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Image hashing has attractedmuch attention of the community of multimedia security in the past years. It has been successfully used
in social event detection, image authentication, copy detection, image quality assessment, and so on. This paper presents a novel
image hashing with low-rank representation (LRR) and ring partition. The proposed hashing finds the saliency map by the
spectral residual model and exploits it to construct the visual representation of the preprocessed image. Next, the proposed
hashing calculates the low-rank recovery of the visual representation by LRR and extracts the rotation-invariant hash from the
low-rank recovery by ring partition. Hash similarity is finally determined by L2 norm. Extensive experiments are done to
validate effectiveness of the proposed hashing. The results demonstrate that the proposed hashing can reach a good balance
between robustness and discrimination and is superior to some state-of-the-art hashing algorithms in terms of the area under
the receiver operating characteristic curve.

1. Introduction

With the popularity of the platforms of the social network,
such as Facebook and Twitter, more and more digital images
are transmitted via the Internet and stored in the cyberspace.
Therefore, efficient techniques are required for processing
massive images and protecting content security. For example,
when an important event happens, such as an opening cere-
mony of the Olympic Games, many people would like to for-
ward the same image of the event in their social network.
These forwarded images may undergo some digital opera-
tions, such as compression and enhancement. Consequently,
there are many image copies of a hot event in the cyberspace.
It is an important task to find a hot event of the social net-
work by detecting image copies [1]. In recent years, a useful
technique called image hashing [2, 3] attracts much attention
of the community of multimedia security, which can extract a
short code called hash based on the visual content of the
input image regardless of its detailed bits. It can not only be
applied to social event detection [1],but also can be used in
many other applications [4–8], e.g., image retrieval, image

authentication, image copy detection, and image quality
assessment. In practice, the hash is used to represent the
input image. As the hash is a short representation, the use
of image hashing can achieve efficient data processing. In this
paper, we study a novel hashing algorithm based on the low-
rank representation model and ring partition.

The most important properties of the image hashing
algorithm are robustness and discrimination [9]. The
requirement of robustness is that the image hashing algo-
rithm must map visually similar images to the same or sim-
ilar hashes no matter whether their bit representations are
the same or not. In other words, the hashing algorithm
should be robust to normal digital operations, e.g., compres-
sion, filtering, and enhancement. This is because they alter
the bit representations of digital images but keep their visual
appearances unchanged. The requirement of discrimination
is that the image hashing algorithm must map different
images to completely different hashes. Since the number of
different images is much bigger than that of similar images
in practice, good discrimination means a low error rate of
judging different images as similar images. This property is
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helpful to many applications, such as social event detection
and image retrieval. Note that the two properties restrict
each other. A high-performance algorithm should reach a
good balance between them.

In the past years, many researchers have devoted them-
selves to developing image hashing algorithms. Some typical
techniques are briefly introduced below. For example, Swa-
minathan et al. [10] combined the Fourier-Mellin transform
and randomization method to develop secure image hash-
ing. Monga and Evans [11] proposed to use feature points
detected by the end-stopped wavelet to build the hash. These
two hashing algorithms [10, 11] are resilient to small-angle
rotation. Lv and Wang [12] combined SIFT features and
Harris points to construct the hash. This scheme is robust
to large-angle rotation and brightness adjustment, but its
robustness against additive noise and blurring must be
improved. Zhao et al. [13] derived the robust image hash
for authentication from global features determined by Zer-
nike moments and local features based on the position infor-
mation of salient features. Tang et al. [14] calculated the
image hash by jointly using the color vector angle (CVA)
and discrete wavelet transform (DWT). Both the above
hashing methods [13, 14] only resist small-angle rotation.
Laradji et al. [15] extracted the hash of the color image by
using the hypercomplex numbers and quaternion Fourier
transform (QFT). This approach has good discrimination,
but its robustness against rotation needs to be improved.
Wang et al. [16] jointly exploited the Watson model and
SIFT features to design the hashing algorithm for authenti-
cation. This method has better performance than the hash-
ing method [13].

Recently, Yan et al. [17] introduced the quaternion tech-
niques called quaternion Fourier transform and quaternion
Fourier-Mellin moments to image hashing design. In
another study, Yan et al. [18] exploited the adaptive local
image features to design multiscale hashing. Both the hash-
ing schemes [17, 18] reach good performance in tampering
detection. Tang et al. [19] constructed the feature matrix
via the DCT (discrete cosine transform) and learned hash
code from the DCT-based matrix by local linear embedding.
This hashing only resists image rotation within 5°. In [20],
Tang et al. proposed to extract local statistical features from
image rings and compressed statistical features by calculat-
ing vector distance. As the contents of image rings are rota-
tion-invariant, rotation robustness of this hashing [20] is
thus enhanced. Davarzani et al. [21] combined SVD (singu-
lar value decomposition) with CSLBP (Center-Symmetric
Local Binary Patterns) to make the hashing scheme for
authentication. The scheme is robust to additive noise and
JPEG compression, but it is sensitive to rotation. Huang
et al. [22] introduced the random walk to hash generation
for improving security. In another work, Qin et al. [23] used
SVD to conduct preprocessing and extracted hybrid features
based on the circle-based feature and block-based feature to
construct the hash. The hybrid feature-based hashing has
good robustness against compression and filtering, but its
computational cost should be reduced. Tang et al. [24] first
proposed to construct a three-order tensor with image
blocks and extracted the image hash from the three-order

tensor by Tucker decomposition. This approach can resist
small-angle rotation. Shen and Zhao [25] proposed to com-
pute the image hash by using the color opponent component
and quadtree structure features. This method shows good
performance in image authentication, but it is fragile to
image rotation.

