
ECC Memory for Fault Tolerant RISC-V
Processors

Alexander Dörflinger1(B), Yejun Guan1, Sören Michalik2, Sönke Michalik2,
Jamin Naghmouchi2, and Harald Michalik1

1 Institute of Computer and Network Engineering (IDA), Technische Universität
Braunschweig, Braunschweig, Germany

{doerflinger,guan,michalik}@ida.ing-tu-bs.de
2 Institute for Robotics and Process Control (IRP), Technische Universität

Braunschweig, Braunschweig, Germany
{soeren.michalik,so.michalik,naghmouchi}@tu-braunschweig.de

Abstract. Numerous processor cores based on the popular RISC-V
Instruction Set Architecture have been developed in the past few years
and are freely available. The same applies for RISC-V ecosystems that
allow to implement System-on-Chips with RISC-V processors on ASICs
or FPGAs. However, so far only very little concepts and implementations
for fault tolerant RISC-V processors are existing. This inhibits the use of
RISC-V for safety-critical applications (as in the automotive domain) or
within radiation environments (as in the aerospace domain). This work
enhances the existing implementations Rocket and BOOM with a generic
Error Correction Code (ECC) protected memory as a first step towards
fault tolerance. The impact of the ECC additions on performance and
resource utilization are discussed.

Keywords: BOOM · Cache · Error correction code · Fault injection ·
RISC-V · Rocket · Scrubbing · Single Event Effects

1 Introduction

The free and open RISC-V Instruction Set Architecture (ISA) has attracted
an active community building processor cores and ecosystems, which makes it
competitive to established processor designs. There is a strong growth forecast
for the number of RISC-V cores in industrial-, consumer-, and other areas [13].
However, there are only a few approaches of fault-tolerant RISC-V designs for
safety-critical and radiation-tolerant applications, which would open its use for
the automotive and areospace domain. An exploitation of this market potential
requires compliance with corresponding safety standards.

Mitigation of transient faults is one important mechanism for fault-tolerant
electronics. ISO26262 [10] names error detection to increase the diagnostic cov-
erage, which is required for electronics of higher safety levels. Furthermore,
aerospace systems operating in environments with increased radiation levels are

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 44–55, 2020.
https://doi.org/10.1007/978-3-030-52794-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_4

ECC Memory for Fault Tolerant RISC-V Processors 45

subject to non-destructive Single Event Effects (SEEs). An effective mitigation
technique for hereby caused soft errors in memories are again error correction
(and detection) codes [8]. Therefore, this paper will present how existing RISC-V
implementations can be enhanced with Error Correction Codes (ECCs).

Contribution: This work devises and implements a highly configurable ECC
protection for arbitrary memory structures and applies it to two different RISC-V
processor systems. Some ECC implementations are already existing for RISC-V
designs. However, they cover only parts of the memory structures of a proces-
sor core and/or are limited to small low-power solutions with processing power
restrictions. The generic and configurable ECC approach of this work targets
also large RISC-V cores for high performance computing and fully covers all
memory structures. This prepares RISC-V for its use in safety-critical appli-
cations and radiation-intense environments. Together with further fault toler-
ance mechanisms (e.g., lockstep operation or other redundancy schemes), high
performance RISC-V systems could be made available for the automotive and
aerospace domain.

The rest of this paper is organized as follows: Sect. 2 presents existing fault
tolerance concepts for RISC-V processors and Sect. 3 gives an introduction to
the Chipyard1 framework used within this work. A detailed description of the
new ECC concept follows in Sect. 4. Results of its implementation are presented
in Sect. 5.

2 Related Work

The SHAKTI-F design [9] mitigates SEEs by combining ECC with recomputa-
tion techniques. It features a relatively small 5-stage in-order microprocessor.
However, its development has been discontinued and it is not maintained within
the current SHAKTI-C class core anymore. Fault tolerance of caches, typically
representing the largest and hence most susceptible memory structures within a
processor system, is not addressed. The Klessydra microprocessor [4] based on
PULPino2 is a configurable 2 to 4-stage RISC-V implementation. Several time-
and space redundancy techniques have been applied for fault tolerance. Again,
error protection for larger memory structures has not been addressed yet.

