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ABSTRACT 
 

Internet of Things (IoT) deployments mostly relies on the establishment of Low-Power and Lossy Networks 

(LLNs) among a large number of constraint devices. The Internet Engineering Task Force (IETF) provides 

an effective IPv6-based LLN routing protocol, namely the IPv6 Routing Protocol for Low Power and Lossy 
Network (RPL). RPL provides adequate protection against external security attacks  but stays vulnerable to 

internal routing attacks such as a  rank attack. Malicious RPL nodes can carry out a rank attack in different 

forms and cause serious network performance degradation. An experimental study of the impact of the 

decreased rank attack on the overall network performance is presented in this paper. In also besides, it is 

important to understand the main influencing factors in this context. In this study, several some many 

network scenarios were considered with varying network sizes, attacker properties, and topological setups. 

The experimental results indicate a noticeable adverse effect of the rank attack on the average PDR, delay, 

ETX, and beacon interval. However, such impact was varied according to network size, attacker position, 

attacker neighbor count, number of attack-affected nodes, and overall hops increase. The results give a 

practical reference to the overall performance of RPL networks under rank attacks. 
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1. INTRODUCTION 
 

There has been a growing interest in the Internet of Things (IoT) technology and expanding 

deployments in varying IoT domains including industry, healthcare, transportation, and education. 
The main network requirements in most of these deployments rely on the establishment of 

underlying networking infrastructures of energy-efficient and low-power communications. Thus, 

Low-Power and Lossy Networks (LLNs) provide such a need with low-cost and less-complex 
deployments. LLNs enable effective connectivity among many small-sized and resource-limited 

IoT devices that are wirelessly interconnected.  

 

The Internet Engineering Task Force (IETF) provides a customized and effective LLN routing 
protocol.That is the IPv6 Routing Protocol for Low Power and Lossy Network (RPL), which 

enables IoT networks with IPv6 routing. RPL has been designed to provide simple and structured 

network topologies with loop-free routing. It also facilitates flexible routing customization to fulfil 
certain network requirements for the different IoT applications. To this end, RPL provides a 

routing solution that relies on a customizable objective function considering the different 

requirements of the different IoT applications.  Such an RPL property dictates two main routing 

parameters, node rank, and routing version.  

http://airccse.org/journal/ijc2020.html
https://doi.org/10.5121/ijcnc.2020.12406


International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.4, July 2020 

92 
 

However, such properties make RPL vulnerable to different internal routing attacks. These 
primarily include the RPL rank attack and version attack. That is, the original RPL protocol 

specification has no security support against such types of routing attacks. It only provides limited 

support to protect the RPL network from external security attacks [1].  

 
Malicious nodes joining an RPL network can easily perform the rank attack in any form. These 

include increasing or decreasing its rank in order to affect the stability of the RPL topology and 

cause network convergence to suboptimal routing paths. For carrying out a rank attack, a malicious 
RPL node would increase its rank value and then advertise it in the network. As a result, routing 

inconsistency would be incurred, and the network topology would be reformed partially or 

completely. Such attacks can incur additional network and processing overhead and would lead to a 
degradation in the network performance. Therefore, it is important to understand how much such 

kinds of attacks would affect the overall performance of the network. 

 

This research work contributes to an experimental study of a critical internal routing attack in IPv6-
based IoT networks. The main objective is to help in understanding how much the network 

performance would be affected in the case of the decreased rank attack. Many network scenarios 

were considered with varying network size, attacker position, attacker's neighbour count, number 
of attack-affected nodes, and overall hop increase. The experimental results indicate a noticeable an 

impact of the rank attack on the network performance in terms of average PDR, end-to-end delay, 

ETX, and beacon interval. However, there was variation in such impact among the different 
considered scenarios. The results can be taken as an effective reference to provide additional 

security support for RPL against internal routing attacks. 

 

The following section of this paper provides a protocol overview of the standard RPL and describes 
the main internal routing attacks of RPL. Section III presents an overview of the related work. In 

Section IV, the experimental setup for evaluating the considered security attacks is described. 