From the above reviews, it can be found that many algo-
rithms do not make a good balance between rotation robust-
ness and discrimination. Aiming at this problem, we propose
a new image hashing based on low-rank representation and
ring partition. The main contributions of the proposed algo-
rithm are as follows:

(1) We calculate the visual representation of the prepro-
cessed image based on the saliency map extracted by
the spectral residual model. Since the saliency map
can indicate visual attention of human beings, the
visual representation using the saliency map can
effectively describe salient regions of the image. Con-
sequently, hash generation with the visual represen-
tation can improve robustness of the proposed
algorithm

(2) We propose to incorporate low-rank representation
into ring partition. The low-rank representation can
capture the global structure of data, which is helpful
to make the discriminative hash. Since ring partition
can produce a set of image rings invariant to rotation,
hash code extraction based on image rings can reach
good rotation robustness

Many experiments are done to validate effectiveness of
the proposed algorithm. The results illustrate that the pro-
posed algorithm can resist many digital operations, including
image rotation with a large angle. Performance comparisons
with some state-of-the-art algorithms are also done. The
receiver operating characteristic (ROC) curve results show
that the proposed algorithm has better classification perfor-
mance than those of the compared algorithms in discrimina-
tion and robustness.

The structure of the rest of the paper is as follows. Section
2 describes the image hashing algorithm proposed in this
paper. Sections 3 and 4 discuss experimental results and per-
formance comparisons, respectively. Section 5 summarizes
this paper.

2. Proposed Image Hashing

The proposed image hashing can be divided into four steps:
preprocessing, visual representation calculation, low-rank
representation, and ring partition. Figure 1 is the diagram
of our algorithm. The preprocessing is to produce a normal-
ized image, and the visual representation calculation is to
generate an image representation which can indicate salient
regions of the image. The use of low-rank representation is
to extract principal image features for making the discrimi-
native hash, and the use of ring partition can make the
extracted feature code invariant to image rotation. These
steps are described in detail in the following sections.
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2.1. Preprocessing. This step includes three operations: bilin-
ear interpolation, Gaussian low-pass filtering, and color
space conversion. The bilinear interpolation is to resize the
input image to a standard size n × n. This operation can
make our algorithm resilient to image scaling. The 3 × 3
Gaussian low-pass filtering is then applied to the resized
image. Such operation can alleviate the influence of some
digital operations on the resized image, such as image noise
and JPEG compression. Finally, the filtered image in RGB
color space is converted to HSV color space [26] and the
brightness component in the HSV color space is used to
denote the input image. The HSV color space is also called
the hexagonal cone model and has shown good perfor-
mances in many existing hashing algorithms [26]. Let H1
be the hue of the pixel and S1 and V1 be the saturation
and brightness of the pixel in the HSV color space, respec-
tively. Thus, the calculation formulas for converting from
RGB space to HSV space are as follows:

H1 =

−B1 +G1ð Þ ∗ π/3
Max R1,G1, B1ð Þ −Min R1,G1, B1ð Þ if R1 =Max R1,G1, B1ð Þ,

−R1 + B1ð Þ ∗ π/3
Max R1,G1, B1ð Þ −Min R1,G1, B1ð Þ if G1 =Max R1,G1, B1ð Þ,

−G1 + R1ð Þ ∗ π/3
Max R1,G1, B1ð Þ −Min R1,G1, B1ð Þ if B1 = Max R1,G1, B1ð Þ,

Undefined if R1 = G1 = B1,

8>>>>>>>>>>><
>>>>>>>>>>>:

S1 =
Max R1,G1, B1ð Þ −Min R1,G1, B1ð Þ
Max R1,G1, B1ð Þ if Max R1,G1, B1ð Þ ≠ 0,

0 if Max R1,G1, B1ð Þ = 0,

8><
>:

V1 = Max R1,G1, B1ð Þ,
ð1Þ

where R1 is the red component of the pixel, G1 and B1 are
the green and blue components of the pixel, respectively,
Max ðR1,G1, B1Þ and Min ðR1,G1, B1Þ represent the maxi-
mum value and the minimum value of R1, G1, and B1,
respectively.

Figure 2 shows a practical example of the preprocessing.
Figure 2(a) is an input image, Figure 2(b) is the resized image,
and Figure 2(c) represents the filtered image. Figures 2(d)–2(f)
represent the hue, saturation, and brightness components of
the filtered image in the HSV color space, respectively.

2.2. Visual Representation Calculation. In this work, a well-
known model of saliency detection called the spectral resid-
ual model (SRM) [27] is exploited to find the saliency map
of the image. Then, the visual image representation can be
determined by combining the saliency map and the bright-
ness component of the preprocessed image. Here, we select
the SRM as the method of saliency detection. This is because

the SRM is better than the conventional method such as
Itti’s method [28] in detection performance and computa-
tional speed [27].

