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Semantic segmentation with convolutional neural networks under a complex background using the encoder-decoder network
increases the overall performance of online machine vision detection and identification. To maximize the accuracy of semantic
segmentation under a complex background, it is necessary to consider the semantic response values of objects and components
and their mutually exclusive relationship. In this study, we attempt to improve the low accuracy of component segmentation. )e
basic network of the encoder is selected for the semantic segmentation, and the UPerNet is modified based on the component
analysis module. )e experimental results show that the accuracy of the proposed method improves from 48.89% to 55.62% and
the segmentation time decreases from 721 to 496ms. )e method also shows good performance in vision-based detection of 2019
Chinese Yuan features.

1. Introduction

As one of the primary tasks of machine vision, semantic
segmentation differs from image classification and object
detection. )e image classification process involved the
recognition of the the type of object but cannot provide
position information [1], whereas object detection can be
used to detect the boundary and type of the object but cannot
provide the actual boundary information [2]. On the other
hand, semantic segmentation can recognize the type of the
object and divide the actual area at the pixel level, as well as
implement certain machine vision detection functions, such
as positioning and recognition [3]. As we start from image
classification, move to object detection, and finally reach
semantic segmentation, the accuracy of the output range and
position information improves [4]. In the same manner, the
recognition precision increases from the image-level to the
pixel-level. Semantic segmentation achieves the best rec-
ognition accuracy; therefore, it is useful in (1) distinguishing
the entity from the background, (2) obtaining the position
information (centroid) clearly physically defined by indirect

calculation, and (3) performing machine vision detection
and identification organization, which require high spatial
resolution and reliability [5, 6].

)e online semantic segmentation with convolutional
neural networks (CNNs) under a complex background is
effective for improving the overall performance of online
machine vision detection and identification [7] when
maintaining the same architecture of the encoder-decoder
network and convolutional and pooling layer and equiv-
alently transforming the fully connected layer, thus
yielding broad generalization. In recent years, ResNet has
been used to replace the shallow CNN to optimize semantic
segmentation results significantly [8]. For machine vision
detection and identification under a random-texture
complex background, it is necessary to eliminate the
random-texture complex background to extract the object
without affecting the original features of the object [9]. )e
difficulty lies in the randomness of the textured back-
ground, which makes it difficult to employ typical periodic
texture elimination techniques, such as the frequency
domain filtering and image matrix methods [10, 11]. On the
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contrary, the encoder-decoder semantic segmentation
network ultimately retains the classification components in
the network backbone, thus exhibiting larger receptive
fields and better pixel recognition ability [12, 13], as
depicted in Figure 1. Unreasonably selected and conse-
quently incorrectly used component analysis modules will
lead to an excessively small foreground range, resulting in
the misjudgment of component pixels. If the component
analysis module is too sensitive, the foreground range will
be too broad; thus, it would be difficult to remove mis-
judged pixels [14]. )erefore, in the process of semantic
segmentation under the complex background, it is nec-
essary to consider objects, the contradiction between the
component semantic response values, and their mutual
exclusion relationship, while maximizing the accuracy of
the semantic segmentation under the complex background
using the encoder-decoder network.

Figure 2 shows a flowchart of the semantic segmen-
tation under the complex background using the encoder-
decoder network. )e process can be described as follows:
the component classifier of the encoder-decoder network
recognizes the pixel-level semantics and response of the
pixels in the image; the object classifier recognizes the
pixel-level object semantics and the response and extracts
misjudged pixels of the foreground object in semantic
segmentation; finally, the mutually exclusive relationship
between component semantics and object semantics is
considered, and non-background-independent semantics
are determined to achieve effective semantic segmentation
under a complex background to improve the model ac-
curacy [15].

In this study, we focus on online semantic segmentation
under a complex background using the encoder-decoder
network to solve the above described mutual exclusion
relationship problem between component semantics and
object semantics. )e main contributions of this study are
threefold:

(i) We attempted to improve the low accuracy of
component segmentation and selected the superior
basic encoder-decoder network according to the
performance.