Apart from SHAKTI-F and Klessydra (being free and open), some pro-
prietary implementations are available targeting space applications. Microsemi
(Microchip Technology Inc.) offers the Mi-V3 ecosystem, which allows to instan-
tiate RISC-V cores on their radiation tolerant FPGAs. Cobham Gaisler released
the 64 bit NOEL-V4 soft-core recently. However, just as the LEON3/4 processor,
it is not fault tolerant by design; fault tolerant versions are built from radiation
hardened standard cell libraries and are hence bound to specific technologies.

1 https://chipyard.readthedocs.io/en/latest, UC Berkeley.
2 https://pulp-platform.org.
3 https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-

ecosystem.
4 https://www.gaisler.com/index.php/products/processors/noel-v.

https://chipyard.readthedocs.io/en/latest
https://pulp-platform.org
https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-ecosystem
https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-ecosystem
https://www.gaisler.com/index.php/products/processors/noel-v

46 A. Dörflinger et al.

Just as the LEON3/4 based System-on-Chips (SoCs) GR712 [5] and GR740 [6],
NOEL-V uses write-through and no-write allocate cache policies. This guaran-
tees that an erroneous cache line can be corrected by fetching its copy from a
higher memory hierarchy level at any time. It makes an error correction code
dispensable, because an error detection (e.g., parity bit) suffices. However, the
hereby utilized write policies typically yield lower performance than write-back
and write allocate.

The Rocket and BOOM RISC-V cores by UC Berkeley implement write-back
and write allocate cache policies and are partly equipped with optional ECC.
A Single Error Correction Double Error Detection (SEC-DED) code protects
the caches of the SiFive U-series IPs (U54, U74) and SoC (FU540), which uti-
lize the 5-stage in-order Rocket processor core. The BROOM tapeout [2] adds
resilience methods to the 7-stage out-of-order BOOMv2 processor. Several tech-
niques tolerate hard bit errors in L1 and L2 caches, which allows an aggressive
reduction of the core voltage. However, the approach requires to know the posi-
tion of erroneous bits beforehand (e.g. by running a built-in self-test). Hence, it
cannot correct soft errors at arbitrary bit positions and does not increase fault
tolerance.

3 Rocket and BOOM Processor Cores Within Chipyard

The Chipyard framework developed by UC Berkeley bundles RISC-V cores,
peripherals, software compilers, simulators, and further tools for SoC develop-
ment. It targets both FPGA implementations and ASIC design. Hardware com-
ponents are programmed in the Chisel hardware description language (HDL).
Chisel is based on object-oriented Scala and adds hardware construction prim-
itives. Frequently utilized hardware elements are collected in a Chisel standard
library (e.g., multiplexers, arbiters, counters, FIFO queues, etc.). As a modern
programming language, it offers high abstraction, re-usability, and parameteri-
zation options. Compared to well-established HDLs such as Verilog and VHDL,
the increased abstraction level results in a higher line of code efficiency and
speeds up development times. However, it also adds complexity to simulation
and netlist generation: Chisel code has to be compiled into an intermediate cir-
cuit representation (FIRRTL) before it is transformed into synthesizable Verilog.

Chipyard integrates two RISC-V implementations, which are both highly con-
figurable. The 5-stage in-order Rocket core [1] offers both 32 and 64 bit register
file widths, several branch prediction options, arbitrary cache sizes, and optional
ISA extensions (MAFD). The core provides three privilege levels, addresses vir-
tual memory, and is capable to boot Linux. Rocket is already equipped with the
ECC options Parity, SEC, and SEC-DED for both L1I$ and L1D$ (tag and data
each) which can be activated with limitations. Rocket provides blocking and non-
blocking versions for the L1D$. The non-blocking version allows hit-under-miss
requests, which enables the in-order processor to execute further instructions
until the load data is used. However, this powerful non-blocking L1D$ variant
does not support ECC in its tag field at all, and its implementation in the data

ECC Memory for Fault Tolerant RISC-V Processors 47

field results in compile errors (several versions up to the current v1.3 have been
tested without success).