Saliency map calculation of the classical spectral residual
model is based on the spectral residual of the image Rð f Þ,
which is defined as follows:

R fð Þ = L fð Þ − hn fð Þ ∗ L fð Þ, ð2Þ

where hnð f Þ is a matrix of size n × n and Lð f Þ is the log
spectrum of the image. More specifically, hnð f Þ is defined
as follows:

hn fð Þ = 1
n2

1 1 ⋯ 1

1 1 ⋯ 1

⋮ ⋮ ⋯ ⋮

1 1 ⋯ 1

0
BBBBB@

1
CCCCCA: ð3Þ

In addition, Lð f Þ is determined by the below formula:

L fð Þ = ln A fð Þð Þ, ð4Þ

where Að f Þ is the amplitude spectrum of the image, which
can be determined by the following formula:

A fð Þ = F I xð Þ½ �j j, ð5Þ

where IðxÞ denotes a given image, F½∙� is the Fourier trans-
form, and |∙| denotes the amplitude of the image. Finally,
the saliency map SðxÞ in the spatial domain can be con-
structed by using the inverse Fourier transform as follows:

S xð Þ = g xð Þ ∗ F−1 exp R fð Þ + P fð Þð Þ½ �2, ð6Þ

where gðxÞ is a low-pass filter for smoothing the output
saliency map of the inverse Fourier transform for better
visual effects (a circular averaging filter radius 3 is used
here), F−1½∙� is the inverse Fourier transform, and Pð f Þ is
the phase spectrum of the image defined in the below
equation:

P fð Þ = φ F I xð Þ½ �ð Þ, ð7Þ

where φð∙Þ denotes the phase of the image. In [27], it is
stated that image width (or height) with 64 pixels can
reach a good estimation of the scale of normal visual con-
ditions. Following this, we resize the n × n brightness com-
ponent to 64 × 64 and convert the calculated saliency map
to the original size n × n by bilinear interpolation. More
details of SRM can be referred to [27].

Input image Preprocessing Visual representation
calculation Hash

Low-rank
representation Ring partition

Figure 1: Diagram of the proposed hashing algorithm.
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Figure 3 shows an instance of saliency map detection via
the spectral residual model. Figure 3(a) is the enlarged view
of Figure 2(f), and Figure 3(b) is the saliency map of
Figure 3(a) detected by the spectral residual model. From
the results, it can be found that salient regions of the image
are successfully extracted.

Suppose that V is the brightness component of the pre-
processed image and Vði, jÞ is the element of V in the ith
row and the jth column. Also, assume that S denotes the
saliency map of V and Sði, jÞ is the element of S in the ith
row and the jth column. Therefore, the visual representation
X can be obtained by the following equation:

X i, jð Þ =V i, jð Þ × S i, jð Þ, ð8Þ

where Xði, jÞ is the element of X in the ith row and the jth
column.

2.3. Low-Rank Representation. Low-rank representation
(LRR) is a useful technique for capturing the global struc-
ture of data [29]. The LRR is robust to noise and can extract
the lowest-rank representation of all data [29, 30]. It has
been widely used in many applications, such as subspace
segmentation [31], image segmentation [32], and image
classification [33]. Suppose that X is an observation matrix

corrupted by noiseE. Thus, LRR calculation can be solved
by the regularized rank minimization problem [29–31] as
follows:

min
Z,E

  Zk k∗ + λ Ek k2, 1, s:t: X =XZ + E, ð9Þ

in which k∙k∗ is the nuclear norm of a matrix (sum of the
singular values of the matrix), λ > 0 is a parameter for bal-
ancing effects of the two parts, k∙k2,1 is the l2,1 norm, and
kEk2, 1 is defined as follows:

Ek k2,1 = 〠
n

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
E½ �ij

� �2
s

: ð10Þ

Let Y be the low-rank recovery of X. Assume that the
minimizer of (9) is ðZ∗, E∗Þ. Thus, it can be obtained by
Y =XZ∗ or Y =X − E∗. In practice, problem (9) can be con-
verted to an equivalent optimization problem as follows:

min
Z,E,J

  Jk k∗ + λ Ek k2, 1, s:t: X =XZ + E, Z = J: ð11Þ

This optimization problem can be solved by the below
ALM (Augmented Lagrange Multiplier) problem:

(a) Input image (b) Resized image (c) Filtered image

(d) Hue (e) Saturation (f) Brightness

Figure 2: Practical example of preprocessing.

(a) Enlarged view of Figure 2(f) (b) Saliency map

Figure 3: An instance of saliency map detection via SRM.
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min
Z,E,J,Y1 ,Y2

  Jk k∗ + λ Ek k2, 1 + tr YT
1 X −XZ − Eð Þ� �

+ tr YT
2 Z − Jð Þ� �

+
μ

2
X −XZ − Ek k2F + Z − Jk k2F

� �
,

ð12Þ

in which Y1 and Y2 are the Lagrange multipliers and μ > 0
is the penalty parameter. Problem (12) can be solved by the
inexact ALM method [30]. More details of LRR can be
referred to [29–31].

In this work, the input of LRR is the visual representa-
tion X and the low-rank recovery Y is taken for hash code
extraction. The reasons of our use of LRR for image hashing
design are as follows. The influences of digital operations
(e.g., compression, filtering, and noise) on image are viewed
as noises added to the image. Since LRR is robust to noise,
hash generation with low-rank recovery can improve robust-
ness of our algorithm. In addition, LRR can efficiently cap-
ture the global structure of input data. Therefore, the use
of LRR can ensure the discriminative capability of the pro-
posed algorithm.

