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Abstract: Driven by the recent technological advancements within the field of artificial intelligence
research, deep learning has emerged as a promising representation learning technique across all of
the machine learning classes, especially within the reinforcement learning arena. This new direction
has given rise to the evolution of a new technological domain named deep reinforcement learning,
which combines the representational learning power of deep learning with existing reinforcement
learning methods. Undoubtedly, the inception of deep reinforcement learning has played a vital role
in optimizing the performance of reinforcement learning-based intelligent agents with model-free
based approaches. Although these methods could improve the performance of agents to a greater
extent, they were mainly limited to systems that adopted reinforcement learning algorithms focused
on learning a single task. At the same moment, the aforementioned approach was found to be
relatively data-inefficient, particularly when reinforcement learning agents needed to interact with
more complex and rich data environments. This is primarily due to the limited applicability of deep
reinforcement learning algorithms to many scenarios across related tasks from the same environment.
The objective of this paper is to survey the research challenges associated with multi-tasking within the
deep reinforcement arena and present the state-of-the-art approaches by comparing and contrasting
recent solutions, namely DISTRAL (DIStill & TRAnsfer Learning), IMPALA(Importance Weighted
Actor-Learner Architecture) and PopArt that aim to address core challenges such as scalability,
distraction dilemma, partial observability, catastrophic forgetting and negative knowledge transfer.

Keywords: reinforcement learning; deep learning; neural networks; transfer learning; multi-tasking;
deep reinforcement learning; actor-mimic; policy distillation; distraction dilemma; exploration

1. Introduction

Reinforcement learning (RL) has established its position as a vital technology in domains such
as robotics and intelligent agents [1]. The major objective of reinforcement learning is to address the
problem of how reinforcement learning agents should explore their environment, and thereby learn
to take optimal actions to achieve the highest reward (end goal) while in a given state [2]. At any
given timestep T and state S, the optimal goal of an agent is to deduce a policy π, basically a mapping
from a state to an action, which maximizes the accumulated future reward over a given horizon
in the environment. Most of the earlier researches conducted towards the RL agent’s performance
optimization were based on the concept of linear function approximations to enhance RL algorithms’
generalization ability under complex environments [3]. Reinforcement learning has cemented its
position as one of the machine learning paradigms that deal with an RL agent’s behavior pattern
within an environment, in terms of how it should act in that environment, so as to maximize the
associated future reward. In comparison to the performance of machine learning systems based on
contexts such as supervised and unsupervised learning, oftentimes performance of traditional RL
agents was not optimal. This was primarily due to difficulties related to deducing the optimum
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policy out of the massive state-space associated with the environment of RL problems. Given the
fact that the field of reinforcement learning has been very well established over the last few decades,
the application of deep learning in the field of reinforcement learning has given a new dimension
to it. Especially, the inception of deep learning has given a new dimension to the representation
learning approach in comparison to the traditional feature engineering-based methodology. In general,
the feature engineering process used to be carried out manually and oftentimes considered to be quite
time-consuming, less accurate, and incomplete. Deep neural networks with deeper hidden layer
architecture can automatically learn the representations from data inputs to uncover the underlying
compositional hierarchies with high accuracy. This is primarily due to the distributed representation
methodology used by deep learning, which unveils the interdependencies between the input values
and associated features. This new approach automates the representation learning with deep learning
and provides an end-to-end learning. In the recent past, there has been significant progress in many of
the research areas related to deep learning. The most recent research advancements that happened
within the neural network class, such as convolutional neural networks (CNN), have especially helped
to achieve impressive results with applications related to vision and image processing [4].

With the above-stated developments in the deep learning arena, in recent years there has been
significant advancement in the field of deep reinforcement learning (DRL). As a result of these
developments, deep RL agents have been applied to various areas, such as continuous action control,
3D first-person environments, and gaming. Especially in the field of gaming, DRL agents surpassed
the human-level performance on classic video games, such as Atari, as well as board games, such as
chess and Go [5]. Notably, reinforcement learning played a vital role in the development of Google
DeepMind’s AlphaGo program, which beat the world’s top-level Go player in 2016 [6]. Similarly,
in the year 2015, a model-free approach based on the deep Q-network (DQN) method combined a
classical RL method with deep convolutional neural networks (CNN) and learned to play several Atari
2600 games with above-human level performance. While the performance results on the aforenoted
tasks were impressive, it was predominantly based on a single task performance approach, wherein an
RL agent is trained on each task or gameplay individually.

Despite the impressive results with a single-task based approach, the RL agent was found to be
less efficient in environments that are more complex and richer in data, such as 3D environments.
One of the directions to improve the efficiency of the RL agent is by multi-tasking-based learning.
One of the well-known definitions states that “Multi-task Learning is an approach to inductive transfer
that improves generalization by using the domain information contained in the training signals of
related tasks as an inductive bias” [7]. During multi-task learning, a set of closely related tasks will be
learned concurrently by individual agents with the help of a deep reinforcement algorithm, such as
A3C (asynchronous advantage actor-critic). With this approach, at regular intervals, the neural network
parameters of each of these individual agents will be shared with a global network. By combining the
learning parameters of all individual agents, the global network derives a new set of parameters that
will be shared with all agents. The key objective of this approach is to enhance the overall performance
of the RL agent by transferring the learning (shared knowledge) among multiple related tasks running
within the same environment. One of the key aspects of multi-task learning is that the RL agent
should develop a library of general knowledge and learn general skills that can be shared as well as
used across a variety of related tasks. Additionally, there should be a balance between the resource
necessities of multiple tasks competing for the available resources within the learning system.

The majority of the bottlenecks that slow down the advancement of multitask learning within
deep reinforcement learning are related to factors such as effective system resource management within
the multiple tasks and scalability [8]. Scalability is closely related to the two major weaknesses of
the RL algorithms. Firstly, training of RL algorithms usually takes a considerable amount of time
and also needs more data samples to converge to an acceptable result. Secondly, an RL agent that
is trained on a specific task can only be used with the same task [9]. By considering the above two
drawbacks of typical RL algorithms, multi-task learning within the deep reinforcement domain must



Electronics 2020, 9, 1363 3 of 21

be able to provide better results in comparison to single-task learning of the individual tasks. Similarly,
there should be a proper balance established between the resource requirements of multiple tasks
that often compete for the limited resources of a single learning system used by the RL agent. This is
more closely related to the fact that, from an agent’s perspective, the importance of a particular task
increases with the scale of the reward observed in that task, and it can vary arbitrarily across tasks
during multi-task learning.