Section V presents and discussed the obtained evaluation results. The conclusion of this work is 
provided in Section VI. 

 

2. THE RPL PROTOCOL 
 

2.1. Protocol Overview 
 

RPL facilitates an effective solution for network layer routing based on the distance vector 

approach. It runs on top of IPv6 over Low Power Wireless Personal Area Networks (6LowPAN) 
which provides the integration layer with IPv6 networks (RFC 4944 [2] and RFC 6282 [3]). The 

design of RPL enables a routing framework that allows different routing objectives to be 

implemented according to certain application requirements. Thus, RPL provides flexible support to 
meet the requirements of a wide range of IoT applications. 

  

A typical RPL network consists of a set of RPL instances while each one is structured with one or 
multiple Destinations-Oriented Directed Acyclic Graph (DODAGs). Figure 1 presents an example 

of an RPL network with one instance having two DODAGs. The network topology of each 

DODAG has a single sink node interconnecting a number of some RPL nodes with amultihop 

connectivity. 
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The routing process among the nodes in a DODAG is based on a customizable routing Objective 
Function (OF). RPL enables defining an OF with a set of routing metrics to meet certain network 

routing requirements as defined in RFC 6551 [4]. The default is for RPL are OF0 (Objective 

Function Zero) [5] and MRHOF (Minimum Rank with Hysteresis Objective Function) [6]. The 

former is based on the hop count metric whereas the latter uses the Estimated Transmission Count 
(ETX) metric that relies on the number of transmissions necessary for successful packet delivery. 

The OF enables the selection of a parent for data packet routing over an optimal path across the 

network. 
 

  
 

2.2. RPL Operations 
 

DODAG establishment is initiated by the sink node broadcasting a control message denoted as 

DODAG Information Object (DIO). This message contains certain parameters required for the 

discovery and maintenance of the DODAG.  A node receiving such a message can join the 
advertised DODAG, after calculating its rank and nominating a preferred parent using the 

propagated OF. The DIO recipient further rebroadcasts the message, and the process continues 

until having upward routes completely established.  
 

Upon the reception of the DIO messages, the nodes reply with Destination Advertisement Object 

(DAO) messages over the established upward route up to the sink node. Certain routing 
information including the node's IPv6 address is contained in the DAO message. As a result, the 

downward routes across the network are established for internal RPL routing. Besides, a node can 

request DIO transmission by sending a DODAG Information Solicitation (DIS) message. On the 

other hand, RPL relies on the Trickle algorithm [7] to reduce control traffic. The algorithm is based 
on controlling the time between DIO transmissions according to network stability. The time is 

exponentially increased as long as there is no changes in the network topology.  

 
Moreover, RPL incorporates two procedures for addressing node or link failure. One is the local 

repair that enables a node to change its current preferred parent or switch to an alternative neighbor 

node. Global repair requires the sink node to rebuild its DODAG. These procedures are based on 

exchanging many DIS and DIO messages after resetting the trickle timer. This approach would 
allow for effective failure recovery but at the cost of additional network overhead. 

 

 

 

Figure 1.  An RPL network of one instance having two DODAGs 
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2.3. RPL Rank Attack 
 

In each DODAG, a single OF can be advertised to be then used by a receiving node for calculating 

its rank in the network and selecting its preferred parent. The rank specifies node-to-sink distance 

and indicates the position of a node in the network. 
  

RPL relies on the rank property for performing loop-free routing in RPL networks. It requires the 

rank to increase in the downward direction from the sink node to the leaf nodes. Thus, a node can 

only select those of lower rank among its neighbour nodes as its preferred parent. However, the 
rank property can be used by a malicious node to initiate an internal routing attack. Without strict 

adherence to such rules, the node can select a node of a higher rank as its preferred parent. As a 

result, sub-optimal topology would be formed. Data packets routed through the node would 
traverse a network path of lower performance. 