(ii) We modified the UPerNet based on the component
analysis module to maximize the accuracy of the
semantic segmentation under a complex back-
ground using the encoder-decoder network while
maintaining an appropriate segmentation time.

(iii) We show that the proposed method is superior to
previous encoder-decoder network and has satis-
factory accuracy and segmentation time. We also
show the application of the proposedmethod in bill-
note anticounterfeiting identification.

)e rest of this paper is organized as follows. In Section
1, we outline related works. In Section 2, we introduce a
method for semantic segmentation under a complex
background using the encoder-decoder network. In Section
3, we verify the proposed method. In Section 4, we present
the conclusions.

2. Related Work

2.1. Evaluation of the Semantic Segmentation Performance.
We can generally evaluate the CNN semantic segmentation
performance from the accuracy and running speed. )e
accuracy indicators usually include the pixel accuracy [16],
mean intersection over union [16], and mean average
precision [17]. )e pixel accuracy PA is defined as the
number of pixels segmented correctly accounting for the
total number of image pixels; the mean intersection over
union IoU is defined as the degree of coincidence between
the segmentation results and their ground-truth; the mean
average precision APIoUT is the mean of average precision
scores for segmentation results, whose intersection over
union no less than IoUT, for each classes.

If the object detected by machine vision has k categories,
the semantic segmentation model requires the label of the
k + 1 categories denoted as L � l0, l1, . . . , lk􏼈 􏼉, including the
background. Denoting the number of pixels of li mis-rec-
ognized as the pixel of lj and li(i≠ j) as pij and pii re-
spectively, the numbers of detected objects of li mis-
recognized as lj and li(i≠ j) as Nij and Nii, respectively, the
pixel accuracy can be calculated as follows:

PA �
􏽘

k

i�0pii

􏽘
k

i�0􏽘
k

j�0pij
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(2)

)e running speed of CNN semantic segmentation can
be measured by indicators including the segmentation time
Tseg [18], which is defined as the time needed to segment the
image by running the algorithm. )e theoretically shortest
possible time required to segment the image is also labeled as
the theoretical segmentation time Tseg−t, and the time re-
quired for the algorithm to actually segment the image is
known as the actual segmentation time Tseg−a. If not oth-
erwise specified, Tseg−a is denoted as Tseg.

2.2. End-To-End Encoder-Decoder Semantic Segmentation
Framework. Although CNN semantic segmentation per-
forms as a single-step end-to-end process, which is not
further divided into multiple modules to deal with, the
connection of numerous modules directly affects the CNN.
)e end-to-end semantic segmentation framework using the
encoder-decoder enables the CNN to detect images with any
resolution and output prediction map results with constant
resolution. Typical networks include fully convolutional
networks (FCN) [19], SegNet [20], and U-Net [21].

Figure 3 shows a schematic of the FCN model. )e FCN
is an end-to-end semantic segmentation framework
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proposed by Jonathan Long et al. (University of California,
Berkeley) in 2014. )e main idea is as follows: the operation
of a fully connected layer is equivalent to the convolution of
a feature map and a kernel function of identical size. )e
fully connected layer is converted into a convolution layer,
which converts the CNN into a full convolution operation
network consisting of a complete convolution layer (con-
volution operation) and pooling layer (convolution opera-
tion) to process images of any resolution. In this manner, the
limitation of the fully connected layer is overcome, i.e.,
images with different resolutions can be processed. )e
original resolution is restored after eight times bilinear
upsampling by taking the pooling layer as an encoder, de-
signing a cross-layer superimposed architecture as a de-
coder, yielding the final output feature map of the network
by upsampling, and adding to the output feature map of each
pooling layer (namely, the encoder) to obtain a feature map
with higher resolution. )e CNN can perform end-to-end
semantic segmentation through a fully convolutional and
cross-layer superimposed architecture; therefore, various

CNNs are capable of achieving end-to-end semantic seg-
mentation. Using the framework described, the IoU reached
62.2% in the VOC2012 semantic segmentation testing set,
which is 10.6 % higher than the classic methods and 12.2%
(its IoU is 50.0%) higher than the SDS [22] further seg-
mented by CNN object detection and classical method.