One of the most widely accepted multi-task learning methodologies within reinforcement learning
is named parallel multi-task learning, in which a single RL agent is used to master a group of diverse
tasks [10]. The core idea behind this approach is that architecture used by the deep reinforcement
learning models uses a single learner (critic) combined with different actors. Further on, each of
the individual actors generates their learning trajectories (which are a set of parameters) and sends
them to the learner either synchronously or asynchronously. After this stage, each of the actors
retrieves the latest set of policy parameters from the learner before the next learning trajectory begins.
With this approach, learning from each of the individual tasks will be shared with every other task,
which internally improves the overall learning momentum of the RL agent.

Contributions

The primary objective of this survey is to present details on the integration of multi-tasking featuring
deep reinforcement learning as well as the state-of-the-art in the deep reinforcement learning (DRL)
arena with a parallel multi-tasking feature. To this end, this survey has been organized in such a way
that it starts with the details of canonical reinforcement learning and various challenges associated with
it. As part of the survey efforts, multiple literature survey papers were examined that are predominantly
related to the foundations of deep reinforcement learning and its applicability. One of these surveys
analyzed the foundations of reinforcement learning, which covers core elements such as dynamic
programming, temporal difference learning, exploration vs. exploitation, function approximation,
and policy optimization [11]. A second survey analyzed how deep reinforcement learning could
revolutionize the field of artificial intelligence and pave the steps towards the development of
intelligent agents that can understand the visual world in a better way [12]. Additionally, this survey
also attempted to give an outlook on the various related algorithms and the distinct advantages of
deep reinforcement learning within the context of reinforcement learning. Subsequently, a couple
of additional survey papers were examined, which mainly focused on the applicability of deep
reinforcement learning in specific domains such as autonomous driving [13]. Additionally, another
area that was examined was the applicability of deep reinforcement learning to the improvement of
target-driven visual navigation in indoor scenes. Further on, the survey touched on the basic aspects of
multi-tasking, and how this particular aspect has been related to the deep reinforcement learning (DRL)
domain [14]. Following this, special attention was paid to surveying various methodologies that were
attempted for the implementation of the multi-tasking aspect within the reinforcement learning arena.
In light of this, multiple research papers were analyzed to survey the multi-tasking methodologies
adopted within the reinforcement learning arena. One such effort was based on a research paper
that detailed sparse multi-task reinforcement learning [15]. A second survey effort was focused on
multi-agent reinforcement learning in Markov games, based on a study that investigated multi-agent
learning in complex task environments [16].

Subsequently, the survey focus was directed toward addressing multiple research challenges
associated with the application of multi-tasking in deep reinforcement learning; it then finally examined
the three major state-of-the-art solutions that are implemented to overcome some of those challenges.
Throughout this literature survey, the key focus remained on investigating various methodologies that
are related to multi-tasking-related aspects. Analysis of each one of these methodologies was carried out
by focusing on its applicability in the context of deep reinforcement learning. There is a growing amount
of literature that is specially focused on multiple aspects within deep reinforcement learning, including
multi-tasking [17]. As part of investigating such recent survey efforts from the literature, multiple
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survey papers were analyzed. One of the surveys analyzed predominantly focused on the integration
of multi-agent-based learning features into deep reinforcement learning, often referred to by the term
multiagent deep reinforcement learning (MDRL) [18]. There is research literature that examined the
applicability of transferring learning across multiple reinforcement learning tasks towards achieving
the multi-tasking capability within the deep reinforcement learning. The key focus of this literature
was on identifying a framework by which an RL agent can benefit from transfer learning by leveraging
experiences gained from previous tasks from a common learning environment [19]. In addition to this,
there are also surveys from the literature that examined the applicability of knowledge reuse within
the multiagent system under reinforcement learning. The objective of this approach was to find ways
of joining the advantages of using transfer learning within a multiagent environment for reinforcement
learning problems [20]. A couple of more surveys were also surveyed the recent efforts in this direction,
and the core methodology adopted among those was based on multiagent-based learning [21].

In comparison to all the aforementioned surveys analyzed from the literature, our survey is
different as we explain here. To this end, the contributions of this paper are:

1. Examining the state-of-the-art within the deep reinforcement learning domain concerning the
multi-tasking aspect.

2. Single source reference for implementation details as well as comparison study of three of the major
solutions developed to incorporate the multi-tasking aspect with deep reinforcement learning.

3. Provides details on most of the methodologies attempted to bring the multi-tasking feature into
the deep reinforcement learning arena under a single survey.

4. Survey of the majority of the research challenges that are being encountered concerning the
adaptation of multi-tasking into deep reinforcement learning.

The remaining sections of this paper are structured as follows. Section 2 presents an overview of
reinforcement learning (RL), with details provided on various related aspects. The objective of Section 3
is to present details about various approaches used within deep reinforcement learning to incorporate
the multi-tasking aspect. Further on, Section 4 focuses on the various key research challenges that act
as the major bottlenecks within deep reinforcement learning. Section 5 discusses three state-of-the-art
solutions named DISTRAL [22], PopArt [10], and IMPALA [23], which incorporate the multi-tasking
aspect into the deep reinforcement learning arena. Additionally, this section also provides a brief
comparative study of these three approaches. Finally, concluding remarks are presented in Section 6.

2. Overview of Reinforcement Learning

Reinforcement learning (RL) is one of the machine learning paradigms dealing with sequential
decision-making that involves mapping situations to actions in a way that maximizes the associated
reward. Within RL ecosystems, the learner, which is also known as an agent, is not explicitly instructed
on which actions to take at each timestep t, but instead the RL agent must follow a trial-and-error
method to identify which actions generate the most reward. One of the most challenging aspects of the
RL is that actions that have already been carried out may affect not only the immediate reward but also
the further states and, through that, all subsequent rewards. Reinforcement learning distinguishes
itself from other machine learning methods by the above two characteristics—trial-and-error search
and delayed reward [1]

2.1. Reinforcement Learning Setup

A standard reinforcement learning setup consists of an agent situated within an environment
E, where an agent will be interacting with the environment in discrete timesteps. At each of these
timesteps t the agent will be in a state St and will be performing an action within the environment.
Further on, the environment responds by updating the current state St to a follow-up state St+1 with a
new timestep t+1 and also gives a reward to the agent, indicating the value of performing an action
in the preceding state St [1]. Figure 1 below represents the standard ecosystem for a reinforcement
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learning environment at any given timestep t. By performing multiple actions in a sequential learning
manner in a sequence of associated states s, with related actions a, respective follow-up states s’ and
rewards r, several episodes of tuples of <s, a, s’, r> are generated. At any state St, the goal of the agent is
to determine a policy π that can create a state to an action mapping, which maximizes the accumulated
reward over the lifetime of the agent for that particular state [9].
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2.2. The Markov Property

Formally, the reinforcement learning environment is considered as the mathematic representation
of a Markov decision process (MDP) [24]. MDP consists of the following major components:

• Set of all possible states that an agent can be while in the environment, represented by S.
• Set of all possible actions that an agent can take while in a state s € S, denoted by A.
• Transition dynamics function T defined as T (s, a, s’) = Pr (St+1 = s’|St = s, A = a). Since the actions

are considered part of a probability distribution, here T represents distribution over the possible
resulting state by taking a specific action while in a given state s.