2.4. Ring Partition. To make the proposed algorithm resilient
to image rotation, a well-known technique of image segmen-
tation called ring partition (RP) [9, 34] is exploited here. RP
takes the image center as the circle center and divides the
inscribed circle of the image into a set of rings. Figure 4 pre-
sents an example of RP with 4 image rings. Clearly, the con-
tents of image rings are unchanged after image rotation.
Therefore, we can calculate the hash code resistant to rota-
tion by using the mean values of these rings. Details of hash
code extraction based on RP are explained as follows.

Suppose that the low-rank recovery Y is divided into m
rings. Note that the size of Y is n × n and the area of each ring
is kept the same. Obviously, the elements of image rings can
be determined by using two adjacent radii except those of the
innermost ring. Assume that ri is the ith radius (i = 1, 2,⋯,m
) labeled from the small value to the big value. Therefore, r1 is
the radius of the innermost circle and rm is the radius of the
outmost circle. It is clear that rm = bn/2c, where b·c means
downward rounding. To calculate the other radii, the average
area of the image ring should be first determined by the
below equation:

μa = C/mb c, ð13Þ

where C = πrm
2 is the area of the inscribed circle. Thus, the

radius of the innermost circle can be calculated by the follow-
ing equation:

r1 =
ffiffiffiffiffi
μa
π

r
: ð14Þ

Next, other ri (i = 2, 3,⋯,m − 1) can be determined by
the below formula:

ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa + πr2i−1

π

r
: ð15Þ

After all radii are obtained, the elements of Y can be clas-
sified into image rings by using radii and the distances from
these elements to the image center. LetUi be the set of the ele-
ments of the ith ring (i = 1, 2,⋯,m) and pðx, yÞ be the ele-
ment of Y in the xth row and yth column. Assume that the
coordinates of the image center are ðxc, ycÞ. Therefore, xc =
n/2 + 0:5 and yc = n/2 + 0:5 if n is an even number. Other-
wise, xc = ðn + 1Þ/2 and yc = ðn + 1Þ/2. Thus, the distance
from pðx, yÞ to the image center ðxc, ycÞ can be obtained by
the below equation:

dx,y =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xcð Þ2 + y − ycð Þ2

q
: ð16Þ

Consequently, the set Ui can be determined by one of the
following equations:

U1 = p x, yð Þ ∣ dx,y ≤ r1
	 


,

Ui = p x, yð Þ ∣ ri−1 < dx,y ≤ ri
	 


i = 2, 3,⋯,mð Þ:
ð17Þ

For each set, the mean of its elements is selected as com-
pact feature. Let vi be the mean of the elements in Ui
(i = 1, 2,⋯,m). Thus, it is quantized to an integer for reduc-
ing the storage by the below equation:

h ið Þ = vi × 100 + 0:5½ � i = 1, 2,⋯,mð Þ, ð18Þ

where ½·� is the rounding operation. Finally, our hash is
obtained by concatenating these integers as follows:

h = h 1ð Þ, h 2ð Þ,⋯, h mð Þ½ �: ð19Þ

Therefore, the length of our hash is m integers.

2.5. Hash Similarity Computation. As our hash is composed
of some integers, the well-known distance metric called the
L2 norm is exploited to measure similarity between two
hashes. Assume that h1 = ½h1ð1Þ, h1ð2Þ,⋯,h1ðmÞ� and h2 =
½h2ð1Þ, h2ð2Þ,⋯,h2ðmÞ� are the hash sequences of two
images. Thus, the L2 norm of the two hashes is defined
as follows:

dnorm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m

i=1
h1 ið Þ − h2 ið Þ½ �2

s
, ð20Þ

in which h1ðiÞ is the ith element of h1 and h2ðiÞ is the ith
element of h2. Generally, a smaller L2 norm means more
similar hashes of the evaluated images. If the L2 norm is
bigger than a threshold T , the evaluated images corre-
sponding to the input hashes are judged as different
images. Otherwise, they are viewed as similar images.

3. Experimental Results

The parameter settings of the proposed algorithm are as
follows. The λ of LRR is 0.9, the input image is resized to
512 × 512, and the ring number is 64, i.e., n = 512 and m
= 64. In the following experiments, Sections 3.1 and 3.2
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validate the properties of robustness and discrimination,
respectively. Section 3.3 analyzes our hash storage in binary
form. Section 3.4 discusses the influence of the ring number
on our algorithm performance.

3.1. Robustness. An open database called the Kodak dataset
[35] is exploited to construct a test database of similar
images. The Kodak dataset is composed of 24 color images
of different categories with the size of 768 × 512 or 512 ×
768. To produce similar images of these color images, some
commonly used operations are used to conduct robustness
attacks. These operations are achieved by Photoshop,
MATLAB, and StirMark. More specifically, Photoshop pro-
vides brightness and contrast adjustments (parameters are
±10 and ±20). MATLAB provides 3 × 3 Gaussian low-pass
filtering (standard deviations range from 0.3 to 1.0 with a
step 0.1), gamma correction (parameters are 0.75, 0.9, 1.1,
and 1.25), salt-and-pepper noise, and speckle noise (both
parameters range from 0.001 to 0.01 with a step 0.001). Stir-
Mark provides JPEG compression (quality factors range
from 30 to 100 with a step 10), watermark embedding
(strengths range from 10 to 100 with a step 10), image scal-
ing (scaling ratios are 0.5, 0.75, 0.9, 1.1, 1.5, and 2.0), and
image rotation (rotation angles are ±1, ±2, ±5, ±10, ±15,
±30, ±45, and ±90). Note that image rotation will increase
image size and some padded pixels are added to the rotated
images. In this experiment, only the 361 × 361 central parts
of 24 original images and their rotated images are taken
for evaluating rotation robustness. Therefore, the number
of the used operations is 10, which totally contribute 80
manipulations. This implies that each original image has
80 similar images. So the total number of visual similar
images is 24 × 80 = 1920, and the number of the used image
is 1920 + 24 = 1944.