   

It is also possible to have a malicious node increases its ranks at some point after joining an RPL 
network. This would incur unwanted routing loops affecting in particular those in the sub-DODAG 

of the node. Such an attack can also drain node resources in the case of large network deployments. 

In other cases, a malicious node can initiate a rank attack by decreasing its rank. This would make 

it a better parent candidate for most of its neighbour nodes. They would then move their current 
preferred parent selection to the node. As a result, the node can further initiate other security 

attacks such as blackhole attack and make the situation worse. In all these different forms of rank 

attack, network stability would be adversely affected, and overall network performance would be 
degraded. 

 

3. RELATED WORK 
 

The IETF has specified the RPL in RFC 1111 [8] with consideration of specific security aspects. 
These only provide essential security mechanisms against external attack. Three basic security 

modes were specified for RPL. The first is the insecure mode in which RPL communications are 

performed with no security mechanisms. In the preinstalled mode, RPL nodes have preinstalled 
keys that are used to secure RPL Communications. The third one, the authentication mode, requires 

nodes to have a key from an RPL authentication authority before joining an RPL network.  

 

However, the standard RPL specification includes no consideration of internal routing attacks such 
as rank attack. Malicious nodes can easily join an RPL network and initiate a routing attack to 

adversely affect network performance.  Therefore, varying research efforts have been made to 

review the potential security attacks for RPL. In [9, 10], RPL attacks were classified into those 
targeting network resources, network topology, and network traffic. For example, version, rank, 

and DAG inconsistency attacks were classified as network resource attacks whereas worse parent 

attack was categorized as network topology attack. Moreover, different studies were conducted to 
examine the performance of RPL under various internal attacks. 

 

RPL is exposed to a number of internal routing attacks. Some of these were common security 

attacks such as selective forwarding, sinkhole, blackhole, Sybil, flooding, and clone ID attacks. The 
impact of these attacks on network performance was analzsed in [11]. The simulation results 

showed that low network throughput was achieved when the network under the attacks. The 

evaluation results in [12, 13] demonstrated that blackhole-attacked RPL networks experienced low 
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PDR in addition to the high delay, power consumption, packet loss, and network overhead. In [14], 
a performance study over a real-testbed RPL network setup illustrated how packet loss increased in 

the case of a wormhole attack. 

 

Others specified other attacks more specific to RPL such as rank, version, worst parent, OF, DAG 
inconsistency, and local repair attacks [15-17]. The version attack was considered in [18] for 

analyzing its impact on RPL networks. As indicated by simulation results, the attack resulted in 

decreased PDR and increased delay and network overhead. The version attack also caused an 
increase in power consumption as demonstrated by the evaluation results in [19]. In the 

performance study presented by [20], it was observed that the worst parent attack in RPL networks 

led to low PDR and high delay and overhead. The evaluation results in [21] showed that local 
repair attacks in RPL networks caused an increase in end-to-end delay and a decrease in PDR.  

 

A rank attacks can be initiated with increasing or decreasing rank. According to the simulation 

results showed in [22], the increased rank attack caused RPL networks to experience high power 
consumption and network overhead in addition to low beacon interval. The results also showed that 

decreased rank attack led to high ETX and power consumption in addition to low beacon interval. 

The study also illustrated how the rank attack would open the doors for further attacks in RPL 
networks. This was presented in an RPL attack graph that indicates the vulnerabilities of the RPL 

rank property. For example, a decreased rank attack can be initially conducted in order to then 

carry out different traffic attacks. such as selective forwarding attack. Such a combination was 
considered in a simulated RPL setup and the results showed that the attack increased ETX and 

packet loss in the network. 

 

4. EXPERIMENTAL SETUP 
 
Contiki OS is an open-source operating system for resource-constrained IoT devices. It implements 

an IPv6-based network protocol stack providing effective IP connectivity to the Internet. Such a 

stack incorporates both the 6LowPAN adaptation mechanism and the RPL routing protocol. Its 
latest version, Contiki 3.0, was adopted for the implementation of this work. The Contiki OS 

implementation [23] can be effectively used to emulate different IoT setups. This was facilitated by 

the Cooja Simulator, one of the tools provided by Contiki OS. It enables creating and running 

emulations of various IoT scenarios using different types of nodes that run the Contiki OS 
implementation. 