• A reward function, R, associated with a state transition by taking a specific action R (St, at, St+1).
• A discount factor γ [0,1], which will be used for the calculation of discounted future rewards

associated with each state transition. Generally, a low discount factor value will be applied for
expected future rewards for state transitions leading to the nearby states, whereas a high discount
factor value will be applied for rewards associated with actions leading to states that are far from
the current state [24].

Reinforcement learning models are denoted by the Markov decision process because often such
models make the Markov assumption. The core idea behind the Markov assumption is that if one
knows the current state one is in, then the history (sequence of actions and states that took the agent
to the current state) does not matter. Going with this key assumption, the core concept underlying
each of the RL problems is the Markov decision property—which says that only the current state will
have an influence on the next state, and given the current state, the future is independent of the past.
In another way, it can be interpreted as any action taken at state St can be solely based on the state
immediately preceding it, St-1, but totally independent of all other states {S0, S1,........, St−2} [25]. In the
context of RL, the term policy π is used to define a mapping from a state to a related action that is
defined over the probability distribution of actions.

This can be denoted as π(s): S−>Pr (A = a|S). A policy is considered to be an optimum policy π*(s)
for a state s if the specified action taken from that particular state can lead to the maximum expected
discounted future reward [24]. In theory, the final objective behind each of the reinforcement learning
(RL) agents is to solve the MDP by deducing an optimum policy.

2.3. Key Challenges of Reinforcement Learning

Some of the major challenges related to reinforcement learning (RL) can be summarized as follows:
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• By heavily relying only on the reward values, an agent needs to follow a brute-force strategy to
derive an optimal policy.

• For every action taken while in a particular state, the RL agent needs to deal with the complexities
related to the maximum expected discounted future reward for that action. This scenario is often
denoted as the (temporal) credit assignment problem [26].

• With environments with a 3D nature, the size of the continuous state and action pairs can be
quite large.

• Observations of an agent from a complex environment heavily depend solely on its actions,
which can contain strong temporal correlations.

2.4. Multi-Task Learning

The traditional learning methodology followed in machine learning is to learn one task at a
time. Under this methodology, complex and large problems are broken into small and independent
subproblems that are learned separately, then eventually all of this learning is combined towards the
overall solution of the problem [27]. There could be occasions in which this approach can be less
productive, especially when dealing with complex real-world scenarios (such as autonomous driving
systems) that have a source of information with a lot of interdependent tasks. For these kinds of
situations, if multiple tasks can learn together and then share their knowledge among themselves,
eventually that would make the generalization performance of the overall system increase to a greater
extent in comparison to the traditional approach explained above. Multitask learning (MTL) is defined
as an inductive transfer mechanism with the key objective to improve generalization performance [28].
The core objective behind multi-tasking is to follow a learning-to-learn methodology so as to leverage
the domain-related information accumulated by training the individual, related tasks in parallel with
a shared representation of the system [7]. In this way, the knowledge that is acquired during each
task learning can be utilized and thereby help other tasks be learned better. Eventually, with this
approach multitask learning improves the overall generalization performance, which can be applied
across many domains including RL, and can be used with different learning algorithms within the RL
arena. From the perspective of reinforcement learning, multi-task learning is an approach intended to
optimize the performance of an agent under the assumption that performance bottle-neck problems
experienced by the agent are drawn from the same distribution. When it comes to deep reinforcement
learning, multi-tasking could be applied from various levels, such as single agent–multiple tasks and
multiple agents–multiple tasks.

3. Deep Reinforcement Learning with Multi-Tasking

In recent years, deep reinforcement learning (DRL) has emerged as the state-of-the-art in many
benchmark tasks as well as real-world problems, due to which a growing level of attention has been
paid to various methods for its optimization. The following sections discuss various approaches and
techniques developed for multi-task DRL that are presented in related works.

3.1. Transfer Learning Oriented Approach

Before the inception of deep learning into the reinforcement learning arena, most of the early
research efforts on the development of the multi-task-oriented algorithm within reinforcement learning
attempted to use the assistance from transfer learning. The core idea behind transfer learning is
about transferring knowledge across different but related source and target tasks to improve the
performance of machine learning (ML) algorithms used for learning the target task. Transfer within
the reinforcement learning predominantly focuses on deriving various methods to transfer knowledge
from a set of source tasks to a target task. This approach has shown good results when the similarity
levels within the source and target tasks were similar. If the similarity level between the source and
target tasks is quite high, then the transferred knowledge can be quite easily used by the underlying
learning algorithm to solve the target task efficiently. This is due to the reason that under such
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a situation, learning algorithms could achieve optimal performance by leveraging the transferred
knowledge rather than relying on more data samples for learning the target task. By leveraging the
above methodologies, transfer learning methods have been already applied to single agent-based RL
algorithms [29].

There were also research attempts related to extending the same methodologies concerning
the multi-agent systems, wherein agents interact with other agents acting in the same environment,
and then use the knowledge resulting from their actions as well [30]. In general, multi-agent systems
are based on a joint policy that the agents learned in the source task (training task), and then use this
policy knowledge to formulate the initial policy of the agents in the target task towards the same.
Transfer of knowledge is done differently between the source and target tasks with the help of multiple
transfer methods, such as instance transfer, representation transfer, or parameter transfer. In each of
these methods, underlying transfer algorithms rely heavily on prior knowledge learned when solving
a set of similar source tasks and use it as a reference to bias the learning process on any new task.

3.2. Learning Shared Representations for Value Functions

This is an approach quite similar in nature to the transfer learning methodology. This method was
developed based on the function approximation capability of neural networks and their application
into the reinforcement learning domain [31]. The major factor behind the success of deep neural
networks with reinforcement learning was due to deep learning algorithms’ key ability to distill
meaningfully representations from high-dimensional input states associated with the environment [32].
This key factor scaled up the applicability of RL to more complex environments and scenarios that
were previously impossible or demanded a great level of feature engineering [31]. The ability to
develop a good abstraction of the environment and the agent’s role within that environment are the
pivotal factors behind the success of this approach [33]. The core idea behind this approach is based on
the assumption that different tasks that an RL agent needs to learn during its life may have a shared
structure and in-built redundancy. If these common factors can be abstracted, then it could play a vital
role in speeding up the entire learning process. Learning shared representations is a way to achieve
this objective through learning robust, transferable abstractions of the environment that generalize
over a set of tasks encountered by the agent while in the environment [34].