Figure 5 demonstrates robustness experiments under
different operations, where the x-axis is the parameter value
of digital operation and the y-axis is the L2 norm. Note that
the curves in Figure 5 are the mean values of the L2 norms
between hashes of 24 color images and their similar images.
From Figure 5, it can be seen that the mean L2 norms are
all smaller than 15, except two values of rotation operation.
For image rotation, the maximum value is 17.29, which is a
little bigger than those of other operations. It is found that,
if the threshold is selected as T = 15, our algorithm can cor-

rectly detect 92.19% similar images. If there is no rotated
image, our algorithm can recognize all similar images. A
high correct detection rate illustrates good robustness of
our algorithm.

3.2. Discrimination. A famous database named UCID [36] is
selected to test discrimination of our algorithm. This data-
base contains 1338 color images with the size of 512 × 384
or 384 × 512. Hashes of these 1338 color images are firstly
calculated, and the L2 norm between each pair of hashes
is then computed. Therefore, the total number of valid dis-
tances is C2

1338 = ð1338 × 1337Þ/2 = 894453. Figure 6 illus-
trates the distribution of these distances, where the x-axis
is the value of the L2 norm and the y-axis is the frequency
of the L2 norm. It can be observed that the maximum L2
norm is 163.25 and the minimum L2 norm is 4.80. More-
over, the mean value of these L2 norms is 42.72 and the
standard deviation is 18.48. From Figure 6, it can be seen
that most distances are bigger than the abovementioned
threshold T = 15, indicating our good performance in dis-
crimination. Actually, the performances of discrimination
and robustness are closely related to the selected threshold.
Different thresholds will lead to different performances.
Table 1 demonstrates the performances of robustness and
discrimination under different thresholds, where the
robustness is measured by the correct detection rate and
the discrimination is indicated by the false detection rate.
Note that the correct detection rate is the ratio between
the number of similar images correctly detected and the
total number of similar images. The false detection rate is
the ratio between the number of different images falsely
judged as similar images and the total number of different
images. From Table 1, we can select T = 15 as the recom-
mended threshold since it can make the minimum total
error rate.

3.3. Hash Storage. To analyze the required bits for storing
our hash, the hashes of 1338 images in UCID are selected
as the data source. Note that each hash generated by our
algorithm is composed of 64 integers. Therefore, there are
1338 × 64 = 85632 integers in the data source. Figure 7 illus-
trates the distribution of these 85632 hash elements, where
the x-axis is the element value and the y-axis is the fre-
quency of the element value. It can be found that the

(a) An image (b) Rotated image with 10°

Figure 4: Example of ring partition with 4 rings.
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Figure 5: Continued.
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minimum value of these hash elements is 1 and the maxi-
mum value is 49. Since 6 bits can represent a decimal num-
ber in the range ½0, 26 − 1 = 63�, the storage of a hash element
only requires 6 bits. Therefore, our hash storage requires 64
× 6 = 384 bits in total.

3.4. Influence of the Ring Number on Hash Performance. To
discuss the influence of the ring number on hash perfor-
mance, different ring numbers are used to conduct robust-
ness experiments and discriminative experiments. The used
ring numbers include m = 8, m = 16, m = 32, m = 64, and m
= 80. In the experiments, only the ring number is altered,
and the other parameters are unchanged. The two image
databases used in Sections 3.1 and 3.2 are also selected here.
To make visual and quantitative comparisons, the receiver
operating characteristic (ROC) graph [37] is taken. In the
ROC graph, the x-axis represents FPR (false positive rate)
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Figure 5: Robustness test.
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Figure 6: Distribution of L2 norms based on 1338 images.
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and the y-axis represents TPR (true positive rate). Let PFPR
and PTPR be the FPR and the TPR, respectively. Thus, they
can be defined as follows:

PTPR =
M1
M2

,

PFPR =
M3
M4

,
ð21Þ

in which M1 is the number of similar images correctly
judged as similar images, M2 represents the total number
of similar images, M3 is the number of different images
falsely identified as similar images, and M4 denotes the total
number of different images. Obviously, PFPR and PTPR can
indicate discrimination and robustness, respectively. In the
ROC graph, a curve is plotted by using a set of points with
coordinates ðPFPR, PTPRÞ. High performances of discrimina-
tion and robustness mean a low PFPR and a big PTPR . There-

fore, it can intuitively conclude that the curve near the top-
left corner has better classification performance than the
curve far away from it. To make quantitative analysis, the
AUC (area under the ROC curve) is taken. The range of
AUC is [0, 1]. In general, a bigger AUC means better classi-
fication of the evaluated algorithm.