)e ResNet proposed by the Amazon Artificial Intelli-
gence Laboratory serves as a basic network for constructing
FCNs for semantic segmentation; the IoU in VOC2012
reaches 8.6% [23]. )e prediction results of the FCN ap-
plication are obtained by eight-fold bilinear interpolation of
the feature map, including the problems of detail loss,
smoothing of complex boundaries, and poor detection
sensitivity of small objects.)e results ignore the global scale
of the image, possibly exhibiting regional discontinuity for
large objects that exceed the receptive field. Incorporating
full connection and upsampling increase the size of the
network and introduces a large number of parameters to be
learned.

Figure 4 shows a schematic of the SegNet model, which is
an efficient, real-time end-to-end semantic segmentation
network proposed by Alex Kendall et al. (Cambridge Uni-
versity) in 2015. )e idea is that the encoder and the decoder
have a one-to-one correspondence, and the network applies
the pooled index in the encoder’s maximum pooling to
perform nonlinear upsampling, thus forming a sparse feature
map; then, it performs convolution to generate a dense feature
map. SegNet defines the basic network of the encoder-de-
coder and deletes the fully connected layer to generate global
semantic information. )e decoder utilizes the encoder in-
formation without training, while the required amount of
training parameters is 21.7% of that of the FCN. For the
prediction of the results, SegNet and FCN occupy a GPU
memory of 1052 and 1806MB, respectively, and the GPU
memory occupancy on GPU GTX 980 (video memory
4096MB) is 25.68% and 44.09%, respectively. )erefore, the
occupancy of SegNet is 18.41% lower than that of FCN. In
[20], the design of SegNet on ResNet was described, and the
IoU in VOC2012 reached 80.4% [24]. )e IoU of SegNet
tested in VOC2012 was reported to be 59.9%, and the
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Figure 1: Flowchart of semantic segmentation under the complex background using encoder-decoder network.
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Figure 2: Flowchart of the semantic segmentation under a complex
background using the encoder-decoder network.
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efficiency was found to be 2.3% lower than that of FCN;
furthermore, there was the problem of false detection at the
boundary.

Figure 5 shows a schematic of the U-Net model, which
was proposed by Olaf Ronneberger (University of Freiburg,
Germany) in 2015. )e idea was to design a basic network
that can be trained by semantic segmentation images and
modify the FCN cross-layer overlay architecture with the
high-resolution feature map channels retained in the
upsampling section and then connect it to the decoder
output feature map in the third dimension. Furthermore, a
tiling strategy without limited by GPU memory was pro-
posed; with this strategy, a seamless semantic segmentation
of arbitrary high-resolution images was achieved. With
U-Net, a IoU of 92.0% and 77.6% was achieved in the

grayscale image semantic segmentation datasets PhC-U373
and DIC-HeLa, respectively. )e skip connection was used
in the ResNet framework to improve U-Net, and a IoU of
82.7% was achieved in the VOC2012 [25]. )ere are two key
problems with the application of U-Net: the basic network
needs to be trained, and it can only be applied to specific
task, i.e., it has poor universality.

Figure 6 shows a schematic of the UPerNet model, which
was proposed by Tete Xiao (Peking University, China) in
2018. In the UPerNet framework, a feature pyramid network
(FPN) with a pyramid pooling module (PPM) is appended
on the last layer of the backbone network before feeding it
into the top-down branch of the FPN. Object and part heads
are attached on the feature map and are fused by all the
layers put out by the FPN.
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Figure 3: Schematic of FCN model.
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Figure 4: Schematic of SegNet model.
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3. Material and Methods

)e semantic segmentation under a complex background
based on the encoder-decoder network will establish an
optimized mathematical model with minimal segmentation
time Tseg−min, segmentation time Tseg, and accuracy PA.
Under the encoder-decoder network, the backbone network

ηmain, the depth dmain, and the decoder ηdecoder are obtained
to form an encoder. By selecting the relatively better ηmain
and ηdecoder of the basic network, the component analysis
module to improve the optimized architecture is proposed,
and the encoder-decoder network with optimized PA for
semantic segmentation under a complex background is
obtained. In the encoder-decoder network, the encoder
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Figure 5: Schematic of U-Net model.
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transforms color images (three 2D arrays) to 2048 2D arrays.
)e encoder is composed of convolutional layers and
pooling layers, and it could be trained on large-scale clas-
sification datasets, such as ImageNet, to gain greater feature
extraction capability.