The value function is one of the key ideas within the reinforcement learning domain, and is being
used primarily in conjunction with functional approximators to generalize over large state-action
spaces associated with an agent’s environment [26]. Value functions are being calculated and used
as a key measure to indicate how good a particular state is. Value functions exhibit a compositional
structure concerning the state space and goal states [35]. Additionally, earlier researches have shown
that value functions can capture and represent knowledge beyond their current goal that can be
leveraged or re-used for future learning [36]. By leveraging the state-action value space of common
structures shared among different tasks that an RL agent will be handling during its lifetime while in
an environment, optimal value-functions can be learned. This can be achieved by accommodating the
common structure mentioned above into the popular value iteration and policy-iteration procedures
named fitted Q-iteration and approximate policy iteration, respectively.

3.3. Progressive Neural Networks

This is an approach quite similar in nature to the transfer learning methodology. This method
was developed based on the function approximation capability of neural networks. One of the major
challenges associated with the optimization of multi-tasking learning within the DRL arena was related
to leveraging the transfer of learning, and also how to avoid catastrophic forgetting. As a solution to
this problem, various researches have been conducted, and one such step forward in this direction is
an approach named progressive neural networks. It has the ability to protect itself from catastrophic
forgetting and can also leverage prior knowledge with the help of lateral connections to previously
learned features. The progressive neural network is a multi-tasking methodology developed by
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DeepMind using the concept of lateral features transferring that leverages on neural networks [37].
The key characteristic of the model proposed by this methodology is that it possesses the ability to
learn new tasks and also maintain previous knowledge learned with the help of progressive neural
networks. The idea of having a continuous chain of progressive neural networks is to facilitate the
transfer of knowledge across a series of tasks.

Conceptually, progressive neural networks have been designed with the following goals:

• Have a system with the ability to incorporate prior knowledge during the learning process at each
layer of the feature hierarchy;

• Develop a system with immunity to a catastrophic forgetting scenario.

One of the biggest advantages of this approach is that progressive networks have the ability to
retain a group of pre-trained models throughout the entire training cycle [37]. In addition to this,
progressive networks can also learn lateral connections from the pre-trained model to extract useful
features for new tasks. This kind of approach with a progressive nature brings richer compositionality,
and also allows easy integration of prior knowledge at each layer of the feature hierarchy. This type
of continual learning allows the agents to not only learn a series of tasks that are experienced in
sequence but simultaneously possess the ability to transfer knowledge from previous tasks to improve
convergence speed [38]. Progressive networks integrate these features into the model architecture
where catastrophic forgetting is prevented by instantiating a new neural network (a column) for
each individual task that is being solved during an agent’s lifetime in the environment. Along this,
knowledge transfer is enabled through lateral connections to the list of features from the previously
learned columns [37]. At any timestep, whenever a new task is learned, the model adds a new column
of knowledge into its existing framework in the form of a new neural network unit. Further on,
this new unit will be used during the learning of successive tasks. Each column (neural network
unit) will be trained to solve a particular Markov decision process (MDP) [37]. One of the possible
downsides associated with this methodology is that it could be computationally expensive due to its
growing size as the learning cycle progresses.

3.4. PathNet

PathNet is a multi-task reinforcement learning approach that was developed with the objective of
achieving artificial general intelligence (AGI) by combining the aspects of transfer learning, continual
learning, and multitask learning [38]. It is based on a neural network algorithm that uses multiple
agents that are embedded in the neural network. The objective of each of these agents is to identify
which parts of the network to re-use while learning new tasks [7]. Agents are the pathways (also
known as genotypes) within the neural network that determine the subset of parameters that are used
during the learning process [39]. These parameters, which are used for the forward propagation of
the learning process, often undergo modification during the backpropagation stage of the PathNet
algorithm. During learning the learning process, a tournament selection genetic algorithm will be
used for the selection of pathways through the neural network. Agents execute actions within the
neural network and build the knowledge on how effectively existing parameters in the environment of
the neural network can be re-used for new actions (tasks). Agents often work in parallel with other
agents who are learning other tasks and share parameters among them for positive knowledge transfer;
otherwise, they update the disjoint parameters that are causing negative knowledge transfer [39].

A PathNet architecture consists of a deep neural network having L layers, with each layer having
M modules. Each of these modules will be a neural network. The integrated outputs of the modules
from each of the layers will be passed into the active modules in the next layer. In every layer, there
will be a maximum number of modules (typically 3 or 4) that are allowed for each of the pathways [39].
The final layer within the neural network of each of the tasks that are being learned is unique and will
not be shared with any other task within the environment. One of the advantages of the PathNet is that
with this approach a neural network can quite efficiently reuse existing knowledge instead of learning
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from scratch for each task. This feature could be extremely useful in the context of reinforcement
learning, where there are numerous interrelated tasks present in state space [39]. Research regarding
PathNet have exhibited positive results for the knowledge transfer for binary MNIST dataset (Modified
National Institute of Standards and Technology), CIFAR-100 dataset (Canadian Institute For Advanced
Research), and SVHN dataset (The Street View House Numbers) supervised learning classification
tasks, and a set of Atari and Labyrinth reinforcement learning tasks.

3.5. Policy Distillation and Actor-Mimic

Policy distillation (PD) and actor-mimic (AM) are the two approaches that leverage the concept of
distillation towards achieving multi-task deep reinforcement learning.

3.5.1. Policy Distillation

Distillation is an approach related to minimizing computational costs of ensemble methods [40].
An ensemble is nothing but a set of models whose prediction values are combined by following a
weighted averaging or voting method [41]. Ensemble methods have been one of the significant research
areas in the past decade, and some of the popular ensemble methods include names such as bagging,
boosting, random forests, Bayesian averaging, and stacking [41]. Two of the disadvantages associated
with most of the ensembles are that they are often large in terms of memory size needed, and slow due
to the time required to execute them at run-time. To cope with these disadvantages, the distillation
technique was proposed, which is based on a model compression methodology. The key idea used
behind this methodology was to compress the function that is learned by a complex model (often an
ensemble) into a much scaled-down, faster model that has comparable performance with the original
ensemble [41]. Later on, the same methodology was mapped into the neural networks domain [42].

By following the concept of model compression that was explained above, policy distillation can
be viewed as a technique used to extract the policy of a reinforcement learning agent. Further on this
policy will be used to train a new network that performs at the expert level with a smaller size and with
higher efficiency [40]. Furthermore, the same methodology can be extended to consolidate multiple
task-specific policies into a single policy for the RL agent. Early researches of policy distillation were
done with the reinforcement learning algorithm named DQN (deep Q-network). The policy distillation
technique was successfully used for transferring one or more active policies from deep Q-networks
to an untrained network. DQN is one of the popular state-of-the-art model-free approach used for
reinforcement learning by using deep neural networks, which operates within an environment with
discrete action choices. This algorithm was shown to surpass human-level performance on a group of
diverse Atari 2600 games [31].

