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Abstract—The content-based remote sensing image retrieval 

(CBRSIR) has recently become a hot topic due to its wide 
applications in analysis of remote sensing data. However, since 
conventional CBRSIR is unsuitable in harsh environments, this 
paper focuses on the cross-modality CBRSIR (CM-CBRSIR) 
between synthetic aperture radar (SAR) and optical images. 
Besides the large inter-class and small intra-class in CBRSIR, CM-
CBRSIR is limited by prominent modality discrepancy caused by 
different imaging mechanisms. To address this limitation, this 
study proposes a deep cross-modality hashing network (DCMHN). 
First, we transform optical images with three channels into four 
different types of single-channel images to increase diversity of the 
training modalities. This helps the network to mainly focus on 
extracting the contour and texture shared features, and make it 
less sensitive to colour information for images across modalities. 
Secondly, we combine any type of randomly selected transformed 
images and its corresponding SAR or optical images to form image 
pairs that are fed into the networks. The training strategy, with 
paired image data, eliminates the large cross-modality variations 
caused by different modalities. Finally, the triplet loss, in 
combination with the hash function, helps the modal to extract the 
discriminative features of images and upgrade the retrieval 
efficiency. To further evaluate the proposed modality, we 
construct a SAR-optical dual-modality remote sensing image 
dataset (SODMRSID) containing twelve categories. Experimental 
results demonstrate the superiority of the proposed method with 
regards to efficiency and generality. 
 

Index Terms—Cross-modality content-based remote sensing 
image retrieval (CM-CBRSIR); modality discrepancy; deep cross-
modality hashing network (DCMHN); SAR-optical dual-modality 
remote sensing image dataset (SODMRSID) 
 

I. INTRODUCTION 
nprecedented advances in earth observation technologies, 
over the past few decades, have caused a significant 

increase in both quality and quantity of remote sensing image 
archives [1, 2]. Generally, content-based remote sensing image 
retrieval (CBRSIR), which is simply defined as the search for 
remote sensing images of similar information content within a 
large archive with a given query image serving as a reference, 
has attracted numerous research interest due to its broad 
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applications in management of large volumes of remote sensing 
data. In the field of natural images, previous studies have 
proposed concerted efforts for improving image retrieval tasks 
[3, 4]. However, unlike natural images, remote sensing images 
contain very small and intricate targets, making retrieval of 
discriminative features difficult. Advancement of the 
convolutional neural network (CNN) has tremendously 
improved both accuracy and efficiency of CBRSIR retrieval [5-
7]. Images from optical sensors considerably limit the 
application of CBRSIR since the optical sensors only function 
well during day time and fine weather, but not at night or under 
bad weather scenarios. 

Synthetic aperture radar (SAR) images have several 
advantages, including excellent functioning at all times, and 
under all weather conditions. However, they present numerous 
limitations including low resolution, side-looking imaging, 
blurred target details, need for visual interpretation, and lack of 
wide range of target detection. On the other hand, optical 
remote sensing images have many advantages over SAR 
images. For instance, they are intuitionistic and easy to 
understand, have rich color and texture information, present 
obvious target structure characteristics, high resolution, and a 
large field angle. However, optical images are also greatly 
affected by light, cloud cover, seasons, shadows, and other 
conditions, hence there is a need to complement them with SAR 
images to ensure adequate exploitation of the aforementioned 
strengths. Therefore, a retrieval system that can retrieve an 
image across optical and SAR sensors, would operate well in 
almost any real-world condition. However, the modality 
disparity caused by the different imaging mechanisms between 
the two sensors complicates the retrieval task.   

Rapid development of feature learning has accelerated 
exploration of cross-modality retrieval tasks in the field of 
natural image analysis. These include retrieval between image 
and text [8, 9], image and audio [10, 11], as well as RGB and 
infrared images [12, 13]. However, these methods reportedly 
yield unsatisfactory results when applied to remote sensing 
images, owing to huge differences between natural and remote 
sensing images. In addition, only a handful of works [14-16] 
have reported use of CM-CBRSIR which allows sensing 
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between panchromatic and multispectral sources. Besides, SAR 
images lack the specific imaging principle and presence of 
speckle noise, as well as the rich colour information contained 
in optical images (Fig. 1). Based on these factors, the existing 
works cannot effectively be extended to image retrieval 
between SAR and optical images. 

 
Fig. 1. Sample images from our proposed SODMRSID datasets. 

To solve the aforementioned CM-CBRSIR challenges, we 
propose a deep cross-modality hashing network (DCMHN). 
Firstly, to extract rich image features from different spectrum 
channels, we transform optical images with RGB three channels 
into four types of single-channel images via different spectrum 
channels including red, blue, green, and gray. Secondly, to 
solve the cross-modality discrepancy caused by imaging 
mechanisms, we randomly select four types of the transformed 
single-channel images to form image pairs with each 
corresponding SAR or optical images. Finally, the triplet loss 
combined with the hash function helps the modal to extract the 
discriminative features of images and upgrade the retrieval 
efficiency. We propose a new SAR-optical dual-modality 
remote sensing image dataset (SODMRSID), comprising 
twelve categories, owing to absence of any open source cross-
modality dataset between SAR and optical image for retrieval 
tasks. To validate the effectiveness of this method, we perform 
extensive experiments on the proposed SODMRSID. 

