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Object tracking based on low-rank sparse learning usually makes the drift phenomenon occur when the target faces severe
occlusion and fast motion. In this paper, we propose a novel tracking algorithm via reverse low-rank sparse learning and
fractional-order variation regularization. Firstly, we utilize convex low-rank constraint to force the appearance similarity of the
candidate particles, so as to prune the irrelevant particles. Secondly, fractional-order variation is introduced to constrain the sparse
coefficient difference in the bounded variation space, which allows the difference between consecutive frames to exist, so as to
adapt object fast motion. Meanwhile, fractional-order regularization can restrain severe occlusion by considering more adjacent
frames information. +irdly, we employ an inverse sparse representation method to model the relationship between target
candidates and target template, which can reduce the computation complexity for online tracking. Finally, an online updating
scheme based on alternating iteration is proposed for tracking computation. Experiments on benchmark sequences show that our
algorithm outperforms several state-of-the-art methods, especially exhibiting better adaptability for fast motion and
severe occlusion.

1. Introduction

Visual object tracking is an important technique in com-
puter vision with many applications, such as robotics,
medical image analysis, human-computer interaction, and
traffic control. +e goal of tracking is to predict the motion
state of the moving object in the video stream based on the
initial state. Much progress has been made in this area, but
many challenging tasks still remain caused by partial or full
occlusion, fast motion, illumination and scale variation,
deformation, background clutter, etc.

Low-rank constraint [1–4] on the candidate particles can
reflect the subspace structure feature of the object appear-
ance. +is subspace representation is robust to handle the
global appearance changes problem (e.g., illumination
variations and pose changes). Furthermore, for the ro-
bustness of local appearance changes (e.g., deformation and
partial occlusions), sparse representation [5–8] models the
image observation by a linear combination of dictionary

templates, which can measure the importance of each target
candidate. +erefore, low-rank constraint and sparse rep-
resentation can be learned jointly for effective tracking
[9, 10]. Zhong et al. [11] develop a sparse collaborativemodel
for object tracking, which exploits a sparse discriminative
classifier and sparse generative model to describe drastic
appearance changes. Zhang et al. [12] learn the sparse
representation and low-rank constraint in the particle filter
framework and exploit temporal consistency simulta-
neously. Wang et al. [13] propose an inverse sparse repre-
sentation based tracking algorithm with a locally weighted
distance metric. Sui and Zhang [14] exploit low-rank con-
straint to describe the global feature of all the patches and
capture the sparsity structure to reflect the local relationship
between the neighboring patches. Sui et al. [15] formulate
spatial-temporal locality under a discriminative dictionary
learning structure for object tracking. Dash and Patra [16]
propose an effective tracking framework by using a regu-
larized robust sparse coding for representing the

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 8640724, 10 pages
https://doi.org/10.1155/2020/8640724

mailto:www.sltd2008@163.com
https://orcid.org/0000-0002-0104-8976
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8640724


multifeature templates of the candidate objects. +ese
methods can successfully deal with the target appearance
change problem caused by lighting variations and partial
occlusions. Nevertheless, these formulations are not effective
for handling fast motion challenges.

To solve this problem, we introduce reverse low-rank
sparse learning with fractional-order variation regularization
for visual object tracking. In comparison with the existing low-
rank sparse trackers, we introduce fractional-order variation
regularization to the representation model. Fractional-order
variation has been widely used in static image analysis. We
generalize it to overcome the challenging problems in dynamic
video tracking because of the following two factors: (1) the
variation method can model the tracking problem in the
bounded variation space, which allows the difference among a
few frames to exist, to adapt the object fast motion. (2)
Fractional differential is a global operator, which can take
more adjacent frames information into account and overcome
the severe occlusion problem.

+e main contributions of this work are four-fold: (1) the
low-rank constraint is exploited to prune the irrelevant
particles; (2) fractional-order variation regularization is in-
troduced to learn the jump information generated by fast
motion and complex occlusion; (3) an inverse sparse rep-
resentation formulation is built to reduce the computation
complexity for real-time tracking; and (4) an alternating it-
eration strategy is presented for online tracking optimization.