Distillation can be applied both at a single task level (single game policy distillation) as well
as a multi-task level as a knowledge transfer method from a teacher model T to a student model
S. Under the single task policy distillation, data generation will be done by the teacher network
(a trained DQN agent) and further on supervised training will be carried out by the student network.
In order to achieve multi-task policy distillation, n different DQN-based single-game experts (agents)
are trained separately [40]. After this, these agents individually generate the inputs and targets and
store these data in different memory buffers. Further on, the distillation agent learns from these n data
stores sequentially.

3.5.2. Actor-Mimic

One of the key aspects of an intelligent agent is its capability to act in multiple environments and
transfer the knowledge accumulated from past experiences to new situations. Actor-mimic is such
an approach that mainly concentrates on multitask and transfer learning aspects. These capabilities
enable an intelligent agent (RL agent) to learn how to act with multiple tasks simultaneously, and then
generalize this accumulated knowledge to new domains [43]. In general, actor-mimic can be viewed as
a method for training a single deep policy network by using a group of related source tasks. A model
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that was trained with this method was found to reach expert-level performance on many games.
More importantly, with a significant level of similarity between the source and target tasks, features
that are learned during the training of the source tasks can be used well for generalization while
training the target tasks [44].

The actor-mimic approach leverages both deep reinforcement learning and model compression
techniques to train a single policy network. The objective of such training is to make the network
learn how to act in a set of distinct tasks under the guidance of several expert teachers. Further
on, representations learned by this deep policy network can be used for generalizing to new tasks
with no prior expert guidance. This approach was predominantly tested within the arcade learning
environment (ALE) [45]. Often, actor-mimic is treated as part of the larger imitation learning class of
methods that are based on the idea of using expert guidance to teach an agent how to act within an
environment. Under the imitation learning methodology, a policy will be trained to directly mimic an
expert’s behavior during sampling the actions from the mimic agent [43].

3.6. Asynchron ous Advantage Actor-Critic (A3C)

A3C (asynchronous advantage actor-critic) is an algorithm that was introduced by DeepMind,
which proposed a parallel training approach. As per this methodology, there will be multiple
agents (also known as workers) that are executing in parallel on multiple instances of the same
environment [46]. These multiple workers running in parallel environments update a global value
function in an asynchronous fashion. During the training, at any particular time-step t, all these parallel
agents will be experiencing a variety of different states, which almost makes the learning of all agents
unique. As a result of this uniqueness factor, A3C provides agents with an effective as well as efficient
exploration of the entire state space within the environment [47]. Originally, A3C was an extension of
the actor-critic method, wherein there will be two independent neural network components named
actor and critic, each with its loss functions. An actor can be considered as a function approximator
that guides on how to act, as it is being judged by RL methods, such as Q-learning or in REINFORCE.
In both of these methods, a neural network will be computing either a function that leads to a policy or
directly calculating the policy itself. The role of the critic is more like evaluating the effectiveness of the
policy made by the actor and giving feedback for further enhancement of the policy [46]. Figure 2 is
the representation of a typical actor-critic model upon which A3C is based.
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The critic generally estimates the value function that could be either an action-value (the Q
value) or a state-value (the V value), whereas the actor updates the policy distribution according
to the feedback provided by the critic (such as with policy gradients). For every action taken in a
state, there will be an advantage value, A, that will be calculated by subtracting the Q value term
from the V value. The advantage value A tells us how much better it is to take a specific action
compared to any other possible action at a given state. The advantage actor-critic method falls into
two categories: asynchronous advantage actor-critic (A3C) and the advantage actor-critic (A2C).
From a multi-tasking perspective, the impact of A3C comes from its aspects of parallelized and
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asynchronous architecture to take advantage of parallelism jointly with the actor-critic method [48].
According to this, multiple actor-learners (critics) will be dispatched to individual instantiations of the
environment wherein each of these instantiations interacts with the environment and collects their
individual experience, and finally asynchronously pushes their gradient updates to a central target
network (global network) [46]. Update to this single global network, with which all other different
and independent threads are linked, is often done after a determined number of steps (typically after
every 20 steps) when gradients are accumulated. By following the methodology of training different
task instantiations simultaneously, A3C brings the scarcity factor to the training data and removes the
need for a memory replay [31]. Figure 3 depicts the representation of the high-level architecture of the
multi-task execution model of the A3C algorithm.
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3.7. Others

This subsection examines various other recent works and frameworks from the literature that
are related to reinforcement learning with multi-tasking. One of the recent works analyzed from the
literature is related to the use of multi-task reinforcement learning within the area of end-to-end video
captioning. Generally, video captioning is being treated as one of the challenging benchmark tasks
within computer vision, where traditional end-to-end (E2E) learning is less effective as its performance
is often impacted by a factor such as hardware limitations and overfitting [49]. As a mitigation strategy
to overcome those limitations, a multitask reinforcement learning-based approach was adopted to
train an end-to-end (E2E) video captioning model. The core idea behind this approach is based on
the actions of mining and constructing as many effective tasks as possible (which internally represent
attributes, rewards, and the captions) from the input video, which will eventually use the search space
for the end-to-end (E2E) reinforcement learning network to generate the video captioning model [49].
This model functions as a multitask end-to-end network that combines the multisampling reinforce
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algorithm to generate video captions. Empirically, it has been proven that this model can deliver better
results than existing methods for video captioning.

The second work analyzed from the literature is about an embodied multimodal multitask learning
model that uses the power of deep reinforcement learning. Nowadays deep reinforcement learning is
extensively used to train embodied AI agents that interact with a 3D environment. As they interacts
with the environment, they receive a first-person view of the environment and further take various
navigational actions. Embodied AI navigation agents based on deep reinforcement learning have
proven to be quite successful in deriving policies for various multimodal tasks. Some of these tasks
include semantic goal navigation and embodied question answering [50].

Another popular framework that was surveyed is MARES, which stands for multitask learning
algorithms for Web-scale real-time event summarization. Real-time event summarization involving
very large document streams is being considered as a huge research challenge within the natural
language processing domain. The key characteristics of MARES are linked with its power of leveraging
supervised deep neural networks as well as a reinforcement learning algorithm to make the effective
representation learning of documents [51]. MARES can be viewed as a multi-task system, wherein
a document modeling module will be shared across tasks and consists of the following two key
components: (i) a prediction classifier based on a hierarchical LSTM model that will be used for
learning the representations of queries and documents; (ii) with the assistance of a reinforcement
learning algorithm, there will be a document filtering model that learns to maximize the long-term
rewards [51].

4. Research Challenges

The following section gives an outline of the various challenges associated with multi-task learning
within the deep reinforcement learning environment.