The main contributions of this paper can be summarized as 
follows. 
1) To the best of our knowledge, this is the first study 

conducting CM-CBRSIR between SAR and optical 
sensors, and propose the possibility and potential values of 
CM-CBRSIR. 

2) We provide an end-to-end framework for CM-CBRSIR, 
coupled with good flexibility and controllability. Besides, 
the model, proposed herein, is applicable to other cross-
modality tasks in the field of remote sensing images. 

3) We provide a large-scale benchmark dataset, named 
SODMRSID, that can be used to evaluate the proposed 
method and largely advance the task of cross-modality 
image processing technology between SAR and optical 
sensors. 

The rest of the paper is organized as follows: Section II 
reviews existing literature related to CBRSIR, supervised cross-
modality hash methods, and retrieval of cross-modality in 
remote sensing; Section III describes the SAR-optical dual-
modality remote sensing image dataset (SODMRSID); Section 
IV presents our proposed DCMHN, Section V outlines the 
experimental results and analyses; and Section VI presents 

conclusions drawn from this work. 

II. RELATED WORK  

A. Content-based Remote Sensing Image Retrieval (CBRSIR) 
The most important part of CBRSIR entails extracting the 

effective features of images. However, a key challenge to this 
involves designing a robust feature extractor that can 
accommodate the diversity of remote sensing image types as 
well as the complexity of remote sensing image content. Most 
existing feature extractors are based on low-level visual 
features, including global features related to spectral (colour) 
[17], texture [19], shape [22], as well as local features based on 
Scale Invariant Feature Transform (SIFT) [23], Difference of 
Gaussian (DoG) [24], and Speeded Up Robust Features (SURF) 
[25]. To represent the highly complex remote sensing images, 
most approaches produce more discriminative features by 
aggregating local features, such as bag-of-words (BoW) [26], a 
vector of locally aggregated descriptors (VLAD) [27], and 
Fisher vector (FV) [28] or their variants. However, the features 
obtained by these methods are handcrafted, requiring sufficient 
domain expertise and engineering skills. Generally, handcrafted 
features cannot accurately describe the rich information of the 
images due to the complex background of the remote sensing 
image. Specifically, the same class of remote sensing images 
might have a diverse appearance [29].  Numerous studies have 
shown superior performances to the traditional handcrafted 
features in CBRSIR, based on the great success of the 
convolutional neural network (CNN) in representing high-level 
visual features of images [31-38]. Similarly, numerous studies 
are underway to increase retrieval accuracy by extracting more 
discriminative features of the images, considering the small and 
intricate targets contained in the remote sensing images. For 
instance, some researchers have combined the attention 
mechanism with multi-task learning to extract discriminative 
features of the remote sensing image [39]. On the other hand, a 
deep hashing neural network was successfully used to solve 
CBRSIR in a large–scale dataset and transform the image 
feature to binary codes [40]. Moreover, both deep semantic 
features and weighted distance were reportedly used to 
successfully construct a retrieval framework and improve 
performance [41]. To further cope with large-scale complex 
retrieval problems in remote sensing, a two-steps strategy was 
reportedly used to obtain multi-hash codes, achieving a high 
retrieval accuracy over a short period of time [42]. Besides, a 
novel multi-label method based on fully convolutional network 
[67] is used for CBRSIR task, which shows great advantages 
over some single-label methods for interpreting complex 
remote sensing images. 

The aforementioned methods were all aimed at solving the 
optical image retrieval tasks. Based on the specific image 
content of SAR images, several methods have been conducted 
to improve retrieval performance of SAR images. For example, 
a compression-based image retrieval techniques was previously 
designed for measuring similarities between SAR on the 
original and despeckled TerraSAR-X images [43]. In addition, 
a general SAR image retrieval approach was developed, 
according to the region-based similarity measure and semantic 
categorization [44], whereas an image re-ranking method was 
used to improve the retrieval accuracy of SAR images [45]. 
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Moreover, multi-scale property and speckle noise were 
successfully applied to help in designing a content-based SAR 
image retrieval method [46], whereas the fly algorithm, based 
on hash codes, effectively improved the retrieval speed and 
reduce the storage cost for the SAR image retrieval task [47]. 
In addition, an unsupervised domain adaption model for SAR 
image retrieval reportedly coped with the shortage of labeled 
SAR images [48]. Despite these methods adequately addressing 
the single-modality CBRSIR for SAR sensors, they cannot be 
effectively extended to CM-CBRSIR. 

B. Supervised Cross-modality Hash methods 
Hashing methods have attracted considerable attention due to 

their low storage costs and fast retrieval speed. However, 
constructing semantic correlations among heterogeneous 
features from different modalities with the binary hash codes, 
remains the method’s main challenge. Semantic correlation 
maximization (SCM), which integrates semantic label 
information into hashing codes, was previously used to reduce 
the storage cost and improve the query speed [49]. Similarly, 
studies have successfully applied semantic information and 
manifold structure of data to reveal the association among 
heterogeneous modalities [50]. Apart from these, a discrete 
method was used to improve accuracy and training speed by 
directly learning the binary hash codes [51], with the 
discriminative hash codes produced by learning the modality-
specific hash functions [52]. Since these traditional methods 
mainly use hand-crafted features to learn binary vectors, their 
performance in real-world applications is limited by the 
independent feature extraction process. 