Modeling of semantic segmentation under a complex
background using the encoder-decoder network and se-
lection of ηmain and ηdecoder.

)e encoder network is determined by the backbone
network ηmain, depth dmain, and decoder ηdecoder. Segmen-
tation time Tseg and accuracy PA depend on ηdecoder, ηmain,
and dmain, which can be expressed as
PA(ηdecoder, ηmain, dmain) and Tseg(ηdecoder, ηmain, dmain).
Denoting the minimal segmentation time as Tseg−min (the
recommended value is 600ms), the mathematical model of
the optimization for semantic segmentation under a com-
plex background based on the encoder-decoder network is
as follows:

max PA ηdecoder, ηmain, dmain( 􏼁,

s.t. Tseg ηdecoder, ηmain, dmain( 􏼁≤Tseg−min.

⎧⎨

⎩ (3)

)e parameters of the model to be optimized are dmain,
ηmain, and ηdecoder.

First, dmain, ηmain, and ηdecoder are combined. )en, the
object segmentation accuracy PAobj, component segmen-
tation accuracy PAcomp, and Tseg are compared to select the
relatively better ηmain and ηdecoder for the basic network.

)e ADE20K dataset, which has diverse annotations of
scenes, objects, parts of objects, and parts of parts [26], is
selected. In this paper, we denote parts of objects as com-
ponent. Using a GeForce GTX 1080Ti GPU and the training
method described in [27], we obtained PAobj and PAcomp for
improved FCN [19], PSPNet [28], UPerNet [29], and other
major encoder-decoder networks for semantic segmentation
used in the ADE20K [26] object/component segmentation
dataset. We evaluated Tseg of different network on the
ADE20K test set, which consist of 3000 different resolution
images with average image size of 1.3 million pixels. Table 1
displays the pixel accuracy and segmentation time of the
main network architectures on ADE20K object/component
segmentation tasks, where the relatively better indices are
indicated by a rectangular contour.

From Table 1, the following observation can be made.①
In all networks, PAcomp is less than PAobj by about 30%; ②
ηmain and dmain are equal in networks 1, 2, and 3; PAcomp and
PAobj are better in ηdecoder � FPN + PPM compared to
ηdecoder � FCN or ηdecoder � PPM; ③ηmain and ηdecoder are
equal in networks 3 and 4. When dmain is doubled, PAcomp
improves slightly and Tseg improves significantly. After a
comprehensive consideration, we selected the UPerNet [23]
encoder-decoder network, where ηmain � ResNet,
dmain � 50, and ηdecoder � PPM + FPN.

Figure 7 shows the architecture of semantic segmen-
tation under a complex background implemented by
UPerNet [29]. )e encoder ResNet reduces the feature
map resolution by 1/2 at each stage. )e resolution of the

output feature maps within five stages is respectively re-
duced to 1/2, 1/4, 1/8, 1/16, and 1/32. )e decoder is
PPM+ FPN. )rough pooling layers with different strides,
the feature maps are analyzed in a multiscale manner
within PPM. )rough three transposed convolution
layers, the resolution of the feature maps is increased two
times to 1/16, 1/8, and 1/4. )e upsampling restores the
feature map resolution to 1/1. )e component analysis
module recognizes the feature map and outputs both the
object/component segmentation results.