4.1. Scalability

Incorporating multi-task learning is being considered as one of the major challenges of artificial
intelligence and deep reinforcement learning in particular. The key bottleneck behind this challenge is
the scalability factor [8]. This can be linked with one of the key weaknesses of typical RL algorithms.
Typically, RL algorithms need more training data samples as well as relatively long training time to
converge into an acceptable result [9]. From the multi-tasking context, it should not take N times as
many samples or training times to learn N different tasks. The RL agent that possesses the multi-task
learning capability should be able to leverage the knowledge acquired from individual task learning
and should be able to transfer it across other task learning processes.

4.2. Distraction Dilemma

One major challenge concerning multi-tasking within deep reinforcement learning is related to
establishing a balance between the needs of multiple tasks within the environment competing for
the limited resources of a single learning system (environment). This is related to the probability of
learning algorithms often getting distracted (often called the distraction dilemma) by a few tasks from
the set of multiple tasks to solve [10]. Typically, this situation demands a multi-task reinforcement
learning (MTRL) system to build the immunity against the distraction dilemma and establish balance
concerning mastering individual tasks against the ultimate goal of achieving better generalization.
The prime reason behind this distraction scenario occurs because some of the tasks appear more salient
to the learning process due to the associated density or magnitude of the rewards for such tasks (in-task
rewards) [10]. At different timesteps during the lifecycle of a RL agent within an MTRL system, agents
are going to be met with tasks that appear to be more salient to the learning process. This prompts the
algorithm to give more attention to such tasks and then focus on those salient tasks at the expense
of generality by giving less importance to other tasks in the multi-tasking environment. This indeed
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causes the multi-task reinforcement learning (MTRL) agents to often focus on the wrong tasks by
ignoring or giving less importance to a few of the other tasks.

4.3. Partial Obeservability

In many of the real-world scenarios, an observation by the RL agent might only capture a small
part of the full environment state, and hence the agent might not have the scope to observe the entire
environment [8]. With this partial observability factor in the background, the agent still needs to
take an optimal action for each of the states. This demands that the agent remember not only the
current observation but also the past observation to make the optimal decision on actions. When the
state-action space is big, then this challenge additionally involves the challenge to learn and remember
a compact representation of the environment with the most salient details from the environment.

4.4. Effective Exploration

In general, reinforcement learning is based on a brute-force method, wherein the RL agent learns
by following a continuous trial-and-error-based learning. From the reinforcement learning context, it is
described by the terminologies of named exploration and exploitation. RL agents learn by following
this method and attempt various actions possible from a particular state to evaluate the optimal action
that gives the highest cumulative future reward [8]. Often, a higher level of exploration could be
difficult to achieve while attempting to apply reinforcement learning in real-world problems, such as
self-driving [17]. Even though methods such as imitation learning and mimicking the desired behavior
(simulators) can be used to overcome this, such a trained model often cannot achieve a higher level of
generalization while applying it in real environments.

4.5. Catastrophic Forgetting

One of the long-standing goals behind the idea of multi-tasking within the deep reinforcement
domain is not only training the agents to learn a series of tasks that are experienced in sequence but
also giving them the capability to transfer knowledge from previous tasks to improve convergence
speed while training with new tasks [38]. The key bottleneck in achieving the latter goal is a scenario
known as catastrophic forgetting (catastrophic interference). This is a scenario related to continuous
learning in which deep neural networks will have the probability (tendency) to abruptly lose the
information that was learned from a previous task (task A) as information relevant to another task
(current task B) is incorporated. Often, this situation arises when the agent is trained sequentially
on multiple tasks within an RL environment. The key reason behind the situation is due to the
changes in the network parameters (weights) that are related to task A getting overwritten to meet the
objectives for task B [38]. This phenomenon is considered to be the biggest barrier to creating artificial
general intelligence (AGI), as it negatively impacts the capacity for continual learning. Thus, it is
quite important that multi-tasking deep reinforcement learning (MTDRL) agents should be immune to
catastrophic forgetting.

4.6. Negative Knowledge Transfer

Negative transfer is considered to be one of the key challenges while dealing with the multi-tasking
within the reinforcement learning domain. The main idea of transfer learning in a multi-task context is
that transferring knowledge accumulated from learning from a set of source samples may improve
the performance of an intelligent agent while learning the target task [43]. However, this knowledge
transfer could impact the overall learning progress and performance of the agent either positively or
negatively. If there is a considerable difference between the source tasks and target tasks, then the
transferred knowledge could create a negative impact. Due to the aforementioned factor, negative
knowledge transfer is considered to be one of the key challenges that are suffered by multi-task deep
reinforcement learning (MTDRL) methodologies, such as policy distillation [40]. In the following
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section, we discuss various solutions that have already been developed to add multi-tasking features
into the deep reinforcement learning arena.

5. Review of Existing Solutions

A significant part of the research efforts conducted within the area of multi-task deep reinforcement
learning (MTDRL) is by research organizations such as DeepMind and OpenAI. As a result of
such research efforts, three major MTDRL solutions, namely DISTRAL, IMPALA, and PopArt have
been designed.

5.1. DISTRAL (DIStill & TRAnsfer Learning)

The common norm that was considered to be the baseline for multi-tasking in the reinforcement
learning was based on the approach to follow a transfer-oriented methodology, such as sharing the
neural network parameters across related tasks in the environment [52]. Often, this approach met
with bottlenecks, such as negative knowledge transfer scenarios, and ambiguity on how to design
the reward system for various tasks. In a multi-task environment, the reward system should be
designed such that there would not be a scenario in which one single task will be leading the learning
of the shared model. DISTRAL is a new approach that was developed for multi-task training by
considering the above-mentioned concerns. DISTRAL was designed as a framework with the objective
of simultaneous reinforcement learning of multiple tasks [22]. The major design focus was on building
a general framework for distilling the centroid policy and then transferring common behaviors of
individual workers in multi-task reinforcement learning. Instead of the parameter sharing among the
various workers within the environment, the key idea behind the design of DISTRAL was to share a
distilled policy that can capture common behavior across tasks.

Figure 4 (adopted from [22]) shows the architecture of the DISTRAL model.
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The design of DISTRAL is based on the notion of a shared policy that distills common behaviors
or representations from task-specific policies of individual tasks trained within the environment [42].
After deducing the distilled policy, further on it will be used to guide task-specific policies through
regularization by using a Kullback–Leibler (KL) divergence [43]. In this way, firstly knowledge gained
in one task is distilled into the shared policy, and then finally transferred to other tasks [40]. With this
approach, each worker will be individually trained to solve its own task by staying as close as possible
to the shared policy. This shared policy will be trained by using the distillation, which acts as the
centroid of all task policies. This method was proven to be quite efficient for the transfer of knowledge
in RL problems that involve complex 3D environments. More importantly, this learning process was
found to be more robust and stable when applied under deep reinforcement learning.