Generally, deep cross-modality hashing methods are superior 
to traditional cross-modality ones, owing to their powerful 
feature representation capability. To learn the modality-specific 
information, an end-to-end deep learning architecture, that 
generates compact hash codes has been previously used [53]. 
However, this architecture cannot be extended to other cross-
modal cases. Deep cross-modal hashing (DCMH), which 
utilizes both hash codes and feature learning strategies and can 
be optimized from scratch in the same deep learning framework, 
has been proposed [54]. An adversarial cross-modal retrieval 
(ACMR) method based on the adversarial learning approach is 
also proposed, and shown to successfully generate 
discriminative and modality-invariant binary hash codes for the 
data across different modalities [55]. Typically, deep learning-
based cross-modal hashing methods can outperform traditional 
ones, both on retrieval efficiency and accuracy. However, all 
these methods work for cross-modality retrieval tasks in natural 
images or documents which are extremely different from 
remote sensing ones, both in spatial and spectral resolution. 
Therefore, the complexity of remote sensing images limit 
performance of these methods on remote sensing area. 

C. Cross-modality Retrieval in Remote Sensing 
Rapid development of remote sensing technology has 

gradually increased the types of remote sensing data that can be 
acquired by different sensors. Consequently, cross-model 
retrieval has received widespread attention in recent years. 
Cross-modality retrieval techniques can be divided into three 
categories: the retrieval tasks allowing the model between 
remote sensing images and spoken audio [56, 57], remote 

sensing images and sentences [58-60], and panchromatic and 
multispectral images [14-16]. However, the retrieval between 
audio and image differs from the cross-modality retrieval 
between images from different modalities. There is not much 
connection between the two retrieval tasks, because the 
semantic information contained in remote sensing image 
exceeds that in an audio signal. Thus, the model cannot be 
directly applied to CM-CBRSIR between SAR and optical 
images. Additionally, the network structure of text feature 
extraction is not applicable to the images, making it unsuitable 
for our task. Furthermore, methods for solving the retrieval 
tasks between panchromatic and multispectral images pay little 
attention to images’ texture information which is extremely 
important during presentation of features from SAR images. 
Inspired by these studies, we adopt a DCMHN approach to 
solve the CS-CBRSIR task between SAR and optical images. 

III. SAR-OPTICAL DUAL-MODALITY REMOTE SENSING IMAGE 
DATASET 

The increasing ability to acquire remote sensing data has 
generate numerous remote sensing image scene datasets [61-63, 
68, 69]. These existing data sets were constructed by only one 
kind of remote sensing data modality. Intuitively, these single-
modality data sets would not cope with the increasingly 
complex environmental and diverse data in real-world 
conditions. Consequently, cross-modality datasets, which allow 
modality between panchromatic and multispectral images, 
remote sensing images and spoken audio, as well as remote 
sensing images and sentences, have been proposed in [14, 57, 
58]. To promote the all-time and all-weather image retrieval 
system, constructing a cross-modality remote sensing image 
dataset between SAR and optical sensors is a priority. Therefore, 
we collected a new SAR-optical dual-modality remote sensing 
image dataset. (SODMRSID is available at 
“https://pan.baidu.com/s/1xR7h-NP143Ju9chGuDBDMw” 
with password “p1b2”) 

Specifically, the SODMRSID was collected from remote 
sensing images captured by SAR and optical sensors. The 
SODMRSID comprises of a great number of patch pairs, with 
each patch pair representing a combination of a SAR and an 
optical image, covering the same area across the globe and 
throughout all four seasons. Notably, although they show 
different aspects of the captured ground region because of the 
different geometric and radiometric appearance, the SAR and 
optical images in one patch-pair represent the same type of 
scene. SODMRSID is constructed based on SEN1-2 [64], 
which comprises 282,384 remote sensing images acquired by 
Sentinel-1 [65] and Sentinel-2 [66]. Dual sample description is 
outlined in Table I. 

Table I  
DESCRIPTION OF THE DATASET 

Data 
modality 

Satellite 
sensor 

Spatial 
resolution 

Spectral 
channel 

Image 
size 

SAR 
image 

Sentinel-
1 10m 1 256×256 

Optical 
image 

Sentinel-
2 10m 3 256×256 
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The SODMRSID contains a total number of 24,000 images, 
covering 12 typical scene classes that include agriculture, beach, 
forest, harbour, industrial, lake, meadow, mountain, pond, 
residential area, river, and water. Each class of the image 
consists of 1,000 SAR-optical patch-pairs, some of which are 
shown in Fig. 2. 

The SAR-optical patch-pairs data sets are represented by

( ){ }S O, , 1, 2, ,i i iL i N= =D x x  , where i  denotes the index of 

patch-pairs, N  denotes the SODMRSID volume, S 256 256
i

×∈x   

indicates the SAR image, O 256 256 3
i

× ×∈x   denotes the optical 
image, and iL  denotes the image label. 