Figure 8 shows the component analysis module of
UPerNet. )e module is composed of the object classifier,
component classifier, and component analysis module.
)e input of each classifier is a 1 : 1 feature map. )e object
classifier implements the semantic recognition of NObj
kinds of objects and outputs the object probability vector
pu,v
Obj and the object label Cu,v

Obj. )e component classifier
implements the semantic recognition of NComp kinds of
components and outputs the component probability
vector pu,v

Comp and the component label Cu,v
Comp. According

to Cu,v
Obj and the component object set CObj−Things, the

component analysis module only segments the Cu,v
Comp that

satisfies Cu,v
Obj ∈ CObj−Things and outputs the valid component

label 􏽢C
u,v

Comp. UPerNet outputs the object segmentation result
(the object labelCu,v

Obj) and the component segmentation result
(the valid component label 􏽢C

u,v

Comp).
)e component analysis module of UPerNet can be

expressed as follows:

􏽢C
u,v

Comp � fOp C
u,v
Obj, C

u,v
Comp,CObj−Things􏼐 􏼑

�
1 × C

u,v
Comp, C

u,v
Obj ∈ CObj−Things,

0 × C
u,v
Comp, C

u,v
Obj ∉ CObj−Things.

⎧⎨

⎩

(4)

A greater PAcomp of 􏽢C
u,v

Comp leads to a higher component
segmentation efficiency.

Equation (4) outputs 􏽢C
u,v

Comp that satisfies
Cu,v
Obj ∈ CObj−Things. By identifying deviations of Cu,v

Obj due to
the relationship between Cu,v

Comp and Cu,v
Obj, the optimized

component analysis module can improve the efficiency of
component segmentation; it both meets the requirement of
Tseg−min and improves PAcomp.

Improvements of UPerNet for semantic segmentation
under a complex background based on the component
analysis module.

In this subsection, we describe the derivation of the
component analysis module, the optimization of the func-
tion expression of the module, and the construction of the
architecture of the component analysis module.

As shown in Figure 8, the component classifier recog-
nizes Ncomp component semantics and outputs the com-
ponent labels Cu,v

Comp of the pixel with image position (u, v)

and the probability vector pu,v
Comp corresponding to the

various component labels. )e relationship between Cu,v
Comp

and pu,v
Comp [31] is as follows:

C
u,v
Comp � argmaxkpComp−k, k � 1, 2, . . . , NComp. (5)

From equation (4) and (5), we obtain
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􏽢C
u,v

Comp � fOp C
u,v
Obj, C

u,v
Comp,CObj−Things􏼐 􏼑

�
1 × argmaxkpComp−k, C

u,v
Obj ∈ CObj−Things,

0 × argmaxkpComp−k, C
u,v
Obj ∉ CObj−Things,

⎧⎨

⎩ k � 1, 2, . . . , NComp,
(6)

where pObj−j is the probability of Cu,v
Comp. Weighting pObj−j

over pComp−k to get 􏽢pComp−k instead of 1 × argmaxkpComp−k,
reducing the weight of low-probability object labels, and
increasing PAcomp. With Cu,v

Obj ∈ CObj−Things, if

Cu,v
Comp ∉ C

CObj
Comp−Obj, letting 􏽢pComp−k � 0 can increase the

detection rate of background pixels. )erefore, the module
can be expressed as follows:

DecoderEncoder ηmain = ResNet
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Figure 7: Flowchart of semantic segmentation under a complex background implemented by UPerNet.
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Figure 8: Flowchart of component analysis module of UPerNet.

Table 1: Pixel accuracy and segmentation time of the main network architectures on ADE20K object/component segmentation task. )e
rectangular contour indicates the best indices.

Network Backbone
ηmain

Backbone
depth dmain

Decoder
ηdecoder

Object segmentation
accuracy (%) PAobj

Component segmentation
accuracy (%) PAcomp

Segmentation time
(ms) Tseg

1 FCN [30] ResNet 50 FCN 71.32 40.81 333

2 PSPNet
[28] ResNet 50 PPM 80.04 47.23 483

3 UPerNet
[29] ResNet 50 PPM+FPN 80.23 48.30 496

4 UPerNet
[29] ResNet 101 PPM+FPN 81.01 48.71 604
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􏽢C
u,v

Comp � fOp C
u,v
Obj, C

u,v
Comp,CObj−Things,C

CObj

Comp−Obj􏼒 􏼓 � argmaxk
􏽢pComp−k, k � 1, 2, . . . , NComp,

􏽢pComp−k �

􏽐

j∈CObj−Things∧k∈C
j

Comp−Obj

j�1
pObj−j

⎛⎜⎜⎝ ⎞⎟⎟⎠, k<NComp

1 − 􏽐

j∉CObj−Things∨k ∉ C
j

Comp−Obj

j�1
pObj−j

⎛⎜⎜⎝ ⎞⎟⎟⎠pComp−k, k � NComp,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