2. Problem Formulation

In this work, we formulate the target states within the
particle filter framework [13]. Particle filter processing is
built upon Bayesian inference rule, which can be used for
predicting the posterior probability density function of the
state variables in dynamic system. Object tracking as a
classical dynamic variables estimation problem is suitable to
be modeled in this framework. Based on this idea, the a
posteriori probability of the target state can be inferred
recursively as follows:

p xt

􏼌􏼌􏼌􏼌 y1:t−1􏼐 􏼑 � 􏽚 p xt

􏼌􏼌􏼌􏼌 xt−1􏼐 􏼑p xt−1
􏼌􏼌􏼌􏼌 y1:t−1􏼐 􏼑dxt−1,

p xt

􏼌􏼌􏼌􏼌 y1: t􏼐 􏼑∝p yt

􏼌􏼌􏼌􏼌 xt􏼐 􏼑p xt

􏼌􏼌􏼌􏼌 y1:t−1􏼐 􏼑,

(1)

where xt is the motion state variable at time t, yt is the
observed image, p(xt | xt−1) denotes the state transition
model, and p(yt | xt) denotes the observation model. +us,
the target state can be found by maximizing a probability
estimation model as

􏽢xt � argxi
t
maxp yt

􏼌􏼌􏼌􏼌 x
i
t􏼐 􏼑p x

i
t

􏼌􏼌􏼌􏼌􏼌 xt−1􏼒 􏼓, (2)

where xi
t is the i-th candidate at time t.

2.1. State TransitionModel. State transition model describes
the change of the target state between two successive frames.
We measure the transition of the target state by an affine
motion formulation described as xt � [lx, ly, θ, s, α,ϕ]T,
whose parameters correspond to x, y coordinate translation,

rotation angle, scale, aspect ratio, and skew, respectively. To
sample a group of candidate particles, we model the tran-
sition of the target state by a Gaussian distribution:

p xt

􏼌􏼌􏼌􏼌 xt−1􏼐 􏼑 � N xt; xt−1,Σ( 􏼁, (3)

where Σ denotes a diagonal Gaussian distribution matrix,
whose elements are the variances of the affine motion
parameters.

2.2. Reverse Low-Rank Sparse Representation Model with
Fractional-Order Variation Regularization. In this section,
we utilize both reverse low-rank sparse learning and frac-
tional-order variation regularization to formulate the object
tracking. Firstly, we employ the local appearance repre-
sentation based on patches to replace the holistic one for
dealing with partial occlusion. Here, local patches are
sampled sequentially in a nonoverlapping manner from the
candidate particles as shown in Figure 1.

Secondly, we use a generative model based on statistical
processing to select the optimal target candidate. +e existing
low-rank sparse optimization-based tracking methods usually
make the drift phenomenon occur when the target faces
complex occlusion and fast motion. Here, we build a reverse
low-rank sparse learning formulation with fractional-order
variation regularization for object tracking as follows:

min
Zt

1
2

Tt − DtZt

����
����
2
2 + λ Zt

����
����∗ + λ1 Zt

����
����1 + λ2 ∇

α
Z

����
����1, (4)

where

Z � Zt; Z
∗
t−1; . . . ; Z

∗
t−K􏼂 􏼃, (5)

∇α � 􏽘
K−1

k�0
(−1)

k
C
α
k. (6)

At time t, Tt denotes the target template reshaped by the
intensity vector of the observed target, whose initial value is
drawn manually in the first frame and the current value is
updated dynamically during tracking as shown in Section
3.2. Dt is a dictionary used for the sparse representation of
target template, whose columns are formed by candidates
particles yi

t􏼈 􏼉
N

i�1. yi
t is the local patch vector of the candidate

region in the current frame sampled by the state transition
model. Zt denotes the sparse coding. λ, λ1, and λ2 are the
adjustment parameters. ‖·‖∗ denotes the matrix nuclear
norm. ∇α is the fractional-order gradient operator. K≥ 3 is
an integer constant, Cα

k � Γ(α + 1)/(Γ(k + 1)Γ(α − k + 1)),
and Γ(·) is the gamma function.