IV. THE PROPOSED METHOD 
This section describes the proposed DCMHN processes, 

including image transformation, training with image pairs, and 
triplet hashing loss. The proposed method framework is shown 
in Fig. 3 and entails the following: Firstly, Section IV-A 
describes how to increase the diversity of the input modality by 
transforming the three-channel optical images into four types of 
single-channel images; Secondly, Section IV-B presents how to 
conduct a paired training strategy to extract discriminative 
features of the image across the modalities; and Thirdly, 
Section IV-C introduces the triplet hashing loss function to 
improve retrieval accuracy and deduce storage costing.    

 
Fig. 2. Examples from the proposed SODMRSID 

  
Fig. 3. The framework of our proposed method 

A. Image Transformation 
Modality discrepancy is the key challenge restricting cross-

modality retrieval task between SAR and optical sensors, since 
their respective images considerably differ in the same scene. 

Generally, optical images usually contain intensity information 
of multiple wave bands, which is convenient for target 
recognition and classification extraction. On the other hand, 
SAR images record echo information of only one wave band, 
in binary complex form. In addition, amplitude information 
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contained in SAR images is less than the imaging level of 
optical images. As shown in Fig. 2, SAR images lack the rich 
colour information in optical images. However, some scene and 
target-related rich information, which is contained in SAR 
images, such as geometric structure and material property, 
cannot be ignored.  

Based on this observation, our network mainly focuses on the 
contour and texture information of SAR and optical images, and 
less on the colour information. To achieve this goal, the 
network needs to learn the features of the same scene of images 
across different modalities. Therefore, a novel image 
transformation strategy, that can produce images of different 
spectrum channels, is proposed. By adding the cross-modalities 
images in the training process, the spectrum channels of the 
image have been disrupted, the network cannot focus on 
learning the colour information of spectrum channels, it will 
pay more attention to the texture and contour part. Specially, 
for each optical image with RGB three channels, the 
transformed single-channel images of the different spectrum are 
obtained by selecting the corresponding spectrum channel from 
the original optical image. Furthermore, a grayscale image is 
also produced by transforming the optical image, to increase the 
diversity of the image modalities. In this paper, the original 
optical image is denoted O

ix , whereas it’s corresponding 
single-channel images with red, green, and blue spectral 
channels are represented by R

ix , G
ix , B

ix , respectively. The 

corresponding grayscale image is denoted H
ix . A few examples 

can be found in Fig. 4. 

 
Fig. 4. Examples of the transformed images 

Using the transformed images, as input in the network, 
significantly increases diversity of the training data, while the 
spectrum channels are disrupted by training with different 
spectrum images. Thus, the network focuses on contour and 
texture information, but not colour information. Moreover, 
adding the transformed images into the training data largely 
increases diversity of the modalities, making the networks to 
have more image modalities under the same scene.  Thus, the 
network learns some shared features across different modalities, 
thereby significantly reducing the influence of the modality 

discrepancy. 

B. Training with Image Pairs 
Remote sensing images always suffer from hard negatives 

owing to the complex content of images and modality 
discrepancy (Fig. 5(a)), where intra-class distance is often 
larger than inter-class distance ( ) ( )( )', ,D a a D a b> . Besides, it 

is more obvious when the images are from different modalities

( ) ( )( ), ,D A a D A C>  (Fig. 5(b)). Therefore, these problems 

negatively impact the accuracy and efficiency of cross-modality 
retrieval, resulting in poor performance during the training 
process. Extraction of robust and discriminative features across 
different modalities requires an urgent solution. 

To address this problem, we propose a novel paired training 
strategy (Fig. 3). Specifically, for each input original image, we 
randomly choose one image from all the transformed images

R
ix , G

ix , B
ix  and H

ix  for its corresponding optical image O
ix  

and SAR image S
ix , as the image pairs before feeding them 

together into the network. Since the number of spectrum 
channels between optical and transformed images is different, 
channels for the transformed images and SAR images are 
triplicated to create a 3-channel image, making them similar to 
optical images with three channels. Consequently, the networks 
for both modalities begin with a uniform architecture. 

In addition, training with image pairs strategy significantly 
eliminates the intra- and inter- modality variations caused by 
modality discrepancy, thereby propelling the network to extract 
discriminative features across different modalities. 

 
Fig. 5. Hard negatives caused by modality discrepancy. (a) “a” and “a’” 

represent the different images of the residential area category captured by an 
optical sensor, whereas  “b” represents the image of the industrial category 

captured by optical sensor. (b) “a” and “A” represents the images of the 
residential area category captured by optical and SAR sensors, respectively. 

“C” represents the image of the mountain category captured by SAR sensors. 

C. Triplet Hashing Loss 
To extract powerful discriminative features and improve 

retrieval efficiency, we adopt the hashing-based triplet loss 
function to constrain and encode intra-class images as closely 
as possible, while encoding inter-class ones as far apart in the 
feature space as possible. 

During the training process, Resnet18 [20] and Resnet50 [20] 
are used as feature extractors, to obtain the feature maps of the 
input images after the last convolutional layer. Thereafter, a 
global average pooling layer (GAP) is applied to extract the 
unified features from the images. Subsequently, the latent layer 

lF  is introduced to construct the relationships between input 
images and binary codes, and preserve the rich semantic 
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information of the images. For each image ix , the output of the 
latent layer is denoted if , and [ ]( )0,1 1, ,ik k K∈ =f   represent 
the k-th of the latent vector if , which is activated by the sigmoid 
function. 