 

In this work, the Cooja Simulator was used to differently emulate an RPL instance in varying RPL 
rank attack scenarios. The instance consists of one DODAG containing a single sink node and a 

collection of 35 sensor nodes, as presented in Figure 2. Each RPL node was emulated in Cooja as a 

Sky Mote device. The sink node also operates as a UDP server, in addition to running the Cooja 

Collect View that collects information of all the sensor nodes in the network. Each sensor node also 
operates as a UDP sender, regularly sending IoT data at an interval of ±10 seconds. The nodes were 

placed randomly in an area of more than 200×200m. Multihop network topology was formed 

among all the nodes. The communication and interference ranges were set to 25m and 50m, 
respectively, for all the nodes. 
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The current Contiki OS implementation supports both Objective Functions of RPL. In this 
experiment, MRHOF with the Expected Transmission Count (ETX) as a routing metric was 

adopted. The RPL implementation was also modified for the attacking nodes to trigger a decreased 

rank attack after 5 minutes of the simulation start time. 

   
Multiple simulation setups were created to run the legitimate RPL implementation and varying 

rank attack scenarios. Each simulation setup was run 10 times and the average of the results was 

then taken. Each run lasted for a simulation time of 15 minutes. In each rank attack scenario, the 
same number of RPL nodes was implemented but the attack position was randomly varied. In 

addition, different nodes of the varying neighbour count were considered to carry out the decreased 

rank attack. Accordingly, the number of potential nodes to be affected by the attack was varied. 
Figure 3 shows one of the scenarios in which Node 35 was set to be the attacking node. The node 

had a hop count of 3 and a total of 5 neighbour nodes. It can also be seen that there were about 8 

attack-affected nodes. Figure 4 indicates the considered nodes to carry out the attacks and presents 

the hop count and the number of neighbour nodes for each attacker. 
 

 

 

 
 

Figure 3.  The resulted Network Topology after Node 35 attack 
 
 
 

 

Figure 2.  The considered RPL Network Topology in this Study 
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After completing these scenarios, the simulation setup was modified to increase the size of the RPL 
network. Additional 15 nodes were added in different topological positions across the network. 

This has resulted in a new network topology with higher node intensity and a larger simulation 

area. Accordingly, the count of the neighbor nodes and the number of attack-affected nodes 

increased for most of the attacking nodes. New simulation scenarios were then carried out 
considering some of the attacking nodes considered in the previous scenarios. These were namely 

the nodes: N5, N16, N21, N25, and N35. 

 
The evaluation was based on measuring the RPL network performance during different decreased 

rank attack setups, to be then compared with the RPL network performance in a normal setup with 

no attacking node. The performance measurement parameters considered in this study were an 
average end-to-end delay, Packet Delivery Ratio (PDR), the ETX routing metric, and beacon 

interval. The average end-to-end delay is calculated as the average time taken by the transmitted 

packets to reach the UDP server running at the sink node. The average PDR is the ratio of all the 

transmitted packets that are received by the UDP server. The ETX is the number of transmissions 
and retransmissions required by the nodes for the successful delivery of data packets. Beacon 

interval indicates topology stability and lower beacon interval means that higher updates overhead 

in the network. 
 

5. RESULT AND DISCUSSION 
 

Table 1 shows the overall network performance in terms of the average PDR, end-to-end delay, and 

ETX for each of the considered scenarios. It can be seen that the network without any attack 
performed well with a relatively high PDR and low delay and ETX. In this scenario, the network 

achieved an average PDR of 98.89% and experienced an average delay of 104 ms. The overall 

ETX calculated by the RPL nodes was less than the value of 205. 
 