In model (4), the first three terms have already been used
in existing trackers, which depict the reconstructed error,
low-rank constraint, and sparse representation, respectively.
+e last term is our novel idea which represents fractional-
order variation regularization.

In this optimization, we utilize low-rank constraint to
force the appearance similarity of the candidate particles.
+is global restriction can help to acquire the structure
feature of the object observations and prune the uncorre-
lated candidate particles. Since matrix rank minimization is
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an NP-hard problem, we minimize a convex envelope of the
rank function (nuclear norm) for alternative processing.

To realize robust tracking under fast motion and severe
occlusion challenge, we introduce fractional-order variation
regularization to the representation model. +e variation
method can model the variable selection problem in the
bounded variation space. Functions in this space allow for
the existence of jumping discontinuities. +at is, the dis-
continuous features can be retained. +en, the appearance
variation can be described effectively when the target un-
dergoes fast motion. However, total variation regularization
can only relate the information between two adjacent
frames. Unlike this local processing, the fractional differ-
ential in equation (6) can involve more information from the
front frames, which is helpful for acquiring more target
feature information and dealing with the severe occlusion
problems. +erefore, we employ fractional-order variation
regularization under fractional-order bounded variation
space to enhance the robustness of object tracking.

+e candidate observation can be represented as a linear
combination of target templates, and only a few templates are
required to reliably represent the candidate image observa-
tion. Optimization problem (4) penalizes the representation
matrix via L1 norm, which can retain the useful information
and remove the redundant information so that the optimal
solution Zt is sparse. We employ sparse representation to
model the relationship between target candidates and target
templates, which is helpful to deal with occlusion, because the
residual error in the occlusion location is sparse. Currently,
most of the sparse representation models utilize the target
template to represent the candidate particles. +ese methods
need to solve a large number of L1 minimization problems. To
reduce the computational cost, we use candidate particles’
linear combination to represent the target template inversely.
+is is because the templates’ number is smaller than that of
the candidates. +en, the computational efficiency for
tracking processing can be improved.

2.3. Observation Model. +e observation model p(yt | xt)

measures the probability of the observed image yt at the
motion state xt, which can describe the similarity between
the target template and the candidate particle. +en, the
candidate with maximal probability in equation (2) can be
regarded as the tracking result. In this paper, we use the
sparse coding coefficient Zt in model (4) to estimate this
similarity. +e candidates with larger sparse coding coeffi-
cient have high probability to be the target, whereas the
candidates with smaller coefficient are less likely to be the
target. We define the observation model as

p y
m
t

􏼌􏼌􏼌􏼌 x
m
t􏼐 􏼑 �

Z
m
t

􏽘

M

m�1
Z

m
t

, m � 1, 2, . . . , M,
(7)

where the superscript m denotes them-th candidate. In each
frame, we crop out the optimal candidate as the tracking
result.

3. Numerical Implementation

3.1. Alternating Iterative Algorithm. To solve the optimiza-
tion problem in (4) for online tracking, we present an al-
ternating iterative algorithm based on three update steps as
follows:

Step 1: acquire the low-rank matrix Z1,t by

min
1
2

Dt − Z1,t

����
����
2
2 + λ Z1,t

����
����∗ . (8)

We solve this problem with the FISTA algorithm.
Define f(Z1,t) � 1/2‖Dt − Z1,t‖

2
2, g(Z1,t) � ‖Z1,t‖∗ ,

and

pL(Y) � argmin
Z1,t

Z1,t − Y −
1
L
∇f(Y)􏼒 􏼓

�������

�������

2

F

+ Lg Z1,t􏼐 􏼑,

(9)

where L is the Lipschitz constant for the function∇f.
+e details of the FISTA algorithm can be sum-
marized as follows:

(1) Initialization: (Z1,t)
0 � Y1 and c1 � 1.