Triplet loss [18], as a loss function, is then introduced to help 
the network to extract discriminative features. For each triplet 

image ( ){ }a p n= , ,i i iI x x x , the deep features ( ){ }a p n= , ,i i iT f f f  are 

obtained in the latent layer lF . The triplet loss is built with the 

intuition that an anchor image a
ix  is closer to all positive 

images p
ix , than to all negative images n

ix  in the feature space. 
A triplet loss function is constructed as follows: 

              ( ) ( )a p a n
Triplet

1
, ,

m

i i i i
i

L d d α
=

 = − + ∑ f f f f                   (1) 

where m is the size of mini-batch, d  is the similarity metric, 
and α  is a margin that is enforced between positive and 
negative pairs. 

Activation by a sigmoid function in the latent layer results in 
a value of ikf  that lies between 0 and 1. Inspired by [21], we 
design a regularization loss function to constraint the feature 
representation to be close to either 0 or 1. The regularization 
loss function is defined as: 

                                2
Reg 2

1
0.5

m

i
i

L
=

= −∑ f e                              (2) 

where e  represents the K-dimensional vector of all elements 1.  
Apart from making the final feature approach binary, the 

balancing loss function is designed to push the feature vector 
across different modalities since data imbalance can hurt the 
retrieval performance during the training process. Constrained 
by balancing loss, the ikf  values have the same number of 0 and 
1 for each bit k. The balancing loss function is then shown as: 

                     ( )2
Balancing

1
mean( ) 0.5

m

i
i

L
=

= −∑ f                      (3) 

where ( )mean •  denotes the average value of elements in a 
vector. The total loss function is described by: 

Total Triplet Reg BalancingL L L Lβ γ= + +                     (4) 
where β  and γ  denote the two hyperparameters.  

Finally, after training with the total loss, we design the hash 
layer to transfer the high-dimensional deep features into 
compact K-bit hash codes. To obtain the binary hash codes, we 
quantize the unified feature using a simple threshold as follows: 
                             ( )( )sgn -0.5 +1 / 2i i=b f                           (5) 

where ib  denotes the binary code vectors, ( )sgn •  denotes 

element-wise operations, i.e., ( )sgn 1x =  if 0x >  and -1 if 
otherwise. 

V. EXPERIMENTS AND ANALYSIS 
To validate our proposed method, we consider an extensive 

 
1 K: hash code length. 

series of experiments. Section V-A introduces the experimental 
setup and evaluation criteria, Section V-B describes validation  
of the proposed DCMHN , Section V-C analyzes the impacts of 
parameters α , β  and γ  on the results for the cross-modality 
retrieval, whereas Section V-D presents a comparison between 
our results and some baselines. 

A. Experimental Setup and Evaluation Criteria 
During the training process, we adopt the proposed 

SODMRSID dataset for evaluating performance of our 
DCMHN for the CM-CBRSIR tasks. Specifically, SODMRSID 
is randomly split into two subsets and used to construct the 
training and testing sets, denoted as: 

( ){ }train , , 1, 2, ,i i iL i V= =D S O   and

( ){ }test , , 1, 2, ,i i iL i Q= =D S O  , respectively. Where V  and 

Q  are set to 11000 and 1000, respectively, implying that 11000 
images pairs of the SODMRSID is used for training while the 
remainder is used for testing. 

In the experiment, two feature extractors, Resnet18 and 
Resnet50, are introduced as shallow and deep networks, 
respectively. The DCMHN architecture is provided in Table II. 
Moreover, Adam optimizer with a learning rate of 0.001 is 
introduced to optimize loss of function.  Furthermore, two 
evaluation metrics namely, the precision at k samples (P@k) 
and the mean average precision (mAP), are adopted for 
comparison. 

Table II  
ARCHITECTURE OF THE PROPOSED NETWORK 

Layer 
name 

Output 
size 18-layer 50-layer 

Conv1 128*128 7*7, 64, stride2 

Conv2 64*64 

3*3 maxpool, stride2 

3*3,64
*2

3*3,64
 
 
 

 

1*1,64
3*3,64 *3
1*1,256

 
 
 
  

 

Conv3 32*32 
3*3,128

*2
3*3,128

 
 
 

 

1*1,128
3*3,128 *4
1*1,512

 
 
 
  

 

Conv4 16*16 
3*3,256

*2
3*3,256

 
 
 

 

1*1,256
3*3, 256 *6
1*1,1024

 
 
 
  

 

Conv5 8*8 
3*3,512

*2
3*3,512

 
 
 

 

1*1,512
3*3,512 *3
1*1,2048

 
 
 
  

 

 1*1 Global average pool 
Ft 1*1 512 2048 
Fl 1*1  K1 K 
Fb 1*1 K K 
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All experiments are implemented under PyTorch deep 
learning framework on a 64-bit station with Ubuntu16.04, 
32GB of RAM, 8 Intel(R) Core(TM) i7-6770K CPU, and 
NVIDIA RTX 2080Ti. 