The DISTRAL approach has proven to outperform the traditional way of using shared neural
network parameters for multi-task or transfer reinforcement learning by a large margin [22]. This was
predominantly due to the two major factors listed below. Firstly, distillation plays a vital role in the
optimization procedure when using KL divergences as a means to regularize the output of task models
towards a distilled model deduced from the individual task policies. Secondly, the distilled model
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itself is used as a regularizer for training the individual task models within the environment [22].
More importantly, using the distilled model as a regularizer brings the aspect of regularizing the
networks of individual workers into a more meaningful level such as at task policies, rather than at the
parameters’ level [53].

5.2. IMPALA (Importance Weighted Actor-Learner Architecture)

One of the major challenges in achieving multi-task functionality with a single reinforcement
learning agent is to handle the increased amount of data that an agent needs to handle, and also the
amount of training time required. Based on the research conducted to address the above aspects of
multi-tasking within the reinforcement learning domain, DeepMind proposed an architecture named
IMPALA (Importance Weighted Actor-Learner Architecture). At the very basic level, IMPALA is a
distributed agent architecture developed by adopting a single reinforcement learning agent having a
single set of parameters. One of the key aspects of the IMPALA approach is its ability to effectively
use the resources in a single-machine training environment, while it can scale to multiple machines
without sacrificing data efficiency or resource utilization. By leveraging on a novel off-policy correction
method named V-trace, IMPALA can achieve quite stable learning at high throughput by combining
decoupled acting and learning [23].

Typically, the architecture of a deep reinforcement learning model is based on a single learner
(critic) that is combined with multiple actors. In this ecosystem, every individual actor generates its
own learning cycle parameters (also known as trajectories), and then sends that knowledge to the
learner (critic) through a queue. The learner collects the same kind of trajectories from all the other
actors in the environment and prepares a central policy. Before the next learning cycle (trajectory),
every actor retrieves the updated policy parameters from the learner (critic). This approach is quite
close to the reinforcement learning algorithm named A3C, and the architecture of IMPALA has been
heavily inspired by this algorithm. IMPALA follows a topology of multiple actors and learners can
collaborate to build knowledge. Figures 5 and 6 adopted from [23] show the architecture of an IMPALA
ecosystem with a single learner and multiple learner configurations, respectively.
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IMPALA follows an actor-critic setup to learn a policy π and a baseline function named Vπ.
Major components of the IMPALA system consist of a set of actors who are continuously generating
trajectories of experience, and additionally there could be one or more learners that use these generated
experiences sent from actors to learn π, which is an off-policy. At the start of each trajectory, an actor
will update its own local policy µ to the latest learner policy π [23]. Further on the actor will run that
policy for n steps in its environment. At the end of these n steps, the actor sends another trajectory of
states, actions, and rewards together with related policy distributions to the learner. In this manner,
the learner will be continuously updating its policy π each time trajectory information is collected from
the actors within the environment [23]. In this manner, the IMPALA architecture collects experiences
from different learners, which are passed to a central learner. Further on this central learner calculates
the gradients and generates a model with independent actors and learners. One of the key aspects of
this IMPALA architecture is that actors need not be present on the same machine, but can be distributed
across many machines.

5.3. PopArt

In recent advancements, reinforcement learning has proven to be capable of surpassing
human-level performance on specific tasks. One specific aspect of all these RL agents was that
they were all trained with one task at a time, and each additional task that needs to be trained needs
the instantiation of the agent. In order to overcome this limitation, there were many pieces of research
conducted to enhance RL algorithms with the capability of multiple sequential decision tasks at once.
These research attempts to bring in the support for multi-task learning have often confronted various
challenges. One such major challenge was related to establishing a balance between the needs of
multiple tasks within the environment competing for the limited resources of a single learning system.
This is related to the probability of learning algorithms often getting distracted (often called the
distraction dilemma) by a few tasks from the set of multiple tasks to solve [10]. Typically, this situation
demands the need for a multitask reinforcement learning (MTRL) system to build the immunity against
the distraction dilemma and establish a balance concerning mastering individual tasks against the
ultimate goal of achieving better generalization. The prime reason behind this distraction scenario
occurs because some of the tasks appear more salient to the learning process due to the associated
density or magnitude of the rewards for such tasks (in-task rewards). At different timesteps during the
lifecycle of an RL agent within an MTRL system, agents are going to be met with tasks that appear to
be more salient to the learning process. This prompts the algorithm to give more attention to such
tasks, and then focus on those salient tasks at the expense of generality by giving less importance to
other tasks in the multi-tasking environment. This indeed causes the multi-task reinforcement learning
(MTRL) agents to often focus on the wrong tasks by ignoring or giving less importance to a few of the
other tasks [10].

As a solution to this problem, DeepMind proposed a new method named PopArt to improve
reinforcement learning in multi-task environments. The core objective of PopArt is to minimize
distraction and thereby stabilize learning to facilitate the adoption of MTRL (multi-task reinforcement
learning) techniques. The PopArt model was designed based on the original IMPALA (importance
weighted actor-learner architecture) architecture model with the combination of multiple convolutional
neural network layers with other techniques, such as word embeddings with the recurrent neural
network of long-short term memory (LSTM) type [10]. The PopArt methodology works by adapting
the contributions from each of the individual tasks to the agent’s updates. This way PopArt ensures
that all the agents will have their own individual role and thereby a proportional impact on the
overall learning dynamics. The key aspect of the PopArt relies on modifying the weights of the
neural network based on the output of all tasks within the environment. In the initial stage, PopArt
estimates the mean as well as the spread of the ultimate targets, such as the score of a game across
all tasks under consideration. Further on, PopArt uses these estimate values to normalize the targets
before updating the network’s weights. This approach makes the learning process more stable and
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robust. In experiments conducted with Atari games, PopArt demonstrated improvements over other
multi-task reinforcement learning architectures. The issue concerning the scaling of individual rewards
been addressed through reward clipping [31]. Reward clipping is a method used to normalize the
rewards across all settings of the environment when there is a discrepancy among the reward systems
used between the various environments.

5.4. Comparison of Existing Solutions

The objective of this section is to provide a comparative study of the three existing approaches
that are explained in the previous three subsections. DISTRAL was a new approach derived towards
the joint training of multiple tasks. Rather than sharing the parameters between the different workers
within the system, the core ideology used behind this approach was to share a distilled policy that
captures common behavior across tasks. The major design focus remained on building a general
framework for distilling the centroid policy and then transferring common behaviors of individual
workers in multi-task reinforcement learning. Within the DISTRAL model-based ecosystem, each of
the individual workers is trained to solve its own task while it was constrained to stay as close to the
shared policy as possible. Simultaneously, the shared policy is trained by the distillation process to
always remain as the centroid of all task policies within the ecosystem. The design of DISTRAL is based
on the notion of a shared policy that distills common behaviors or representations from task-specific
policies of individual tasks trained within the environment [42]. This approach was found to be quite
successful and efficient in the transfer of knowledge within the reinforcement learning problems that
function under 3D environments and achieved an impressive level of performance in comparison to
other related methods [22].