(2) Iteration:

Z1,t􏼐 􏼑
j

� pL Y
j

􏼐 􏼑,

c
j+1

�
1 +

���������

1 + 4 c
j

􏼐 􏼑
2

􏽱

2
,

Y
j+1

� Z1,t􏼐 􏼑
j

+
c

j
− 1

c
j+1􏼠 􏼡 Z1,t􏼐 􏼑

j
− Z1,t􏼐 􏼑

j− 1
􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where j � 1, 2, . . . J. +e terminal condition is set by the
duality gaps.

Figure 1: Nonoverlapping patches.

Mathematical Problems in Engineering 3



Step 2: introduce the fractional-order variation regu-
larization by

min
1
2

Z1,t − Z2,t

����
����
2
2 + λ2 ∇

α
Z2,t

����
����1. (11)

We solve this model by an adaptive primal-dual
algorithm [17] formulated as follows:

(1) Initialization: Z
0
2,t � Z0

2,t, p0 � 0, τ0, σ0 > 0.
(2) Iteration:

p
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�
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+ σn∇
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,
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1

�������
1 + 2cτn
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(12)

(3) Termination condition:
ς Z2,t, p􏼐 􏼑 � max<p′,∇αZ2,t > − F

∗
p′( 􏼁 + G Z2,t􏼐 􏼑

−min<p,∇αZ2,t
′ > − F

∗
(p) + G Z2,t

′􏼐 􏼑,
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where

G Z2,t􏼐 􏼑 �
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Z1,t − Z2,t
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����
2
2,

F
∗
(p) �

0, p ∈ P,

+∞, p ∉ P.

⎧⎪⎨

⎪⎩

(14)

P is the dual space. ς(Z, p) is termed as the primal-dual
gap, which vanishes only if (Z, p) is the saddle point.
Step 3: update the coding Zt by the inverse sparse
representation:

min
1
2

Tt − DtZt

����
����
2
2 + λ1 Zt

����
����1. (15)

+is is a traditional linear regression problem. +e
solution of this model can be calculated by the LARS
algorithm. We utilize the SPAMS optimization toolbox
to realize this numerical calculation.

+is three-step iteration updates one variable at a time
with the other variables fixed. Finally, the representa-
tion coefficient in (4) can be acquired.

3.2. TemplateUpdate. In model (4), a fixed target template is
insufficient to account for appearance change among suc-
cessive frames. In this work, we address this issue by a
dynamic update scheme as

Tt � μTt−1 +(1 − μ)rt−1, if Tt− 1 − rt− 1
����

����
2 < τ. (16)

+e target template Tt is defined as the weighted sum of
the target template Tt−1 and the tracking result rt−1. +e
contributions of these two terms can be balanced by the
weight μ. +e threshold τ is determined empirically by
measuring the dissimilarity. We set μ � 0.95 and τ � 0.1.

+is update mechanism can overcome the target ap-
pearance change due to partial occlusion. We can retain the
unoccluded patches in the target template and prune the
occluded ones.

+e details of the numerical implementation are shown
in Algorithm 1. In our reverse sparse learning framework,
the computational cost of updating Zt in step 3 is Ο(np2),
where n is the number of target templates and p is the
number of image feature, whereas, in the traditional sparse
learning framework, n is the number of target candidates.
Because the templates’ number is smaller than that of the
candidates, the computational complexity for tracking
processing can be reduced linearly. In our algorithm, the
average frame rate of the video sequences is about 7 frames
per second.