B. The Effective of the DCMHN  
This section quantitatively evaluates the overall performance 

of our proposed method, under several loss function, to validate 
the DCMHN. Particularly, four loss function parameters are 
considered: β  and γ  are set to 0 to represent the adoption of 
triplet loss function; β  and γ  are set to 1 and 0, respectively 
to represent the combination of triplet and regularization loss 
function; β  is set to 0 and γ  to 1 to represent the combination 
of triplet loss function and balancing loss function; and finally,
β  and γ  are set to 1 to represent the combination of triplet 
loss function, regularization loss function and balancing loss 
function. 

Results from two evaluation protocols (precision at top-200 
retrieved images and mean average precision (MAP)) are 
reported under various loss functions and hashing feature 
coding lengths in Table III and Table IV. According to Table 
III, when the network structure is fixed, the combination of 
three loss functions results in a more favorable performance 
relative to other loss functions under the same hashing feature 
coding length for the SAR → Optical retrieval task. Similarly, 
the best performance is also achieved by combining the three-
loss functions for the Optical → SAR retrieval task (Table IV). 
Besides, a higher accuracy is recorded in the Optical → SAR 
retrieval task under similar conditions than with SAR → 
Optical retrieval task. This is mainly because the speckle noise 
contained in SAR images makes the feature representation not 
accurate enough. Moreover, the deeper network achieves better 
performance than the shallower network for both SAR → 
Optical and Optical →  SAR retrieval tasks, although the 
improvement is not apparent. 

The superiority of the proposed method is intuitively 

captured in Fig. 6, as evidenced by the impact of the hash code 
lengths on the result mAP value. Particularly, the “baseline” 
means the only adoption of the triplet loss (i.e. β  and γ  are set 
to 0) (Fig. 6). Based on these comparisons, it is clear that a 
combination of three loss functions has a consistent advantage 
over individual loss functions. Besides, combining the triplet 
loss with balancing loss or regularization loss results in a 
relatively better performance. The total loss also provides a 
stable and most favorable performance for the different code 
lengths. This may be attributed to the fact that the total loss, 
resulting from a combination of the three losses, may produce 
more effective binary codes to represent the discriminative 
features. In addition, all advocated loss functions may gradually 
improve performance of the proposed methods along with the 
increase of the hash code lengths. Results from the analysis of 
varying tendency of precision, as the number of top retrieved 
images changes based on 32-bit hash codes, are illustrated in 
Fig. 7. Generally, the precision curves for total loss are 
considerably above other losses, which is sufficient to prove the 
superiority of retrieval ability of the total loss. 

To enable feature visualization, we employ the t-distributed 
stochastic neighbor embedding (t-SNE) algorithm [30] to 
obtain the two-dimensional representation of the feature vectors 
under various loss function, under a fixed network structure 
(Fig. 8). Specifically, Principal Component Analysis (PCA) is 
introduced to compress the high dimensional features to two-
dimensions. This intuitively reveals feature distributions for 
SAR and optical images under triplet loss, triplet loss with 
regularization loss, triplet loss with balancing loss, a 
combination of triplet loss, regularization loss, and balancing 
loss. Furthermore, the illustrations indicate that the feature 
distribution in Fig. 8(d) are more compact than those in Fig. 
8(a)-(c). In conclusion, the binary codes produced by the 
proposed total losses are discriminative enough to enable 
clustering of samples in the same category and separate those 
under different categories on the cross-modality retrieval task. 

Table III  
COMPARED RESULTS OF DIFFERENT LOSS FUNCTION ON SAR → OPTICAL RETRIEVAL TASK 

Feature 
Extractor 

β  γ  
Precision@200 MAP 

K=8 K=16 K=24 K=32 K=8 K=16 K=24 K=32 

Resnet18 

0 0 0.4756 0.5088 0.5675 0.6167 0.4745 0.5045 0.5512 0.6212 
1 0 0.5802 0.6055 0.6712 0.7267 0.5821 0.6027 0.6687 0.7301 
0 1 0.5598 0.6212 0.7189 0.7502 0.5538 0.6106 0.7000 0.7326 
1 1 0.7923 0.8020 0.8066 0.8192 0.7788 0.7892 0.8007 0.8084 

Resnet50 

0 0 0.4865 0.5506 0.6478 0.7145 0.4854 0.5521 0.6426 0.7023 
1 0 0.6006 0.6198 0.7023 0.7456 0.5823 0.6182 0.6832 0.7399 
0 1 0.6043 0.6786 0.7196 0.7545 0.5854 0.6656 0.7131 0.7412 
1 1 0.8194 0.8230 0.8252 0.8298 0.8132 0.8161 0.8177 0.8201 

 
Table IV 

COMPARED RESULTS OF DIFFERENT LOSS FUNCTIONS ON OPTICAL → SAR RETRIEVAL TASK 

Feature 
Extractor 

β  γ  
Precision@200 MAP 

K=8 K=16 K=24 K=32 K=8 K=16 K=24 K=32 

Resnet18 
0 0 0.5120 0.6203 0.7032 0.7820 0.5001 0.6199 0.7088 0.7792 
1 0 0.6098 0.7023 0.7613 0.8246 0.5632 0.6723 0.7538 0.8016 
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0 1 0.6692 0.7582 0.7902 0.8198 0.6628 0.7502 0.7719 0.8002 
1 1 0.8418 0.8503 0.8684 0.8643 0.8253 0.8521 0.8589 0.8659 

Resnet50 

0 0 0.5038 0.6692 0.7412 0.8087 0.5003 0.6321 0.7213 0.7901 
1 0 0.6001 0.6887 0.7612 0.8202 0.5752 0.6818 0.7723 0.8167 
0 1 0.7009 0.7612 0.7992 0.8294 0.7001 0.7574 0.7871 0.8198 
1 1 0.8621 0.8598 0.8705 0.8619 0.8572 0.8618 0.8620 0.8717 

 

 
(a)                                                           (b)                                                             (c)                                                            (d) 

Fig. 6. mAP curves with respect to different code lengths under different loss functions: (a) SAR → Optical, Resnet18. (b) SAR → Optical, Resnet50 (c) Optical 
→ SAR, Resnet18. (d) Optical → SAR, Resnet50. 