Figure 8 shows ROC curves of different ring numbers,
where the curves in the upper-left area are zoomed in for easy
comparison. Obviously, the five ROC curves are all close to
the upper-left corner, indicating good classification of the
proposed algorithm. In addition, the curves of ring numbers
m = 64 and m = 80 are overlapping and both of them are
above the curves of the other ring numbers. This means that
the ring numbers m = 64 and m = 80 are slightly better than
other ring numbers in terms of classification performance
between robustness and discrimination. To make quantita-
tive analysis, the AUC of each ring number is also calculated.
It is found that the AUCs of ring numbers m = 8, m = 16,
m = 32, m = 64, and m = 80 are 0.98605, 0.98863, 0.99012,
0.99069, and 0.99087, respectively. Clearly, the AUCs of
m = 64 and m = 80 are slightly different. They are all
bigger than those of other ring numbers. This also verifies
that m = 64 and m = 80 are better than other ring numbers.

To view computational time of different ring numbers,
the proposed algorithm is coded by using MATLAB language
and the used computer is a workstation with 2.10GHz Intel
Xeon Silver 4110 CPU and 64GB RAM. The total time of
extracting 1338 image hashes is computed to find the average
time of generating a hash. It is found that the average time of
m = 8, m = 16, m = 32, m = 64, and m = 80 is 25.407, 27.133,
26.957, 29.361, and 33.611 seconds, respectively. Moreover,
hash lengths of different ring numbers are also compared.
Note that our hash length is equal to the ring number when
the length is measured by integers. Therefore, the hash
lengths of m = 8, m = 16, m = 32, m = 64, and m = 80 are 8,
16, 32, 64, and 80 integers, respectively. Table 2 summarizes
performances of different ring numbers. From the viewpoint
of the whole performance, it can be observed that the ring
number m = 64 reaches a good balance among the three per-
formance indices.

4. Performance Comparisons

To demonstrate advantages of our hashing algorithm, we
compare it with some popular hashing algorithms. The
selected hashing algorithms are CVA-DWT hashing [14],
SVD-CSLBP hashing [21], random walk-based hashing
[22], and hybrid feature-based hashing [23]. The datasets
used in the above robustness experiment and discrimination
test are also taken here, i.e., 1920 pairs of similar images and
1338 different images. To make fair comparison, the param-
eters of the selected algorithms are set to the same values as
their original papers. Their hash similarity metrics are kept
unchanged, i.e., the L2 norm for CVA-DWT hashing and
hybrid feature-based hashing, the correlation coefficient for
SVD-CSLBP hashing, and the normalized Hamming dis-
tance for random walk-based hashing. The result of our
hashing with m = 64 is taken for comparison.

Table 1: Performances under different thresholds.

Threshold
Correct detection

rate (d1)
False detection

rate (d2)
Total error rate
(1 − d1 + d2)

50 100% 70.89% 70.89%

45 99.74% 61.73% 61.99%

40 99.69% 50.97% 51.28%

35 99.58% 39.01% 39.43%

30 99.17% 26.64% 27.47%

25 98.39% 15.32% 16.93%

20 96.88% 6.58% 9.70%

15 92.19% 1.65% 9.46%

10 80.31% 0.13% 19.82%
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Figure 7: Distribution of 85632 hash elements.
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Figure 9 illustrates the ROC curves of the evaluated hash-
ing algorithms. To see more details, the ROC curves in the
upper-left area are zoomed in and placed in the bottom-
right part of Figure 9. It is observed that the curves of our
hashing and hybrid feature-based hashing intersect with each
other. Moreover, both of them are above the curves of other
evaluated hashing algorithms. To conduct quantitative analy-
sis, the AUCs of the evaluated hashing algorithms are also cal-
culated. It is found that the AUCs of CVA-DWT hashing,
SVD-CSLBP hashing, random walk-based hashing, hybrid
feature-based hashing, and our hashing are 0.97563, 0.74522,
0.95758, 0.97545, and 0.99069, respectively. From the results,
it can be seen that our hashing is better than the compared
algorithms in classification performance.

Average time of calculating a hash is also compared. The
abovementioned computer is used again, and the compared
algorithms are also implemented with MATLAB. It is found
that the average time of CVA-DWT hashing, SVD-CSLBP
hashing, random walk-based hashing, hybrid feature-based
hashing, and our hashing are 0.05, 0.19, 0.02, 6.12, and
29.36 seconds, respectively. The speed of our hashing is
slower than those of the compared algorithms. This is
because the computational cost of the LRR method is rela-
tively high. Moreover, the hash lengths of all algorithms are

also compared. The hash lengths of CVA-DWT hashing
and randomwalk-based hashing are 960 and 144 bits, respec-
tively. The hash lengths of SVD-CSLBP hashing and hybrid
feature-based hashing are 64 and 104 floating-point num-
bers. As a floating-point number requires 32 bits for storage
according to the IEEE standard [38], the hash lengths of
SVD-CSLBP hashing and hybrid feature-based hashing are
2048 and 3328 bits, respectively. The length of our hashing
is 384 bits. It is longer than that of random walk-based hash-
ing, but it is much shorter than those of other compared
hashing algorithms. Table 3 summarizes performance indi-
ces of the evaluated hashing algorithms, where the text in
italic is the best result of the corresponding column. Our
hashing outperforms the compared hashing algorithms in
classification performance in terms of AUC, but it runs
slower than the compared algorithms. As to hash length, it
is better than all compared algorithms, except random
walk-based hashing.

5. Conclusions

In this paper, we have proposed a novel image hashing with
LRR and RP. An important contribution is the calculation
of the visual representation based on the saliency map deter-
mined by SRM. Hash generation based on the visual repre-
sentation can improve robustness performance. Another
significant contribution is the combination of LRR and RP,
which can make the discriminative hash invariant to rota-
tion. Many experiments with two well-known databases have
been carried out. The results have shown that the proposed
hashing is robust and discriminative. ROC curve compari-
sons have illustrated that the proposed hashing outperforms
the compared hashing algorithms in classification perfor-
mance. In addition, hash length comparisons have shown
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Figure 8: ROC curves of different ring numbers.

