon-Santoyo

et al., 2010

Recombinant Escherichia

coli

Metabolic burden 19 MOSFET, 10 MOS Biomass and other non-specific gases Bachinger et al., 2001

CHO and Sf-9 insect cell

culture

Microbial and viral

contaminants

10 MOSFET, 6 MOS Acetic acid, ammonia, acetone, and

ethanol

Kreij et al., 2005

Morinda citrifolia and

Nicotiana tabacum (plant

cells)

Biomass and metabolite

concentration

19 MOS and a CO2

sensor

Biomass and other non-specific gases Komaraiah et al., 2004

Bacillus subtilis Sporulation events 10 MOSFET, 6 MOS Volatiles from spores Clemente et al., 2008

Lactobacillus fermentum

Ogi E1

Lactic fermentation 18 MOS Ethanol Calderon-Santoyo

et al., 2013

Recombinant CHO Cellular state transitions 10 MOSFET, 6 MOS Biomass and other non-specific gases Bachinger et al., 2000

Acidithiobacillus thiooxidans Maturation of air-lift

bioreactors

11 MOS Alcohols, hydrocarbons, sulfur

compounds, etc.

Rosi et al., 2012

SIFT, selected ion flow tube; PTR, proton transfer reaction; SPME, solid-phase microextraction; MOSFET, metal-oxide-semiconductor field-effect transistor; MOS, metal

oxide semiconductor.

Frontiers in Chemistry | www.frontiersin.org 5 September 2020 | Volume 8 | Article 837

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Bioengineering Analytical Methods

general VOC analyses (Romano et al., 2015). The recently
developed direct injection (i.e., ambient) mass spectrometry
(DI-MS) requires no complicated steps for sample separation
or purification; gaseous analytes from the headspace could
be introduced directly into the mass spectrometry system,
thus significantly facilitating the sample analysis procedures
(Figure 1C). Among various DI-MS techniques, proton transfer
reaction-MS (PTR-MS) (Hansel et al., 1995) and selected ion
flow tube-MS (SIFT-MS) (La Nasa et al., 2019) represent the
cutting-edge technologies, which takes advantages of relatively
simple instrumentation and controllable ionization conditions.
Combining with time-of-flight (TOF) mass analyzer, the
detection sensitivity could reach parts per trillion by volume
(pptv) level, with m/1m up to 15,000 (Soukoulis et al., 2010).
Examples of MS techniques for bioproduction analysis were
listed in Table 1.

Electronic Nose
The advent of electronic nose (E-nose) has provided alternative
tools for sensing VOCs in the bioreactors. E-noses employed
for this purpose generally consist of an array of responsive
gas sensors, each of which allows for the determination of
both the identity and concentration of unknown gas analytes.
The unique pattern representing the overall sensor response
caused by the exposure of VOCs can be used as a “fingerprint”
for the identification of cell cultures of microorganisms or
mammalian cell lines (Figure 1D). Pattern recognition based
on a dozen of sensor elements, in a sense, is more accurate
than the identification made by only one or two sensors. The
distinctions among different cell cultures can be demonstrated
by a diverse range of clustering and classification methods.
Clustering methods seek to describe a dataset into groups, or
clusters; classification methods attempt to predict information
about an unknown sample based on previously acquired data.
Common statistical methods for biomanufacturing monitoring
include: principal component analysis (PCA) (Albrecht et al.,
2018; Chen et al., 2020) linear discriminant analysis (LDA)
(Wang et al., 2012; Silva et al., 2017), partial least square
(PLS) regression/discrimination analysis (Kammies et al., 2016;
Matthews et al., 2016; McCartney et al., 2019; Pontius et al., 2020;
Zavala-Ortiz et al., 2020), and artificial neural network (ANN)
(López et al., 2017; Oyetunde et al., 2018).

Most e-noses for volatile gas measurement generally rely on
the adsorption of gas molecules to the surface of sensors. The
sensing instrumentation usually consists of an array of sensors
that have different binding capabilities to gaseous analytes and
output electrical signals (e.g., changes in current, voltage or
resistance) as a result of the selective adsorption. Common E-
noses include conductive polymers (Kiilerich-Pedersen et al.,
2011), metal oxide semiconductors (MOS) (Liden et al., 2000;
Calderon-Santoyo et al., 2010), metal oxide semiconductor field
effect transistors (MOSFET) (Bachinger et al., 2001; Komaraiah
et al., 2004; Kreij et al., 2005; Clemente et al., 2008), quartz crystal
microbalances (QCM) (Shen et al., 2007), surface acoustic wave
(SAW) devices (Rocha-Gaso et al., 2009), and chemiresistive or
amperometric sensors (Chiu and Tang, 2013; Ahmed et al., 2014).
Compared to single sensing, the highly integrated, multiplexing

sensor array satisfies the requirements for both identification and
quantification of targeted VOCs.