 

 
(a)                                                           (b)                                                           (c)                                                             (d) 

Fig. 7. Precision curves with respect to different number of top retrieved images under different loss functions: (a) SAR → Optical, Resnet18. (b) SAR → 
Optical, Resnet50 (c) Optical → SAR, Resnet18. (d) Optical → SAR, Resnet50. 

 

 
(a)                                                           (b)                                                              (c)                                                            (d) 

Fig. 8. Feature visualization of the learned features under different loss functions: (a) baseline. (b) baseline + β. (c) baseline + γ. (d) baseline + β + γ.  

C. Parameter Analysis 
In this section, the effect of the hyperparameters α , β  and 

γ  on mAP values are mainly explored with the code length set 
to 32. γ  and β  are set to 1. Table V shows the influence of 
the margins α  with values ranging between 0.1 and 0.9 on the 
two cross-modality retrieval tasks. It can be seen that the best 
mAP value is obtained when the α  is set to 0.3 for both 
Optical → SAR and SAR → Optical retrieval tasks, and the 
mAP value decreases gradually as α  increases. Therefore, a 
reasonable margin value increases the ability of DCMHN to 

discriminate features. Table VI shows the influence of β  with 
values ranging between 0 and 4 for the two cross-modality 
retrieval tasks with α  set to 0.3 and γ  set to 1. Table V 
demonstrates that DCMHN obtains competitive results when

=1β . By contrast, the results obtained at =0β  are poor, 
indicating that an appropriate proportion level of regularization 
loss is required to produce efficient binary hash codes. Table 
VII shows the influence of γ  with values ranging between 0 
and 4 on the two cross-modality retrieval tasks with α  set to 
0.3 and β  set to 1. These data indicate that DCMHN achieves 
slightly better results when =1γ  than when the value is 2 and 
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4. 
To intuitively show the influence of parameters on retrieval 

accuracy, a bar graph showing changes in mAP value with 
parameters is shown in Fig. 9. Notably, there is no significant 

difference between Fig. 9 (c)-(f) and Fig. 9 (a)(b). We conclude 
that the performance of DCMHN is more sensitive to β  and 
γ  than α . 

Table V 
QUANTIFYING THE EFFECTIVE OF PROPOSED NETWORK UNDER DIFFERENT ALPHA  

Cross-
modality 

retrieval tasks 

Feature 
Extractor 

=0.1α  =0.3α  =0.5α  =0.7α  =0.9α  

SAR → Optical  Resnet18 0.8025 0.8084 0.8031 0.8028 0.8017 
Resnet50 0.8198 0.8201 0.8169 0.8154 0.8133 

Optical → SAR Resnet18 0.8641 0.8659 0.8652 0.8643 0.8636 
Resnet50 0.8706 0.8717 0.8714 0.8708 0.8702 

 
Table VI 

QUANTIFYING THE EFFECTIVE OF PROPOSED NETWORK UNDER DIFFERENT BETA 

Cross-
modality 

retrieval tasks 

Feature 
Extractor 

=0β  =0.5β  =1β  =2β  =4β  

SAR → Optical Resnet18 0.7326 0.7843 0.8084 0.7967 0.7845 
Resnet50 0.7412 0.7895 0.8201 0.8169 0.8105 

Optical → SAR  Resnet18 0.8002 0.8567 0.8659 0.8443 0.8326 
Resnet50 0.8198 0.8603 0.8717 0.8606 0.8488 

 
Table VII 

QUANTIFYING THE EFFECTIVE OF PROPOSED NETWORK UNDER DIFFERENT GAMMA 

Cross-
modality 

retrieval tasks 

Feature 
Extractor 

=0γ  =0.5γ  =1γ  =2γ  =4γ  

SAR → Optical  Resnet18 0.7267 0.7825 0.8084 0.8074 0.7932 
Resnet50 0.7456 0.7903 0.8201 0.8180 0.8043 

Optical → SAR Resnet18 0.8016 0.8243 0.8659 0.8534 0.8512 
Resnet50 0.8167 0.8298 0.8717 0.8602 0.8565 

 

 
(a)                                                                                    (b)                                                                                  (c)  
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(d)                                                                                    (e)                                                                                  (f)  

Fig. 9. The influence of different parameters on retrieval accuracy: (a) The influence of α on retrieval accuracy, SAR → Optical. (b) The influence of α on 
retrieval accuracy, Optical → SAR. (c) The influence of β on retrieval accuracy, SAR → Optical. (d) The influence of β on retrieval accuracy, Optical → SAR. 