Table 2: Performances of different ring numbers.

m AUC Hash length (integer) Computational time (s)

8 0.98605 8 25.407

16 0.98863 16 27.133

32 0.99012 32 26.957

64 0.99069 64 29.361

80 0.99087 80 33.611
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that the proposed hashing is better than all compared algo-
rithms, except random walk-based hashing. As to running
speed, the proposed hashing runs slower than the compared
algorithms due to the high computational cost of the LRR
method. In the future, we plan to design fast hashing algo-
rithms, deep learning-based hashing algorithms, and hashing
algorithms for image authentication.

Data Availability
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can be downloaded from the public websites whose hyper-
links are provided in this paper.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding publication of this paper.

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China (61962008, 61762017, and
61966004), the Guangxi “Bagui Scholar” Team for Innovation
and Research, the Guangxi Talent Highland Project of Big
Data Intelligence and Application, the Guangxi Natural
Science Foundation (2017GXNSFAA198222), the Guangxi
Collaborative Innovation Center of Multi-Source Information
Integration and Intelligent Processing, and the Innovation
Project of Guangxi Graduate Education (YCSW2020109).

References

[1] P. J. McParlane, A. J. McMinn, and J. M. Jose, ““Picture the
scene...”;:visually summarising social media events,” in Pro-
ceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management - CIKM '14,
pp. 1459–1468, Shanghai, China, 2014.

[2] R. Venkatesan, S.-M. Koon, M. H. Jakubowski, and P. Moulin,
“Robust image hashing,” in Proceedings 2000 International
Conference on Image Processing (Cat. No.00CH37101),
pp. 664–666, Vancouver, BC, Canada, 2000.

[3] Z. Tang, Z. Huang, X. Q. Zhang, and H. Lao, “Robust image
hashing with multidimensional scaling,” Signal Processing,
vol. 137, pp. 240–250, 2017.

[4] D. Wu, Z. Lin, B. Li, M. Ye, and W. Wang, “Deep supervised
hashing for multilabel and large-scale image retrieval,” in Pro-
ceedings of the 2017 ACM on International Conference on Mul-
timedia Retrieval, pp. 150–158, Bucharest, Romania, 2017.

[5] Z. Tang, Z. Huang, H. Yao, X. Q. Zhang, L. Chen, and C. Yu,
“Perceptual image hashing with weighted DWT features for

Tr
ue

 p
os

iti
ve

 ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6

False positive rate

SVD-CSLBP hashing
CVA-DWT hashing
Hybrid feature-based hashing
Random walk-based hashing
Our hashing

0.8 1

0
0.7

0.76

0.82

0.88

0.94

1

0.02 0.04 0.06 0.08 0.1

Figure 9: ROC curves of the evaluated hashing algorithms.

Table 3: Performance comparisons among different algorithms
(text in italic is the best result).

Algorithm AUC
Average
time (s)

Hash length
(bit)

CVA-DWT hashing 0.97563 0.05 960

SVD-CSLBP hashing 0.74522 0.19 2048

Random walk-based
hashing

0.95758 0.02 144

Hybrid feature-based
hashing

0.97545 6.12 3328

Our hashing 0.99069 29.36 384

11Wireless Communications and Mobile Computing



reduced-reference image quality assessment,” The Computer
Journal, vol. 61, no. 11, pp. 1695–1709, 2018.

[6] J. Ouyang, Y. Liu, and H. Shu, “Robust hashing for image
authentication using SIFT feature and quaternion Zernike
moments,” Multimedia Tools and Applications, vol. 76, no. 2,
pp. 2609–2626, 2017.

[7] Z. Zhou, Q.M. J. Wu, Y. Yang, and X. Sun, “Region-level visual
consistency verification for large-scale partial-duplicate image
search,” ACM Transactions on Multimedia Computing, Com-
munications, and Applications, vol. 16, no. 2, article 54,
pp. 1–25, 2020.

[8] Z. Zhou, Y. Mu, and Q. M. J. Wu, “Coverless image steganog-
raphy using partial-duplicate image retrieval,” Soft Computing,
vol. 23, no. 13, pp. 4927–4938, 2019.

[9] Z. Tang, X. Q. Zhang, and S. Zhang, “Robust perceptual image
hashing based on ring partition and NMF,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 3, pp. 711–
724, 2014.

[10] A. Swaminathan, Y. Mao, and M. Wu, “Robust and secure
image hashing,” IEEE Transactions on Information Forensics
and Security, vol. 1, no. 2, pp. 215–230, 2006.

[11] V. Monga and B. L. Evans, “Perceptual image hashing via fea-
ture points: performance evaluation and tradeoffs,” IEEE
Transactions on Image Processing, vol. 15, no. 11, pp. 3452–
3465, 2006.

[12] X. Lv and Z. Wang, “Perceptual image hashing based on shape
contexts and local feature points,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 7, no. 3, pp. 1081–1093,
2012.

[13] Y. Zhao, S. Wang, X. P. Zhang, and H. Yao, “Robust hashing
for image authentication using Zernike moments and local
features,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 1, pp. 55–63, 2013.