Due to the ease of sensor fabrication and deployment, E-
noses have found extensive applications in the analysis of
off-gas emissions from the bioproduction of a large number
of microorganisms, mammalian or insect cell lines (Namdev
et al., 1998; Bachinger and Mandenius, 2000; Mandenius, 2000;
Cimander et al., 2002). An early study was report by Liden
et al. (2000) to quantify major metabolites during fermentation
of a yeast, Saccharomyces cerevisiae, through on-line analysis
of the off-gas emission using a set of 10 MOSFETs (e.g.,
ethanol, acetaldehyde, etc.). Other successful applications of E-
noses in detecting mammalian cell lines have been continuously
reported (Calderon-Santoyo et al., 2010; Cuypers and Lieberzeit,
2018). Examples involve the monitoring of metabolic burden
in the fermentation process of a recombinant Escherichia coli
(Bachinger et al., 2001), the early detection of bacterial/fungal
contaminations in mammalian (e.g., recombinant CHO cells)
and in insect (e.g., recombinant Sf-9 cell for protein production)
cell lines (Bachinger et al., 2002; Kreij et al., 2005), as well as
the quantification of plant cell cultures (e.g., Morinda citrifolia
and Nicotiana tabacum) (Komaraiah et al., 2004), and of spore
concentration in the cultures of Bacillus subtilis, a species for
oral bacteriotherapy of gastrointestinal diseases (Clemente et al.,
2008). Different E-noses employed for microbial andmammalian
cell detection with various purposes were listed in Table 1.

Optoelectronic Nose
The thriving development of novel techniques in chemical
sensing (Albert et al., 2000; Nakamoto and Ishida, 2008; Wu
et al., 2015) has led to the availability of a more integrative type
of sensory tools as alternatives to traditional electronic noses,
namely the “optoelectronic nose” (OE-nose) (Rakow and Suslick,
2000). OE-nose is a class of optical sensor arrays based on
chemoresponsive colorants to probe chromogenic or fluorimetric
changes induced by specific interactions. This provides a high
dimensionality to chemical sensing that permits high sensitivity
(often down to ppb or even ppt levels), impressive discrimination
among very similar odorants and superb fingerprinting of
extremely similar mixtures over a wide range of categories, both
in gaseous and liquid phases. Optical sensor arrays therefore
sufficiently overcome the limitations of traditional array based
sensors that solely depend on physical adsorption or non-specific
chemical interactions.

Optical array sensing has shown excellent performance in
the detection and identification of diverse analytes, ranging
from chemical hazards (Li and Suslick, 2019) to medical
biomarkers (Wang et al., 2016; Li and Suslick, 2018), and to
food additives (Schaude et al., 2017). Likewise, this method
can be promisingly applied to the analysis of effluent VOCs
from the cultures accumulated in the headspace of bioreactors,
as a way of monitoring microbial or cellular activities. Suslick
et al. have designed colorimetric sensor arrays coupled to
optoelectronic readers for the identification of different bacteria
and fungi based on the off-gas analysis (Carey et al., 2011; Li
et al., 2019). The concept of such detector is to incorporate
chemoresponsive colorants in an array of sensors, which

Frontiers in Chemistry | www.frontiersin.org 6 September 2020 | Volume 8 | Article 837

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Bioengineering Analytical Methods

undergoes significant colorimetric or fluorimetric changes in
response to VOCs through an extensive range of chemical
interactions including bond formation or ligand coordination,
proton acid-base interactions, hydrogen or halogen bonding,
charge-transfer and π-π stacking, etc. The array is digitally
imaged before and during exposure, and an optical difference
profile is generated in real time by subtracting the before-
exposure image from images after gas exposure. Simple pattern
recognition techniques give essentially error-free recognition of
gas analytes based on a numerical library (3N vectors of red-
green-blue (RGB) difference changes). Such libraries require
very little memory and are easily updatable and transferrable,
thus enabling the instant and continuous monitoring of
biological production.