(e) The influence of γ on retrieval accuracy, SAR → Optical. (f) The influence of γ on retrieval accuracy, Optical → SAR. 

D. Comparison with several baselines 
The performance of the proposed DCMHN is determined by 

comparing the mAP values of our method with various 
baselines under different code lengths on the proposed 
SODMRSID dataset as shown in Table VIII. DCMHN_18 
denotes the proposed method with Resnet18 as the architecture 
network, and DCMHN_50 is the method with Resnet50 as the 
architecture network. All methods shown in Table VIII adopt 
deep features except DCH [49] and SCM [52]. The 
performance of the method based on handcrafted features is 
inferior in the two cross-modality retrieval tasks compared with 
deep features. This is because the hash methods based on 
handcrafted features cannot effectively preserve the semantic 
information and learn the discriminative hash codes. For this 
reason, the performance of DCMH [54] and DVSH [53] 
improve significantly, attributed to the fact that deep network 
produces more effective binary hash codes than the handcrafted 
ones. However, the methods based on deep features facilitate 
the retrieval of natural images and texts. The complexity of 
CM-CBRSIR tasks between SAR and optical sensors limit the 
performance of the two deep hash methods. Of note, 
SIDHCNNs [14] protects the modality-specific information by 
adopting two different deep architectures. However, the 
purpose of SIDHCNNs [14] is to solve CM-CBRSIR between 
panchromatic and multispectral sensors, but this success cannot 
be transferred to the CM-CBRSIR between SAR and optical 
sensors tasks. The complexity of the feature representation of 

the content of SAR images makes it hard for SIDHCNNs to 
perform well. The proposed DCMHN_18 consistently 
outperforms all the baselines on both SAR →  Optical and 
Optical → SAR retrieval tasks with different code lengths. The 
DCMHN_50 described in this study yields the best retrieval 
results among all methods. 

The computational complexity of the proposed method is 
determined by comparing the training and testing time of our 
method with various baselines as shown in Table IX. 
Considering that DCH [49] and SCM [52] are based on the 
hand-crafted features, it is unfair to compare computational 
complexity both for the training and testing phase. SIDHCNNs 
[14] is the faster one with its light network structure, but it 
cannot obtain a satisfactory retrieval accuracy. We can find that 
the proposed DCMHN_18 can achieve a competitive 
performance within a short time. 

Table IX  
TIME COMPARISON WITH DIFFERENT METHODS 

Cross-modality 
retrieval tasks 

Feature 
Extractor 

Time 
(train) 

Time 
(test) 

SAR →Optical 

DCMH [54] 3.1h 11.2s 
DVSH [53] 6.5h 39.2s 

SIDHCNNs [14] 1.9h 3.9s 
DCMHN_18 2.7h 6.1s 

Optical → SAR 

DCMH [54] 3.1h 71.1s 
DVSH [53] 6.5h 214.2s 

SIDHCNNs [14] 1.9h 19.2s 
DCMHN_18 2.7h 31.4s 

Table VIII 
THE COMPARISON OF MAP VALUES WITH DIFFERENT METHODS UNDER DIFFERENT CODE LENGTHS 

Cross-modality 
retrieval tasks 

Feature 
Extractor K=8 K=16 K=24 K=32 

SAR → Optical 

DCH [49] 0.1325 0.1742 0.1754 0.1788 
SCM [52] 0.1862 0.1893 0.1942 0.1976 

DCMH [54] 0.3623 0.3629 0.3657 0.3677 
DVSH [53] 0.3729 0.3765 0.3772 0.3783 

SIDHCNNs [14] 0.4123 0.4134 0.4216 0.4233 
DCMHN_18 0.7788 0.7892 0.8007 0.8084 
DCMHN_50 0.8132 0.8161 0.8177 0.8201 

Optical → SAR 
DCH [49] 0.2213 0.2314 0.2363 0.2376 
SCM [52] 0.1921 0.1954 0.2013 0.2019 

DCMH [54] 0.4123 0.4142 0.4145 0.4178 
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DVSH [53] 0.4353 0.4432 0.4486 0.4491 
SIDHCNNs [14] 0.4812 0.4844 0.4873 0.4876 

DCMHN_18 0.8253 0.8521 0.8589 0.8659 
DCMHN_50 0.8572 0.8618 0.8620 0.8717 

 

VI. CONCLUSION 
In this paper, we have proposed a novel deep cross-modality 

hashing network for CM-CBRSIR between SAR and optical 
sensors. To the best of our knowledge, this is the first work to 
solve the problem of CM-CBRSIR allowing the sensor between 
SAR and optical. In the proposed method, an image 
transforming strategy is introduced to convert optical images 
with three channels to four different types of single channel 
images. In this way, the diversity of the modalities is 
considerably increased, making the network pay more attention 
to the texture information of the SAR and optical images. 
Afterwards, the paired training strategy is employed to extract 
the discriminative features across different modalities. Finally, 
triplet loss combined with hash codes is conducted to reduce the 
dimension of feature and produce the efficient binary codes 
which further increases the retrieval accuracy and efficiency. 

The dataset named SODMRSID is first proposed to evaluate 
the effectiveness of the proposed method. The results 
demonstrate that the proposed method is superior to several 
baselines. 
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