[14] Z. Tang, Y. Dai, X. Q. Zhang, L. Huang, and F. Yang, “Robust
image hashing via colour vector angles and discrete wavelet
transform,” IET Image Processing, vol. 8, no. 3, pp. 142–149,
2014.

[15] I. Laradji, L. Ghouti, and E. Khiari, “Perceptual hashing of
color images using hypercomplex representations,” in 2013
IEEE International Conference on Image Processing,
pp. 4402–4406, Melbourne, VIC, Australia, 2013.

[16] X. Wang, K. Pang, X. Zhou, Y. Zhou, L. Li, and J. Xue, “A
visual model-based perceptual image hash for content authen-
tication,” IEEE Transactions on Information Forensics and
Security, vol. 10, no. 7, pp. 1336–1349, 2015.

[17] C. Yan, C. Pun, and X. Yuan, “Quaternion-based image hash-
ing for adaptive tampering localization,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 12, pp. 2664–
2677, 2016.

[18] C. Yan, C. Pun, and X. Yuan, “Multi-scale image hashing using
adaptive local feature extraction for robust tampering detec-
tion,” Signal Processing, vol. 121, pp. 1–16, 2016.

[19] Z. Tang, H. Lao, X. Q. Zhang, and K. Liu, “Robust image hash-
ing via DCT and LLE,” Computers & Security, vol. 62, pp. 133–
148, 2016.

[20] Z. Tang, X. Q. Zhang, X. Li, and S. Zhang, “Robust image hash-
ing with ring partition and invariant vector distance,” IEEE
Transactions on Information Forensics and Security, vol. 11,
no. 1, pp. 200–214, 2016.

[21] R. Davarzani, S. Mozaffari, and K. Yaghmaie, “Perceptual
image hashing using center-symmetric local binary patterns,”

Multimedia Tools and Application, vol. 75, no. 8, pp. 4639–
4667, 2016.

[22] X. Huang, X. Liu, G. Wang, and M. Su, “A robust image hash-
ing with enhanced randomness by using random walk on zig-
zag blocking,” in 2016 IEEE Trustcom/BigDataSE/ISPA,
pp. 14–18, Tianjin, China, 2016.

[23] C. Qin, M. Sun, and C. Chang, “Perceptual hashing for color
images based on hybrid extraction of structural features,” Sig-
nal Processing, vol. 142, pp. 194–205, 2018.

[24] Z. Tang, L. Chen, X. Q. Zhang, and S. Zhang, “Robust image
hashing with tensor decomposition,” IEEE Transactions on
Knowledge and Data Engineering, vol. 31, no. 3, pp. 549–560,
2019.

[25] Q. Shen and Y. Zhao, “Perceptual hashing for color image
based on color opponent component and quadtree structure,”
Signal Processing, vol. 166, article 107244, 2020.

[26] Z. Tang, X. Li, J. Song, M.Wei, and X. Q. Zhang, “Colour space
selection in image hashing: an experimental study,” IETE
Technical Review, vol. 34, no. 4, pp. 440–447, 2016.

[27] X. Hou and L. Zhang, “Saliency detection: a spectral residual
approach,” in 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1–8, Minneapolis, MN, USA, 2007.

[28] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based
visual attention for rapid scene analysis,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 11,
pp. 1254–1259, 1998.

[29] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by
low-rank representation,” in Proceedings of the 27th interna-
tional conference on machine learning (ICML-10), pp. 663–
670, Haifa, Israel, 2010.

[30] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recov-
ery of subspace structures by low-rank representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 1, pp. 171–184, 2013.

[31] J. Chen and J. Yang, “Robust subspace segmentation via low-
rank representation,” IEEE Transactions on Cybernetics,
vol. 44, no. 8, pp. 1432–1445, 2014.

[32] B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, “Multi-task
low-rank affinity pursuit for image segmentation,” in 2011
International Conference on Computer Vision, pp. 2439–
2446, Barcelona, Spain, 2011.

[33] Q. Wang, X. He, and X. Li, “Locality and structure regularized
low rank representation for hyperspectral image classifica-
tion,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 2, pp. 911–923, 2019.

[34] Z. Tang, X. Q. Zhang, L. Huang, and Y. Dai, “Robust image
hashing using ring-based entropies,” Signal Processing,
vol. 93, no. 7, pp. 2061–2069, 2013.

[35] “Kodak lossless true color image suite,” June 2020, http://r0k
.us/graphics/kodak/.

[36] G. Schaefer and M. Stich, “UCID - an uncompressed colour
image database,” in Proceedings of SPIE, Storage and Retrieval
Methods and Applications for Multimedia 2004, vol. 5307,
pp. 472–480, San Jose, California, USA, 2004.

[37] T. Fawcett, “An introduction to ROC analysis,” Pattern Recog-
nition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[38] IEEE Std754–2008, IEEE Standard for Floating-Point Arith-
metic, pp. 1–70, IEEE, 2008.

12 Wireless Communications and Mobile Computing

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

	Robust Image Hashing with Low-Rank Representation and Ring Partition
	1. Introduction
	2. Proposed Image Hashing
	2.1. Preprocessing
	2.2. Visual Representation Calculation
	2.3. Low-Rank Representation
	2.4. Ring Partition
	2.5. Hash Similarity Computation

	3. Experimental Results
	3.1. Robustness
	3.2. Discrimination
	3.3. Hash Storage
	3.4. Influence of the Ring Number on Hash Performance

	4. Performance Comparisons
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