4. Experimental Results

In this section, we assess the proposed tracking algorithm by
qualitative and quantitative experiments. +e experiments
are conducted on a set of benchmark sequences (faceocc1,
faceocc2, girl, boy, deer, jumping, singer1, car4, david,
cardark) with MATLAB.+ese sequences are categorized by
their main challenging factors including occlusion, fast
motion, illumination and scale variation, deformation, and
background clutters. For each sequence, the initial value of
the affine parameter can be acquired from the bounding box
in the first frame, which is drawn manually, and then the
affine parameter varies accordingly in the tracking process.
We sample 300 candidate particles and regularize the target
templates size to 32∗ 32. Furthermore, we set weight co-
efficients λ � 0.5, λ1 � 0.2, λ2 � 0.05, respectively.

Comparative studies with 7 state-of-the-art trackers
including SCM [11], IST [13], LLR [14], DDL [15], CNT [18],
MCPF [19], and VITAL [20] are carried out. In [11, 13–15],
object tracking is modeled by low-rank and sparse repre-
sentation. In [18], a convolutional neural network is in-
corporated into object tracking without training. In [19],
object tracking is described in a multitask correlation par-
ticle filter framework. In [20], object tracking by detection
framework is realized via adversarial learning. +ese com-
parisons mainly consider deep network [21], correlation
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filter and adversarial learning have attracted much attention
in complicated tasks of visual tracking.

4.1. Qualitative Results. Figures 2–6 compare the tracking
results of the 8 trackers on 10 benchmark sequences qual-
itatively. In the following, we analyze the results according to
the main challenging factors in each sequence.

Occlusion: in the faceocc1 sequence, the target face
undergoes frequent occlusion, which causes serious
appearance changes. Figure 2(a) shows some repre-
sentative tracking results in the sequence. +ese
trackers can complete the tracking successfully. In the
faceocc2 sequence, the target face not only suffers from
heavy partial occlusion, but also undergoes rotation. As
shown in Figure 2(b), these trackers overcome the effect
of occlusion to different degrees. When the face is
occluded by a magazine heavily (e.g., #181 and #726),
all the trackers can still achieve favorable results. But
when the face undergoes both severe occlusion and in-
plane rotation simultaneously around #481, most
sparse trackers can detect the target well, whereas the
CNT tracker deviates from the target. In the girl se-
quence, the target face involves heavy occlusion and
out-of-plane and in-plane rotation simultaneously, as
shown in Figure 2(c). When a man occludes the target
girl around #500, the IST tracker drafts away from the
target girl and tracks the man in turn. +e MCPF
tracker loses locating the target accurately as the in-
fluence of occlusion and scale variation after #428. +e
VITAL tracker loses the object around #428 and #457
but retraces the object finally. +e DDL tracker starts to
drift around #428. +e SCM tracker fails to track the
object as a result of rotation while our tracker can track
the girl reliably in the entire sequence.
Fast motion: Figure 3 presents some tracking results
over sequences whose target suffers from fast motion
and motion blur. +e ground truth indicates that the
motion in these sequences is larger than 20 pixels. It is
hard to locate the object, and it is rather challenging to
describe the appearance changes caused by motion
blur. Our tracker can achieve robust tracking in these
sequences. But not all of the other trackers get
promising results when the target faces these condi-
tions. +e boy sequence contains scenes with fast
motion andmotion blur, as well as out-of-plane and in-
plane rotation. +e DDL and LLR trackers cannot keep
track of the object and drift to the other areas around
#360, #490, and #602. +e IST tracker outperforms the
other trackers but also with some errors (e.g., #117). In
the jumping sequence, the DDL and IST trackers
cannot detect the target around #124, #180, #248, and
#310, and the LLR tracker fails around #180, #248, and
#310. In the deer sequence, the deer head undergoes fast
motion, background clutter, and rotation. +e DDL
and LLR trackers lose the object from the start, and the
IST tracker makes the drift phenomenon exist around
#32 and #48.