j � 1, 2, . . . , Nobj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

which is the component analysis module yielded by replacing
1 × argmaxkpComp−k with argmaxk

􏽢pComp−k and considering

Cu,v
Comp ∉ C

CObj
Comp−Obj.

)e optimized architecture of the UPerNet component
analysis module is proposed based on equation (7).
Figures 9(a)–9(c) show the optimized architecture obtained
by replacing 1 × argmaxkpComp−k with argmaxk

􏽢pComp−k by

considering Cu,v
Comp ∉ C

CObj
Comp−Obj and by both replacing 1 ×

argmaxkpComp−k with argmaxk
􏽢pComp−k and considering

Cu,v
Comp ∉ C

CObj
Comp−Obj in the component analysis module,

respectively.

3.1. Experimental Results

3.1.1. ADE20K Component Segmentation Task. For the
UPerNet model, the backbone network of the encoder was
ResNet, dmain � 50, and the decoders are
PPM+FPN+component analysis modules (before/after
modification). We trained each network on the object/com-
ponent segmentation task dataset ADE20K [26] to demonstrate
the pixel accuracy PA􏽣Part

and segmentation time Tseg. )e
experiments were run on a GeForce GTX 1080Ti GPU.

Table 2 reports PA􏽣Part
and Tseg of the UPerNet obtained

with different component analysis modules in ADE20K
component segmentation task. From the results, the fol-
lowing observations can be made:

(i) )e pixel accuracy of ResNet
(dmain � 50)+PPM+FPN+ the proposed modified
component analysis modules with different settings
increased from 48.30% (without component analysis
modules) to 54.03%, 55.13%, and 55.62% while the
segmentation time lengthened marginally from 483
to 492, 486, and 496ms, respectively.

)e UPerNet with modified component analysis mod-
ules showed significantly high segmentation performance.
Both PA􏽣Part

and Tseg outperformed the UPerNet with a
deeper dmain; PA􏽣Part

and Tseg of the architecture (dmain � 50)
are 55.62% and 496ms, while those of the architectures with
no modification with dmain � 101 and 152 were 48.71% and
598ms and 48.89% and 721ms, respectively, as shown in
Figure 9(c).

3.1.2. CITYSCAPES Instance-Level Semantic Labeling Task.
We trained each UPerNet (with/without component anal-
ysis module) on the instance-level semantic labeling task of

the CITYSCAPES dataset [32]. To assess the instance-level
performance, CITYSCAPES uses themean average precision
AP and average precision AP0.5 [32]. We also report the
segmentation time of each network run on a GeForce GTX
1080Ti GPU and an Intel i7-5960X CPU. Table 3 presents the
performances of different methods on a CITYSCAPES in-
stance-level semantic labeling task. Table 4 presents the mean
average precision AP on class-level of the UPerNet with/
without the component analysis module in the CITYSCAPES
instance-level semantic labeling task. From the table, it can be
seen that the modified component analysis modules effec-
tively improved the performance of the UPerNet. With the
component analysis module, both AP and AP0.5 are im-
proved, and the segmentation time Tseg increased slightly
from 447 to 451ms.Most of the UPerNet AP on class-level are
improved. Figure 10 shows someCITYSCAPES instance-level
semantic labeling results obtained with the UPerNet with/
without component analysis module.

Taking banknote detection as an example, we set up the
semantic segmentation model by the component analysis
modules (before/after modification) to vision-based detec-
tion of 2019 Chinese Yuan (CNY) feature in the backlight to
demonstrate the segmentation performance of the proposed
method.