Chipyard allows an easy replacement of the Rocket core with the 7-stage
superscalar out-of-order BOOM core [3]. The instruction fetch unit is equipped
with complex predictors (e.g., GShare and TAGE). A tapeout in TSMC 28 nm
achieved 1.0 GHz and a Coremark of 3.77 per MHz [2], which makes BOOM one
of the best performing RISC-V implementations. The BOOM utilizes the non-
blocking L1D$ version of the Rocket, hence it is afflicted with the same ECC
problems as described above. The L1I$ does not support any ECC implementa-
tion. Further resilience methods have been applied to the BOOM implementation
[2]. However, they only target static hard errors and cannot mitigate arbitrary
soft errors.

The cache resilience works on Rocket and BOOM are promising but not
complete. ECC has been successfully applied only to the Rocket core, with
restrictions. Memory structures apart from caches such as Branch Prediction
Unit (BPU) tables and the Page Table Walker (PTW) are not protected. So
far, the BOOM core lacks ECC protection for memories completely. Those gaps
are closed in this work using a generic ECC memory described in the following
section. The generic design makes it easy to apply it to all memory structures
and is not limited to L1 caches. This work concentrates on the ECC integration
in Rocket and BOOM; however, the parameterizable ECC memory interface
allows to migrate the approach to other processor implementations as well.

4 Generic Error Correcting Memory Component

4.1 ECC Memory Requirements

Within the Rocket core only caches and one BPU table are implemented as
memory arrays; all other buffers are mapped to registers due to their small
size. This results in a small number of memory arrays ranging from 4 to 11,
depending on the Rocket core configuration (Table 1). The more complex BOOM
core additionally implements several buffers of the BPU and the PTW as memory
arrays, due to their increased size. This results in 18 to 38 memory arrays within
the BOOM core, depending on its configuration. The BOOM Small and Medium
configurations differ mainly by their issue width; however, memory sizes and
organization are very similar. The same applies for differences between Large
and Mega configurations.

Enhancing all those memory arrays with ECC protection separately requires
multiple and far-reaching code changes. For the Rocket core with FIRRTL
transformation and simulation times ranging from 10 to 21 min5, this would
be still feasible. However, the BOOM core generation and simulation takes up to
185 min, making a custom ECC adaption of each memory array very laborious.

5 Depending on its configuration; measured for run-bmark-tests on Intel i5-6500
3.20 GHz, 48 GB RAM.

48 A. Dörflinger et al.

Table 1. Number of memory arrays for selected Rocket and BOOM configurations

Core configuration L1I$ L1D$ BPU PTW Sum

Rocket (Tiny) 2 2 0 0 4

Rocket (Big) 5 5 1 0 11

BOOM (Small) 5 5 7 1 18

BOOM (Medium) 5 5 7 1 18

BOOM (Large) 17 9 11 1 38

BOOM (Mega) 17 9 11 1 38

Hence, a generic ECC memory component has been developed separately, which
can simply replace existing arrays and keeps the integration effort minimal.

The access scheme (e.g., single/dual-ported) and array organization (e.g., row
of words) differs for each array, which has been considered during the develop-
ment of the generic ECC protected memory called ECCmem. Hereby the newly
created ECCmem component goes beyond existing IP such as Synopsis Design-
Ware STAR ECC IP, the ARM Artisan embedded memory IP, and Xilinx ECC
IP [14]. It is technology independent, i.e. not bound to any FPGA family or ASIC
process, and additionally mitigates error accumulation, which is not addressed
in any of the existing solutions.

4.2 ECCmem Component

Figure 1 depicts the overall ECCmem architecture. Dashed blocks are instan-
tiated depending on configuration settings. The IOs read/write request and
response make use of Chisel’s Decoupled interface, wrapping the data vectors
with a ready-valid pair. This interface abstraction allows a simple replacement
of existing memories with the ECCmem module.