Illumination and scale variation: Figure 4 shows some
tracking results over sequences with severe illumina-
tion and scale variation. In the singer1 sequence, the
stage light changes frequently. In the car4 sequence, the
car crosses the overpass undergoing drastic illumination
and scale changes. Most trackers can overcome the
influences to obtain the object region based on low-rank
constraint.+e CNTtracker utilizes the normalized local
image features to overcome this challenge. +e MCPF
tracker employs a particle sampling strategy to deal with
large-scale variation problems. +e VITAL tracker
handles the scale variance sequence by acquiring the
discriminative features based on the weight mask.
Deformation: in the david sequence, a moving face
experiences strong nonrigid deformation due to pose
variation and out-of-plane and in-of-plane rotations.
We show some significance tracking results in Figure 5.
Our tracker can track the target effectively on all the
frames. It is attributed to the low-rank and reverse
sparse characteristics of the tracking framework, which
can learn the robust discriminative subspace. +e IST
and VITAL trackers also perform well with stable
tracking results while the DDL and LLR trackers fail at
different times. +e CNT tracker deviates away in
certain frames (e.g., #375 and #460). +eMCPF tracker
cannot locate the object effectively as scale variation
(e.g., #460).
Background clutter: +e cardark sequence includes
scenes with background clutter and illumination var-
iation. +e car and the surrounding scene have similar
color and texture as shown in Figure 6. Overall, most
trackers can achieve better performance, whereas the
LLR tracker drifts away from the car when the similar
color or texture draws near to the car, such as around
#60. +e MCPF tracker cannot locate the car effectively
as scale variation (e.g., #284 and #351).

4.2. Quantitative Results

4.2.1. Central-Pixel Error Comparison. +is subsection
compares the central-pixel error (CPE) of the 8 trackers
on 10 sequences quantitatively as shown in Table 1. CPE
records the Euclidean distance between the manually
labeled ground truth and the central location of the
tracked bounding box. +e smaller the error is, the more
accurate the tracking result will be. In Table 1, the smallest
and the second smallest errors are marked in bold font for
each sequence, and the last row presents the average
performance of these trackers. From the results, it is clear
that our tracker achieves the best or second best per-
formance in terms of the CPE. CNT and VITAL trackers
perform relatively well as well. Among these trackers,
SCM, IST, LLR, and DDL are the most relevant trackers
with us. However, our tracker outperforms the SCM
tracker in deformation and occlusion sequences and
outperforms IST, LLR, and DDL trackers in fast motion
sequences. Furthermore, compared with the CNT tracker
which models tracking in a convolutional neural network
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framework, our tracker is more efficient in occlusion and
deformation conditions. Compared with the MCPF
tracker which models tracking in multitask correlation
particle filter framework, our tracker is more efficient in

deformation and background clutter conditions. Com-
pared with the VITAL tracker which models tracking via
adversarial learning, our tracker is more efficient in oc-
clusion conditions. +ese results indicate the robustness

SCM
IST
LLR
DDL

CNT
MCPF
VITAL
Ours

#001 #342 #517

#692 #867 #882

(a)

SCM
IST
LLR
DDL

CNT
MCPF
VITAL
Ours

#001 #181 #269

#481 #582 #726

(b)

SCM
IST
LLR
DDL

CNT
MCPF
VITAL
Ours

#001 #101 #253

#428 #457 #500

(c)

Figure 2: Qualitative results on three sequences with occlusion: (a) faceocc1, (b) faceocc2, and (c) girl.

Input: template matrix Tt, dictionary Dt, weight coefficients λ, λ1, λ2, and α � 1.8.
Output: Zt.

(1) Initiate parameters: λ, λ1, λ2 > 0.
(2) While not converged do
(3) Fixing other variables to update Z1,t; (equation (8))
(4) Fixing other variables to update Z2,t; (equation (11))
(5) Fixing other variables to update Zt; (equation (15))
(6) Updating target template Tt; (equation (16))
(7) end

ALGORITHM 1: Numerical implementation for reverse low-rank sparse learning and fractional-order variation regularization.
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of our tracker to occlusion, illumination and scale vari-
ation, fast motion, deformation, and background clutter.