IMPALA design was moreover based on distributed agent architecture developed by adopting
a single reinforcement learning agent having a single set of parameters [23]. IMPALA possesses
the ability to effectively use the resources in a single-machine training environment, while it can
scale to multiple machines without sacrificing data efficiency or resource utilization. At the core
level, the architecture of IMPALA was heavily inspired by the famous A3C algorithm, wherein
IMPALA follows a topology of multiple actors in which learners can collaborate to build knowledge.
The IMPALA system was designed with a set of actors who are continuously generating trajectories of
experience, and additionally, there could be one or more learners that use these generated experiences
sent from actors to learn π, which is an off-policy. At the start of each trajectory, an actor will update its
own local policy µ to the latest learner policy π. Further on the actor will run that policy for n steps
in its environment. At the end of these n steps, the actor sends another trajectory of states, actions,
and rewards together with related policy distributions to the learner. In this manner, the learner will
be continuously updating its policy π each time trajectory information is collected from the actors
within the environment. In this manner, the IMPALA architecture collects the experiences from
different learners, which are then passed to a central learner. Further on this central learner calculates
the gradients and generates a model with independent actors and learners [23]. One of the major
drawbacks of the IMPALA model is related to a scenario named distraction dilemma, which triggered
the design of a new methodology named PopArt [10].

Whereas architectures such as IMPALA are vulnerable to the distraction dilemma scenario, the key
motivating factor behind the design of the PopArt methodology was to come up with an effective
method to overcome that bottleneck. The IMPALA model was greatly affected by the distraction
dilemma—a major challenge related to establishing a balance between the needs of multiple tasks
within the same environment competing for the limited resources of a single learning system. This is
internally linked to the probability of learning algorithms getting distracted (often called the distraction
dilemma) by a few tasks from the set of multiple tasks to solve. This situation demanded the need for
a multitask reinforcement learning (MTRL) system to build immunity against the distraction dilemma
and establish a balance concerning mastering individual tasks against the ultimate goal of achieving
better generalization. The design of PopArt model was inspired by the original IMPALA architecture
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model itself. IMPALA model aintegrates the combination of multiple convolutional neural network
layers with other techniques, such as word embeddings with the recurrent neural network of type
long-short term memory [10]. The PopArt methodology works by adapting the contributions from
each of the individual tasks to the agent’s updates [10]. In this way PopArt ensures that all agents
will have their role and a proportional impact on the overall learning dynamics. Table 1 provides a
comparison summary between the three most popular existing solutions related to the multi-task DRL.

Table 1. Comparison of existing solutions.

Characteristic
Name of Solution

PopArt IMPALA DISTRAL

Distraction Dilemma No Yes No
Master Policy Yes Yes Yes

Operation Model A3C Model A3C Model Centroid Policy
Multitask Learning Yes Yes Yes

The key aspect of PopArt relies on modifying the weights of the neural network based on the
output of all tasks within the environment. In the initial stage, PopArt estimates the mean as well
as the spread of ultimate targets, such as the score of a game, across all tasks under consideration.
Further on, PopArt uses these estimate values to normalize the targets before updating the network’s
weights [10]. This approach makes the learning process more stable and robust in comparison to
IMPALA. As evident from the Table 1, two of the solutions are based on the A3C model, whereas the
third one, DISTRAL, is oriented on a centroid policy model.

6. Conclusions

This literature review was conducted with the objective of surveying and analyzing various
methodologies that are developed for the optimization of the reinforcement learning (RL) agent’s
multi-tasking learning capabilities with the help of deep reinforcement learning. Throughout this
literature survey, the key focus of the analysis was kept on the multi-task related aspect of all the
methodologies examined. An analysis of each of these methodologies was carried out by focusing on
their applicability in the context of deep reinforcement learning. There is a growing literature that is
specially focused on the multi-tasking aspect of deep reinforcement learning. Notably, the multi-tasking
aspect of deep reinforcement learning (DRL) is considered to be one of the major research challenges in
artificial intelligence these days, and in deep reinforcement learning research in particular. The majority
of the literature contents covered in this survey focused on knowledge building by training a
reinforcement learning (RL) agent on multiple tasks simultaneously. Further on, by leveraging this
knowledge base, they examined how to transfer it across other tasks. A huge part of the research
efforts in the area of multi-task deep reinforcement learning (MTDRL) is driven by the research efforts
conducted by well-known research organizations such as DeepMind and OpenAI. A general conclusion
from all these studies is that the inception of deep learning and neural networks, followed by its
application into the reinforcement domain has helped to optimize the multi-tasking learning process
to a great extent in comparison to how it used to be within the traditional RL environment. Having
said that, multi-tasking and transfer learning remain key challenges within the deep reinforcement
domain, which need to be investigated further.

As part of surveying the related work done concerning multi-tasking, various methodologies,
such as transfer learning oriented approach, shared representations for value functions, progressive
neural networks, PathNet, policy distillation, and actor-mimic and asynchronous advantage actor-critic
(A3C) were evaluated from the context of deep reinforcement learning. Along with the analysis
of each of the aforementioned methodologies, attempts were made to survey how some of these
techniques were used to address the key challenges within the reinforcement domain. In addition to
this, the survey also included some of the existing solutions developed by DeepMind named DISTRAL,
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PopArt, and IMPALA. One major conclusion derived from this literature survey is about the role of
the multi-task learning aspect in the context of optimizing the performance of the deep reinforcement
learning (DRL) agent. In particular, multi-task learning, wherein policies learned for each task will
be executed in parallel, has the potential to optimize the performance of the RL agent [54]. This is
predominantly due to the applicability of the multi-tasking aspect in creating additional room for
deep exploration [55]. In addition to this, multi-tasking could also bring additional benefits towards
achieving optimal policy composition. It is quite evident from the multi-task-based architecture of all
three models referenced that most of the deep reinforcement multi-task challenges, such as scalability,
partial observability, and effective exploration are being addressed to a great extent. At the same time,
negative knowledge transfer can be caused by the gradient values shared by the individual learners
within a multi-task environment; this remains an active research challenge within the MTDRL. When
it comes to other challenges, such as catastrophic forgetting and the distraction dilemma, models such
as IMPALA are having related issues, but then while designing PopArt, these problems have been
taken care of by bringing modules like an RNN model named LSTM into the architecture.
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