ECCmem
Component

M
U

X Fault
Injection

Debug
Counters

Encoding Decoding

Correction
Buffer Memory

Array

(single/
dual

ported)
Scrubbing

resp
serror
derror

w
rit

e
re

q
re

ad
 re

q
ki

ll

M
U

X

stat

Fig. 1. Configurable ECCmem component

Depending on the capabilities of the selected ECC option, single and double
errors are signaled through dedicated outputs (serror, derror) and tracked in

ECC Memory for Fault Tolerant RISC-V Processors 49

error counter registers. Statistics on soft errors can be retrieved from further
debug counters containing the number of read/write accesses, fault injection-,
and error correction events. When relying on this error statistic information,
reads from uninitialized data have to be precluded as they may result in inad-
vertent error events. One solution is to initialize the complete memory at boot
time (applied e.g. to the BOOM data cache tag array). Another option is to
set the kill signal, canceling read accesses to uninitialized data in subsequent
clock cycles. This is a feasible solution for e.g. cache data arrays, because the
initialization information can be retrieved from the coherency flags one clock
cycle after issuing the read access.

Listing 1.1 gives an overview of the parameterization options of the ECCmem
module, which satisfy the diverse requirements of memory arrays within the
Rocket and BOOM implementations. The object oriented Chisel programming
language makes it easy to handle the parameterization. Some ECCmem ports are
conditional (depending on the configuration), which is not supported by other
HDLs.

Listing 1.1. ECCmem Parameterization

class ECCmemParams(
ecc code : Code = SECDEDCode,
r e g enc inpu t : Boolean = false ,
r eg enc output : Boolen = false ,
r e g de c i npu t : Boolean = false ,
r eg dec output : Boolean = false ,
depth : UInt = 1024 ,
row format : Vec [UInt] ,
b l o c k s i z e : Int = 8 ,
i n t e r l e a v i n g : Boolean = true ,
s i n g l e p o r t e d : Boolean = true ,
c o r r e c t i o n b u f f e r : UInt = 1 ,
scrubbing : Boolean = true ,
s c r ubb i n g i n t e r v a l : UInt = 4 ,
f a u l t i n j e c t i o n : Boolean = true ,
name : S t r ing

)

Encoding and Decoding. The ecc code parameter allows to select different
detection/correction codes. The current implementation supports the algorithms
none, parity, and hamming codes (SEC, SEC-DED). Hsiao codes could be added
in future for reduced area and delay overheads. Several reg * options allow to
insert registers at encoder/decoder inputs and outputs, which can be used to
relax timing. In particular, the decoding path can result in long signal latencies,
which may require corresponding register insertions.

50 A. Dörflinger et al.

Array Organization. The parameters depth, row format, and block size
define the array organization (Fig. 2). The read/write data may be partitioned
into several words within a row. Individual words may be accessed using a read-
/write mask. A word can be further divided into blocks, which allows arbitrary
ECC widths. This facilitates a fine-grained balancing of area overhead and encod-
ing/decoding latency: the smaller the block size, the smaller its encoding/decod-
ing latencies, but the higher its area overhead. Each block contains the original
data and ECC bits being grouped together. The interleaving option shuffles
bits of different blocks. It mitigates SEEs causing multi-bit errors in neighbor-
ing cells, because the erroneous bits will be spread across different blocks. With
the single ported option, the memory type can be selected. By default, a dual
ported memory will be generated (e.g. required for BOOM data cache). Arrays
with exclusive read/write access (e.g. BOOM instruction cache) benefit from the
optimized resource utilization of single ported memory.

word
block

row

ECC bits
data bits

depth
Fig. 2. ECCmem array organization

Correction Buffer. With the current ECC implementations (parity, SEC,
SEC-DED), two or more accumulated errors cannot be corrected, and depend-
ing on the selected ECC algorithm, not even detected. When using codes with
single error correction capabilities, the corrected data can be written back to
memory. Any correction buffer size greater 0 enables this error correction
option. It mitigates error accumulation, because a single error typically gets cor-
rected before a second SEE strikes the same block. In order to minimize the
impact on the overall system, write back accesses are assigned with a lower
priority than read and write requests. The corrected word is stored within a
correction buffer until there is no concurrent write access (and in case of single-
ported memory no concurrent read access). Corrected data must not overwrite
updated data. Therefore, an entry within the correction buffer gets cleared once
it senses a regular write access to the same memory address as the destination
of corrected data. Once the correction buffer writes its content back to memory,

ECC Memory for Fault Tolerant RISC-V Processors 51

the soft error has been removed. This error correction process typically com-
pletes before detection of a second error in another arbitrary word being read.
However, systems with high read/write loads (i.e. long retention times in the
correction buffer) and high expected error rates, may use a correction buffer
depth of >1.