4.2.2. Influence of Fractional-Order Variation. +is sub-
section compares the influence of fractional-order vari-
ation with first-order variation on the tracking results.
Figure 7 draws the evolution curves of CPE versus frame

numbers on different differential orders.+e experimental
sequences are selected according to their main challenging
factors. In most sequences, the fractional-order regula-
rization is similar to the one obtained by using first-order
regularization. But in complex occlusion condition,
fractional-order regularization has an obvious advantage.
In the faceocc2 sequence, especially from #576 to #819, the
object face undergoes heavy appearance changes,

#001 #117 #224

#360 #490 #602

SCM
IST
LLR
DDL

CNT
MCPF
VITAL
Ours

(a)

#001 #062 #124

#180 #248 #310

SCM
IST
LLR
DDL

CNT
MCPF
VITAL
Ours

(b)

#001 #015 #025

#032 #048 #062

SCM
IST
LLR
DDL

CNT
MCPF
VITAL
Ours

(c)

Figure 3: Qualitative results on three sequences with fast motion: (a) boy, (b) jumping, and (c) deer.
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Figure 4: Qualitative results on two sequences with illumination and scale variation: (a) singer1 and (b) car4.
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occluded by a magazine and a hat. +e tracking perfor-
mance based on fractional-order regularization is much
better than that of the first-order regularization. Similarly,
in the girl sequence, especially from #90 to #110, the object
face is occluded from local to global gradually, the frac-
tional-order operator also performs better with smaller
error. +is implies that fractional-order regularization

should be used to take more neighboring frames infor-
mation into account. +is is mainly because the fractional
differential is a global operation. +eoretically, the
number of its expansion terms should be very large, but
we take K � 4 for our tracking because the fractional-
order computation will cost more time. Based on the
average CPE, we set α � 1.8 in Figures 2–6.
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Figure 5: Qualitative results on david sequence with deformation.

Table 1: CPE of the trackers.

SCM IST LLR DDL CNT MCPF VITAL Ours
faceocc1 14.4 14.7 15.0 13.1 16.8 22.0 16.7 14.2
faceocc2 8.3 8.7 10.6 5.0 18.0 9.7 11.3 7.8
girl 169.5 7.9 10.5 6.6 5.2 4.7 6.1 3.7
boy 2.8 3.8 68.4 60.7 2.4 4.2 2.4 2.6
jumping 4.4 41.9 46.2 63.8 5.6 3.1 3.5 7.7
deer 15.5 33.6 86.4 98.6 4.7 9.1 11.9 7.9
singer1 5.1 5.3 8.9 7.2 3.7 8.2 7.7 4.6
car4 4.3 2.8 14.6 13.5 1.5 3.7 7.7 2.7
david 30.0 2.3 9.5 3.2 16.1 17.7 4.8 3.0
cardark 2.7 2.8 3.6 1.4 1.0 21.9 3.8 2.2
average 25.7 12.4 27.4 27.3 7.5 10.4 7.6 5.6
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Figure 6: Qualitative results on cardark sequence with background clutters.
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Figure 7: CPE under different differential orders. (a) faceocc2, (b) girl, (c) deer, (d) singer1, (e) david, and (f) cardark.
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5. Conclusion

In this paper, we proposed a novel object tracking method
based on reverse low-rank sparse learning and fractional-order
variation regularization. Our tracker comprised some effective
technical elements as follows. We utilized low-rank constraint
to prune the uncorrelated candidate particles. We introduced
fractional-order variation regularization to retain the discon-
tinuous features and conquer the fast motion problem.
Meanwhile, this regularization could also relate adjacent frame
feature information to repress occlusion. Furthermore, we built
an inverse sparse representation to reduce the computational
cost for tracking processing. We gave an alternating iteration
strategy for online tracking optimization. Qualitative and
quantitative evaluation on benchmark sequences have dem-
onstrated the robustness of our tracking algorithm, especially in
complex occlusion and fastmotion challenges. In the future, we
will extend our tracker to deep learning for enhancing its
discriminatory ability.
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