DISCUSSION

Biomanufacturing industry has received remarkable
improvements in process efficiency and productivity over
the past decade. Efforts for bioprocess inspection are placed on
enhancing process robustness and product quality using a wide
range of in-situ analytical techniques. For effective bioprocess
monitoring, it is critical to characterize physiological states
and measure main process variables, such as key nutrients
and metabolites in the aqueous phase, or off-gas effluents
as characteristic VOCs. Numerous chromatographic and
spectroscopic techniques, particularly gas chromatography
and mass spectrometry, have shown impressive potentials in
real-time profiling of the cell culture status. Meanwhile, the
optimization of chemometric models that provide quantitative
and predictable correlation between the spectra pattern and
targeted key metabolites is also of great importance. Much
of the endeavors have been focused on classical analytical
instrumentation and off-line measurements, while little has been
related to in-situmonitoring protocols.

Admitted, a complete quantitative component-by-component
analysis using an effective analytical method is always
desirable. Nevertheless, one seldom really wants to know
clearly the identities of hundreds of compounds present in
a complex mixture, such as the chemical composition of
a biomanufacturing media. Alternatively, those goals are
better fulfilled by a highly discriminant fingerprinting of
the entire mixture. Such fingerprinting strategies permit
comparison to standards, identification of chemical class or
origin of the species, and correlation of the fingerprint to
properties determined by other standard techniques. In the
case where component-by-component analysis is required,
the tandem approach that combine a separation technique
(e.g., various chromatographic approaches or electrophoresis)
with an analysis technique is typically employed. Sensor array
techniques such as electronic or optoelectronic noses are most
commonly used for direct fingerprinting of complex mixtures
without sophisticated instrumental operation and complicated
sample separation.

Due to miniaturized and multiplexed features, E-noses have
received tremendous attention in recent years in connection
with a broad range of bioengineering fields. E-nose devices
are constructed from an array of engineered sensors that

provide a pattern of electronic signals in response to a given
analyte; therefore, they are distinctive from other techniques
for biochemical analysis in that they are primarily designed
to recognize gas mixtures as a whole without the need for
identifying individual chemical species in the mixture. For this
reason, E-noses are not intended for determining the chemical
composition of a complex gas mixture, but rather are most useful
for identifying the produced “chemical bouquet.” Even for highly
close gas mixtures from very similar species, it is possible to tell
their subtle differences using effective E-noses.

Despite the great success achieved by E-noses in monitoring
cellular physiology, traditional E-noses often suffer from low
chemical specificity and sensitivity due to simple or non-specific
interactions with the biomarkers (i.e., physical adsorption). The
other shortcoming lies in the sensor drift, which leads to poor
stability and reproducibility in sensor outputs. Moreover, E-
noses could be easily interfered by ambient humidity or pressure
changes, which demand repetitive calibration of the sensor
devices. In addition, some E-noses have to be operated under
restricted conditions. For example, metal oxide semiconductors
are generally required to work at high temperatures (generally
over 100◦C) with a large amount of power consumption.
Therefore, there remains an urgent demand for improving
sensing performance of the current electronic sensors.

Array-based optical sensing, on the other hand, attempts to
probe mostly the chemical reactivity of analytes rather than
their physical properties. That provides a high dimensionality for
biosensing purposes and enables high sensitivity (often down to
ppb levels) and remarkable discrimination among highly similar
targets in gaseous phases. The optoelectronic noses made of
chromogenic or fluorometric elements therefore overcome the
limitations of traditional electronic sensors that solely depend
on physisorption or non-specific chemical interactions. Such
concept of optical array sensing has shown excellent performance
in the detection and identification of a diverse set of analytes,
ranging from industrial toxins to energetic explosives, to human
biomarkers, and of course, to products of great relevance to
biomanufacturing processes.

In conclusion, instead of the conventional and stepwise off-
line sample analyses that have to be conducted in laboratory
settings, developing non-destructive optical sensing techniques
for real-time monitoring of effluent gases in large-scale
bioreactors is highly desirable. Although there is very limited
number of research reported on the use of optical array
sensing for profiling featured headspace volatiles from a typical
bioproduction process, we expect that an increasing number
of optical sensor array are likely to be developed for this
particular application, and more advanced strategies along with
a significantly thriving market in this area are likely to be
established in the near future.
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