Scrubbing. In the past, only very small numbers of SEE-caused soft errors
were expected in on-chip memories such as caches of earth-bound applications,
hence error accumulation has not been an issue [12]. However, the soft error rate
increases exponentially with voltage decrease, and error accumulation has to be
considered when relying on new technologies [7]. Furthermore, space applications
can be exposed to multiple SEEs within minutes [11], depending on the FPGA
or ASIC technology and the mission region. When operating under such condi-
tions, the interval of system read accesses to memory arrays is not sufficient for
preventing error accumulation. This applies for caches in particular: Cache line
access patterns are hardly predictable, which increases the probability of error
accumulation for less frequently accessed data regions.

To overcome this problem, the optional scrubbing option regularly reads the
complete memory array, and guarantees a minimum interval of single bit error
corrections. Again, the scrubbing mechanism is assigned with a lower priority
than read requests (and write requests in case of single-ported memory) to elim-
inate any negative performance impact on the overall system. As depicted in
Fig. 1, the scrubbing block generates continuous read accesses to memory. Once
the decoding block detects a correctable error in one of the reads triggered by the
scrubbing block, the corrected data will be passed to the correction buffer which
handles the write back to memory. In order to prevent an overflow, a full cor-
rection buffer forces the scrubbing process to pause. Scrubbing adds high load
on the read port of the memory, which can increase the power consumption.
This effect can be limited by setting the scrubbing interval, which defines
together with the operating frequency and memory depth the scrubbing period
(Eq. 1). When setting the scrubbing interval to 0, the ECCmem component
attempts to scrub the memory as fast as possible. In this case Eq. 1 gives only a
lower bound of the scrubbing period, because any other regular read (and write)
request stalls a scrubbing access.

scrubbing period =
1
f

· depth · (scrubbing interval + 1) (1)

Scrubbing accesses are distributed evenly in time for a balanced load dis-
tribution. To achieve this, a scrubbing counter decrements by 1 each clock
cycle and triggers a scrubbing access to the next memory row once it hits 0
(1© in Fig. 3). A scrubbing access increments the counter again by the defined
scrubbing interval. Higher priority accesses (read/write requests) delay the
scrubbing access 2©. Multiple high priority accesses could cause the scrubbing
counter to underflow, which is prevented by stalling the scrubbing access 3©.

52 A. Dörflinger et al.

t

sc
ru

bb
in

g
co

un
te

r

scrubing access
higher priority access

stalled scrubbing accesses = 0 1 0

1 2 3 4

Fig. 3. Distributing scrubbing accesses in time

Stalled accesses are executed as soon as no other high priority access blocks the
memory port 4©.

Fault Injection. The fault injection option allows sporadic injection of
1-bit and 2-bit errors with a user-defined probability into already encoded data
(containing both data- and ECC bits) when writing to memory. This feature
is used to test the functionality of the ECC, correction buffer, scrubbing, and
debug counters. It further allows to simulate the processor behavior under SEEs,
which can replace expensive radiation tests to some extent.

5 Evaluation

All memory arrays of Rocket and BOOM have been replaced with the ECCmem
component described in Sect. 4. The integration did not require any far reaching
changes, because the read/write request and response interfaces allowed a
simple mapping to existing memories. The kill signal (compare Sect. 4.2) is
generated correctly for all memories by determining the status of the memory
content (initialized/uninitialized). The ECCmem is designed to have no effect
on system performance (except when inserting additional register stages with a
reg * option). Both the write back of corrected data and the scrubbing mecha-
nism are low prioritized, preventing to thwart read/write accesses. This has been
verified running benchmark tests in a Verilator simulation for various Rocket and
BOOM configurations (Table 2). Results for the Dhrystone benchmark are iden-
tical before and after integration of the ECCmem component.