)e vision-based detection system consisted of an MV-
CA013-10GC industrial camera, an MVL-HF2528M-6MP
lens, and a LED strip light. )e field of view was 18.33°, and
the resolution was 1280×1024. Under the backlight, we
collected 25 CNY images of various denomination fronts
and backs at random angles. )en, we marked four types of
light-transmitting anticounterfeiting features, namely, se-
curity lines, pattern watermarks, denomination watermarks,
and Yin-Yang denominations. All four features were de-
tected in the CNY images to generate our dataset (200
images). We trained the model with different component
analysis modules from our dataset to demonstrate PA􏽣Part
and Tseg. Table 3 presents the pixel accuracy and segmen-
tation time of UPerNet with different component analysis
modules for CNY anticounterfeit features via vision-based
detection, and Figure 11 shows the segmentation results of
the anticounterfeiting features detected by UPerNet with/
without the component analysis module.

From Table 5, it can be seen that the proposed method
improved PA􏽣Part

from 90.38% to 95.29% Tseg from 490 to
496ms. Moreover, APIoUT�0.5 increased from 96.1% to 100%,
detecting all the light transmission anti-counterfeiting fea-
tures without false detection, missing detection, or repeated
detection.
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Figure 9: Optimized architecture with the component analysis module. (a) Replace 1 × argmaxkpComp−k with argmaxk
􏽢pComp−k to optimize

the module. (b) Analyze Cu,v
Comp ∉ C

CObj
Comp−Obj to optimize the module. (c) Replace 1 × argmaxkpComp−k with argmaxk

􏽢pComp−k and analyze
Cu,v
Comp ∉ C

CObj
Comp−Obj to optimize the module.

Table 2: Pixel accuracy and segmentation time of UPerNet with different component analysis modules (CAMs) on ADE20K component
segmentation task.

Backbone
ηmain

Backbone
depth dmain

Decoder ηdecoder Comp. Analysis model Comp. Segmentation
accuracy PA􏽣Part

(%)
Segmentation time

Tseg (ms)

1 ResNet 50 PPM+FPN — 48.30 483
2 ResNet 101 PPM+FPN — 48.71 598
3 ResNet 152 PPM+FPN — 48.89 721
4 ResNet 50 PPM+FPN+CAM 1 × argmaxkpComp−k [29] 53.62 490
5 ResNet 101 PPM+FPN+CAM 1 × argmaxkpComp−k [29] 53.96 604
6 ResNet 152 PPM+FPN+CAM 1 × argmaxkpComp−k [29] 54.18 726

Mathematical Problems in Engineering 9
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Figure 10: CITYSCAPES instance-level semantic labeling by UPerNet.

Table 4: Mean average precision AP on class-level of the UPerNet with/without CAM in CITYSCAPES instance-level semantic labeling
task.

Method Person (%) Rider (%) Car (%) Truck (%) Bus (%) Train (%) Motorcycle (%) Bicycle (%)
UperNet 36.0 28.8 51.6 30.0 38.7 27.3 23.9 19.4
UperNet +CAM 36.0 28.8 53.0 34.3 57.0 37.5 22.3 23.8

Table 2: Continued.

Backbone
ηmain

Backbone
depth dmain

Decoder ηdecoder Comp. Analysis model Comp. Segmentation
accuracy PA􏽣Part

(%)
Segmentation time

Tseg (ms)

7 ResNet 50 PPM+FPN+CAM argmaxk
􏽢pComp−k 54.03 492

8 ResNet 50 PPM+FPN+CAM Cu,v
Comp ∉ C

CObj

Comp−Obj 55.13 486
9 ResNet 50 PPM+FPN+CAM argmaxk

􏽢pComp−k + Cu,v
Comp ∉ C

CObj
Comp−Obj 55.62 496

Table 3: Performances of different methods on CITYSCAPES instance-level semantic labeling task.