 

 
 

 

 
 

Figure 4.  Neighbor Count and Hop Count of the Attacking Nodes 
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Table 1. Overall Performance of the Different Scenarios 

 

 
 

5.1. Impact of Node Position and Neighbour Count 
 

When it was under the different attacks, the network became affected and overall performance 

started to degrade. When the attack started after 5 sec of the simulation time, the PDR decreased 
and the delay increased as shown in Figures 5 and 6, respectively. This happened gradually with 

initial changes to the performance during the initial 40 seconds of the attack time. This was the 

required time for the attack to have its effect on the network. 

     
However, there was a noticeable variation in performance degradation considering the different 

attack scenarios. In one example scenario (Attacking Node: N5), the PDR, delay, and  ETX were 

degraded by 1.3, 3.9, 4.5%, respectively. In another scenario (Attacking Node: N21), a PDR 
reduction of 7.2% was observed in addition to increases in the delay and ETX of 23.4% and 28.4%, 

respectively. In general, it can be observed that the reduction in PDR reached 17.8% whereas an 

increase of more than 60% was experienced in the measured delay and ETX. 
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That was highly dependent on different aspects of the attacking nodes such as their position (hop 

count) and neighbour count. Another important consideration is the topological effect of the attack, 

in regards to the number of affected nodes and the resulted overall hop increase. For example, all 

these properties were similar in the scenarios where the attacking nodes were N23 and N27. 
Therefore, it can be seen that very close network performance degradation was experienced. 

Comparing the situations in the scenarios where the attacking nodes were   N7, N21, and N25, all 

the attacking nodes shared the same number of affected nodes and overall hop increase, thus the 
network experienced similar performance degradation. However, the network was relatively more 

affected when the attacking node was N25 as it relatively has a higher neighbour count and located 

in a higher position. On the other hand, we can observe that the results are extremely varied when 
the attacking nodes were N11 and N16. Both attackers shared the same position but N11 had more 

neighbour count whereas N16 affected more nodes and caused higher hop increase. It is evident 

that the network performed better in the former case. 

 
 

 

 

Figure 6.  Average Delay Results of Selected Scenarios 

 

Figure 5.  Average PDR Results of Selected Scenarios 
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5.2. Impact of Topological Changes after the Attack 
 
The variation in the delay results was mainly dependent on the resulted overall hop increase after 

the attack. Table 2 shows the overall hop increase for each scenario, in addition to the number of 

attack-affected nodes and those with hop increase of one and two hops. In the scenarios where the 
attacking nodes were N22 and N35, the attack resulted in high overall hop increases of 12 and 14 

hops, respectively. This led to relative increases of more than 50% in the overall delay. In the 

scenarios where the resulted overall hope increase was 4 hops (Attacking Node: N7, N21, N25, 
N32), the increases in the experienced delay were within a very close range. Comparing these four 

scenarios, the network experienced a relatively higher delay when the attacking node was N25 as it 

also had a higher neighbour count and topological position. On the other hand, a delay increase of 

less than 8% was experienced in the scenarios where the increase in the hops was two or less 
(Attacking Node: N19, N5, N29). Although there was no hop increase at all in the scenario where 

the attacking node was N19, a very little increase in the delay was experienced since the attacker 

node has a high neighbour count and a number of affected nodes. 
 

 
 
Another important measure that can be considered in this context is the duration of the beacon 

interval. It is given that frequent network updates would decrease beacon intervals whereas fewer 

Table 2. Calculations of the Number of Affected Nodes and Hop Increase in Different Scenarios 

 

Attack Scenario 
# of Affected 

Nodes 

# of Nodes Hop  

Inc.  (+1) 

# of Nodes 

Hop  

Inc.  (+2) 

Overall Hop 

Inc. 

No-Attack 0 0 0 0 

Attacking Node:  N5 1 1 0 1 

Attacking Node: N19 5 0 0 0 

Attacking Node: N34 2 1 1 3 

Attacking Node: N29 3 2 0 2 

Attacking Node: N32 2 0 2 4 

Attacking Node:  N7 4 4 0 4 

Attacking Node: N21 4 4 0 4 

Attacking Node: N25 4 4 0 4 

Attacking Node: N11 5 3 0 3 

Attacking Node: N27 7 7 0 7 

Attacking Node: N23 5 1 4 9 

Attacking Node: N22 7 2 5 12 

Attacking Node: N16 9 9 0 9 

Attacking Node:  N35 8 2 6 14 
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updates across the network lead to long beacon intervals. Since the attack would incur routing 
updates and topological changes, the beacon interval would then decrease as shown in Figure 7. 