Due to the similarity of the Small/Medium and Large/Mega variants regard-
ing memory size and organization (Table 1), resource utilization results will be
discussed for the Small and Mega configurations only, but apply for the Medium
and Large variants respectively. Figure 4 (left) summarizes the resource utiliza-
tion of BOOM implementations on the Xilinx Virtex UltraScale+ VCU118 eval-
uation board and the respective overhead for ECC protection. Figure 4 (right)
plots the results for an ASIC synthesis in the GlobalFoundries 22 nm FDX tech-
nology (12 T), whereas area is reported for combinatorial cells, flip-flops, and

ECC Memory for Fault Tolerant RISC-V Processors 53

Table 2. Dhrystone results for different Rocket and BOOM configurations

Core configuration Dhrystones/s

Rocket (Big) 1912

BOOM (Small) 1920

BOOM (Medium) 2526

BOOM (Large) 3521

BOOM (Mega) 3700

memory macros separately. The ECCmem components have been configured
with default parameters, except for array specific attributes such as width, depth,
and single/dual ported variants. Hence, a SEC-DED code is applied; scrubbing,
error correction, and fault injection are activated.

k LUTs k Registers BRAM DSP
0

50

100

150

200

250

300

am
ou

nt
 o

f X
C

V
U

9P
 re

so
ur

ce
s

Small ECC
Small
Mega ECC
Mega

Comb Flop Memory
0

0.1

0.2

0.3

0.4

0.5
A

SI
C

 a
re

a
[m

m
2]

Fig. 4. Resource utilization of Small- and Mega BOOM configurations with and with-
out ECC protection. Left: Xilinx Virtex UltraScale+ XCVU9P FPGA resources. Right:
Area for GF 22 nm FDX technology after synthesis.

The FPGA resource overhead for ECC protected BOOM variants compared
to original BOOM implementations is calculated in Table 3. It shows moderate
overhead for logic (5.31%) and registers (3.44%) on average, but a large increase
of RAM resources (41.68%). The ECC memory protection has no effect on DSP
utilization. The area increase of the ASIC synthesis yields similar results.

For further evaluation of the increased RAM utilization, Fig. 5 depicts the
RAM size for caches and other memory arrays within BOOM implementations
with and without ECC protection. The overhead of RAM resources depends on
the selected ECC block size. Here the block size has been limited to 26 bits for
all memories, which adds a maximum of 6 parity bits to each block. The block
size can be only as large as the memory word size. Hence, very small word sizes
result in high area overheads, as it is the case for e.g. the Branch Target Buffer

54 A. Dörflinger et al.

Table 3. Resource/area overhead of ECC protection for BOOM cores

Core config FPGA resource overhead ASIC area overhead

LUT Regs BRAM DSP Comb Flop Mem

Small BOOM 7.50% 3.47% 42.11% 0% 7.40% 4.52% 38.89%

Mega BOOM 3.11% 3.41% 41.25% 0% 4.82% 5.77% 40.85%

Average 5.31% 3.44% 41.68% 0% 6.11% 5.15% 39.87%

Bimodal Predictor table (BTB bim) with 1 bit words. In this case, applying
TMR to this array is a more area efficient protection against SEEs.

0

10

20

30

40

50

m
em

or
y

si
ze

 [k
B

yt
e]

L1I$
 ta

g

L1I$
 da

ta

L1D
$ t

ag

L1D
$ d

ata

BTB bi
m

BTB ta
g

BTB da
ta

GSha
re

PTW

Small ECC
Small
Mega ECC
Mega

Fig. 5. ECC BRAM overhead for individual memories

6 Conclusion

In this paper we presented a generic solution to enhance existing RISC-V pro-
cessor core implementations with ECC protected memory. When selecting codes
with error correction capabilities, error accumulation can be mitigated by writ-
ing corrected data back to memory. Applying a scrubbing mechanism further
reduces probabilities of error accumulation. As a reference implementation, all
memory structures within the Rocket and BOOM cores have been replaced by
the newly developed ECC protected memory. Logic and register overheads for
the ECC protection are small, while RAM resource usage increases as expected
for the applied hamming codes. Future work will complete the fault tolerance
mechanisms for RISC-V processors by applying further redundancy techniques,

ECC Memory for Fault Tolerant RISC-V Processors 55

which enables the use of RISC-V for safety-critical applications and the aerospace
domain. Hereby, the remaining processor logic could be protected using TMR
or lockstep techniques.