Method AP (%) AP0.50 (%) Segmentation time (ms)

SegNet 29.5 55.6 —
Mask R-CNN 32.0 58.1 —
UperNet 32.0 57.3 447
UperNet +CAM 36.5 62.2 451
CAM: Component Analysis Module.
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4. Conclusions

In this study, we performed semantic segmentation under a
complex background using the encoder-decoder network to
solve the issue of the mutually exclusive relationship be-
tween the semantic response value and the semantics of
object/component in the semantic segmentation under a
complex background for online machine vision detection.
)e following conclusions can be drawn from this study.

(i) Considering the mutually exclusive relationship
between the semantic response value and the se-
mantics of object/component, we selected the
mathematical model of semantic segmentation
under a complex background based on the encoder-
decoder network for optimization. It was found that

ηmain � ResNet, dmain � 50 is the best encoder, and
ηdecoder � PPM + FPN is the best selected decoder.

(ii) We replaced 1 × argmaxkpComp−k with
argmaxk

􏽢pComp−k. )e component analysis module

of Cu,v
Comp ∉ C

CObj
Comp−Obj and UPerNet are considered

to improve the performance of the encoder-decoder
network.

(iii) )e experimental results show that the component
analysis module improves the performance of se-
mantic segmentation under a complex background.
Both PA􏽣Part

and Tseg of the proposed model were
better than those of the UPerNet with deeper dmain.
Specifically, the accuracy improved from 48.89% to
55.62% and Tseg from 721 to 496ms. By performing

Denomination
Pattern

Safeline Safeline
Chinese

Chinese
Chinese

Chinese
Chinese

Denomination

Denomination

Watermark

Watermark
Watermark

PatternVersionDenomination

Serial number

Denomination
Pattern

Safeline Safeline
Chinese

Chinese
Chinese

Chinese
Chinese

Denomination

Denomination

Watermark

Watermark
Watermark

Pattern
VersionDenomination

Serial number

Pattern

Watermark

Serial number
Watermark Watermark

Safeline
Chinese

OVMI

Safeline

OVMI

Pattern

Pattern
Denomination

Serial number

Denomination

Watermark

Watermark Watermark

SafelineSafeline

Watermark

Watermark Watermark

SafelineSafeline

Watermark

WatermarkWatermark

SafelineSafeline

UPerNet UPerNet with the component analysis module

Figure 11: Anticounterfeiting features detected by the UPerNet with/without the component analysis module.

Table 5: Pixel accuracy and segmentation time of UPerNet with different component analysis modules (CAM) for CNY anticounterfeit
features via vision-based detection.

Backbone ηmain Depth dmain Decoder ηdecoder Component analysis module PA􏽣Part
(%) APIoUT�0.5(%) Tseg (ms)

1 ResNet 50 PPM+FPN — 88.50 85.3 483
2 ResNet 50 PPM+FPN+CAM 1 × argmaxkpComp−k [29] 90.38 96.1 490
3 ResNet 50 PPM+FPN+CAM argmaxk

􏽢pComp−k + Cu,v
Comp ∉ C

CObj
Comp−Obj

95.29 100 496

Mathematical Problems in Engineering 11



vision-based detection with the 2019 CNY features,
we showed that the proposed method improved
PA􏽣Part

from 90.38% to 95.29% while Tseg increased
only slightly from 490 to 496ms; APIoUT�0.1 also
increased from 96.1% to 100%, detecting all the light
transmission anticounterfeiting features without
false detection, missing detection, or repeated
detection.

)e model in which 1 × argmaxkpPart−k was replaced
with argmaxk

􏽢pPart−k and the corresponding component
analysis module improved the performance of the UPerNet
encoder-decoder network. However, the efficiency im-
provement is affected by the accuracy of object segmenta-
tion. In our next study, we will investigate the applicability of
machine learning to the component analysis module to
achieve a higher performance in different applications.

Data Availability

)e ADE20K Dataset used to support the findings of this
study is available at http://groups.csail.mit.edu/vision/
datasets/. )e CITYSCAPES Dataset used to support the
findings of this study is available at https://www.cityscapes-
dataset.com. Its pretrained models and code are released at
https://github.com/CSAILVision/semantic-segmentation325
pytorch.
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