The more the nodes that is affected and involved in the situation the more beacons would be 

broadcasted in the network. An illustrative example is the cases when N16 and N27 were the 

attackers and the resulted overall beacon intervals were the lowest. This was due to the higher 
position of the attackers in the network in addition to having high u count and more nodes in their 

sub-DODAGs. It can also be seen that the beacon interval was reduced by almost 20% in the 

scenario where N19 was attacking, although less performance degradation was experienced during 
that scenario. This was due to the very high network position of the attacker and the large size of its 

sub-DODAG, but a very limited number of nodes affected by the attack and very low overall hop 

increase. On the other hand, the overall beacon interval decreased by than 5% when the attacker 
had a sub-DODAG of two or fewer nodes and positioned in a low level of the network. 

 

5.3. Impact of Network Size 
 

Another critical consideration in this study is the impact of network size on the rank attack. After 

adding more RPL nodes to the topology, it was noticed that neighbour count and the number of 
attack-affected nodes increased for the considered attacking nodes. This was has also resulted in a 

higher overall hop increase in all the scenarios. Compared to the results of the overall performance 

with the original network size, the new setup caused additional network performance degradation. 

There was an overall decrease of approximately 3% on the average PDR results and an increase of 
approximately 2% on the average delay. It could also be observed that the overall ETX relatively 

increased and the beacon interval relatively decreased as a result of increasing network intensity. 

Therefore, the larger the size of the rank-attacked RPL network the higher the overall network 
performance degradation. In the case of having Node 35 as the attacker, for example, the neighbour 

count and the number of affected nodes increased to 7 and 10, respectively. In addition, there was 

an increase of 3 hops to the overall hop increase. As a result, the average PDR decreased by 2.6% 
as shown in Figure 8. There was also an increase of 1.9% and 1.7% on the average delay and ETX, 

respectively, and a decrease of 2.1% on the overall beacon interval. 

 

     

 

Figure 7.  Average Beacon Interval Results 
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6. CONCLUSIONS 
 

The vulnerability of the IPv6-based IoT network running the RPL routing protocol is evident. RPL 

provides no security support for network protection against different internal routing attacks. The 
experimental study presented in this paper provides a  practical understanding of the performance 

of IPv6-based IoT networks under rank attacks. The results can serve as an effective reference to 

deeply comprehend rank-attacked RPL networks towards the development of effective Intrusion 
Detection Systems (IDSs). Different insights can be drawn in this regard. 

  

It is evident that performance degradation in terms of PDR, delay, and ETX would be experienced 
during the attack. Beacon broadcasting would also increase and cause higher resource 

consumption. Such effects were highly correlated with certain properties of the attacker node. As 

the attacking node has less hop count and more neighbours, the network performance would be 

more adversely affected by the attack. The higher the number of affected nodes and overall hop 
increases the higher the average delay in the network. Nodes attacking at higher positions in the 

network with large-sized subnet would incur more routing updates reducing beacon intervals and 

draining node resources. In addition, such an attack effect on the overall network performance 
would be amplified by increasing network size.  

 

These implications resulted from the rank attack in RPL-based IoT networks make it critical to 
develop more secure routing mechanisms. This is evident as the integrity of the RPL control 

messages, which include the rank information, can be easily compromised. However, IoT devices 

are of limited capabilities and operate in low power and lossy networks, thus lightweight solution 

should be considered in this context. Addressing such considerations in an effective routing 
security solution is the main objective for future work. A machine learning-based IDS solution will 

be developed according to a centric deployment approach 

 

 

 

 
 

Figure 8.  Average PDR Results for Node 35 Rank Attacking Scenarios 
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