Acknowledgment. This work has been funded by BMWI under grant number 50
RK 1820 and is part of the DLR Raumfahrtmanagement Komponenteninitiative.

References

1. Asanović, K., et al.: The rocket chip generator. Technical report. UCB/EECS-
2016-17, EECS Department, University of California, Berkeley, April 2016

2. Celio, C., Chiu, P., Asanović, K., Nikolić, B., Patterson, D.: Broom: an open-source
out-of-order processor with resilient low-voltage operation in 28-nm cmos. IEEE
Micro 39(2), 52–60 (2019). https://doi.org/10.1109/MM.2019.2897782

3. Celio, C., Chiu, P.F., Nikolic, B., Patterson, D.A., Asanović, K.: Boom v2: an open-
source out-of-order RISC-V core. Technical report. UCB/EECS-2017-157, EECS
Department, University of California, Berkeley, September 2017

4. Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F., Olivieri, M.: The microar-
chitecture of a multi-threaded RISC-V compliant processing core family for IoT
end-nodes. In: De Gloria, A. (ed.) ApplePies 2017. LNEE, vol. 512, pp. 89–97.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93082-4 12

5. Cobham Gaisler AB: GR712-UM, 2.12 edn. (2018)
6. Cobham Gaisler AB: GR740-UM-DA, 2.3 edn. (2019)
7. Dixit, A., Wood, A.: The impact of new technology on soft error rates. In: Interna-

tional Reliability Physics Symposium. pp. 5B.4.1–5B.4.7, April 2011. https://doi.
org/10.1109/IRPS.2011.5784522

8. European Cooperation for Space Standardization - ECSS: ECSS-Q-HB-60-02A
Space Product Assurance - Techniques for Radiation Effects Mitigation in ASICs
and FPGAs Handbook, 1 edn., September 2016

9. Gupta, S., Gala, N., Madhusudan, G.S., Kamakoti, V.: SHAKTI-F: a fault tolerant
microprocessor architecture. In: IEEE 24th Asian Test Symposium (ATS), pp. 163–
168, November 2015. https://doi.org/10.1109/ATS.2015.35

10. International Organization for Standardization - ISO: ISO 26262 - Road Vehicles
- Functional Safety, 2016 edn., April 2016

11. Michel, H., Guzmán-Miranda, H., Dörflinger, A., Michalik, H., Echanove, M.A.:
SEU fault classification by fault injection for an FPGA in the space instrument
SOPHI. In: NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pp. 9–15, July 2017. https://doi.org/10.1109/AHS.2017.8046353

12. Mukherjee, S.S., Emer, J., Fossum, T., Reinhardt, S.K.: Cache scrubbing in micro-
processors: myth or necessity? In: Proceedings of the 10th IEEE Pacific Rim Inter-
national Symposium on Dependable Computing, pp. 37–42, March 2004. https://
doi.org/10.1109/PRDC.2004.1276550

13. SEMICO Research Corporation: RISC-V Market Analysis The New Kid on the
Block, cc315-19 edn., November 2019

14. Xilinx Inc.: ECC LogiCORE IP Product Guide, PG092, v2.0 edn. (2017)

https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1007/978-3-319-93082-4_12
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/ATS.2015.35
https://doi.org/10.1109/AHS.2017.8046353
https://doi.org/10.1109/PRDC.2004.1276550
https://doi.org/10.1109/PRDC.2004.1276550

	ECC Memory for Fault Tolerant RISC-V Processors
	1 Introduction
	2 Related Work
	3 Rocket and BOOM Processor Cores Within Chipyard
	4 Generic Error Correcting Memory Component
	4.1 ECC Memory Requirements
	4.2 ECCmem Component

	5 Evaluation
	6 Conclusion
	References

