
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

An Efficient Privacy-Preserving
Multi-keyword Query Scheme in
Location Based Services
SHIWEN ZHANG1,2, TINGTING YAO3, WEI LIANG 4, VOUNDI KOE ARTHUR SANDOR4, AND
KUAN-CHING LI5, (Senior Member, IEEE)
1College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
2College of Computer, National University of Defense Technology, Changsha, Hunan, 410073, China
3Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, Changsha, Hunan, 410138, China
4College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
5Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan

Corresponding author: Shiwen Zhang (e-mail: shiwenzhang@hnust.edu.cn), Wei Liang (e-mail:weiliang99@hnu.edu.cn).

This work is supported in part by the National Natural Science Foundation of China (No.61702180), the Natural Science Foundation of
Hunan Province (No.2019JJ50167), the Doctoral Scientific Research Foundation of Hunan University of Science and Technology
(No.E51790), the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology
(No.2017WLZC008), and the General Project Research Foundation of Education Bureau of Hunan Province (No.18C0345).

ABSTRACT With the proliferation of location-aware mobile devices and the prevalence of wireless
communications, location-based services (LBS) have attracted much particular attention in recent years.
For flexibility and cost savings, the LBS provider outsources the LBS data to the cloud in order to serve
the increasing number of mobile users. To guarantee users’ privacy and data confidentiality, some excellent
works have been proposed which focus on secure query over the location server. However, these existing
works have two limitations. On the one hand, they cannot preserve users’ location and query content privacy
simultaneously. On the other hand, they fail to support multi-keyword queries. In this paper, aiming at a
multi-keywords query in LBS, we propose a novel efficient and privacy-preserving multi-keyword query
scheme (PPMQ) over the outsourced cloud, which satisfies the requirements of the location and query
content privacy protection, query efficiency, the confidentiality of LBS data and scalability regarding the
data users. To improve the efficiency of our proposed scheme, we utilize the linear quad-tree technique to
build a grid system to represent the location information in the query condition as well as a searchable index.
To protect the location privacy, we combine decimal Morton code and public-key cryptography techniques
to build a searchable index or to generate a trapdoor. To enable the cloud server to perform a secure multi-
keyword query, we systematically construct a privacy-preserving query scheme with bilinear pairing-based
cryptography. In particular, our proposed scheme is scalable and very suitable for multi-user environments
due to the flexible user registration and revocation mechanisms. Furthermore, a detailed security analysis
shows that the proposed scheme can ensure the confidentiality of LBS data, and protect the location and
query content privacy. Extensive experiments are conducted on a real LBS dataset, and the simulation results
confirm the security and efficiency of our scheme.

INDEX TERMS Multi-keyword query, Location-based services, Linear quad-tree, Bilinear pairing map

I. INTRODUCTION

W ITH the proliferation of wireless communication
technologies and mobile devices with positioning

capabilities, location-based services (LBS) are being exten-
sively used in our daily life. LBS can help people enjoying
a comfortable life. It is reported that more than 150 million
people have enjoyed LBS in 2014 [1]. The most common
and typical service of the LBS system is location query

service, which has been applied to many areas, such as
transportation, target advertising, friend recommendation, a
restaurant finder, and so on [2, 3]. The location query allows a
user to search nearby points of interest (POIs) within a given
distance to her/his location. Then, the LBS provider returns
the desirable POIs to the query users.

Although LBS can improve people’s life more conve-
niently, its large adoption still faces severe challenges. The

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

information security and privacy preservation problems, es-
pecially those regarding user’s location and query content
privacy, should be addressed before the deployment of LBS
in the real-world [4, 5]. In a LBS system, the data queriers
first submit their accurate locations and query contents to
the LBS provider, then the LBS provider returns the de-
sirable POIs records to the data queries. By collecting and
analyzing query users’ current location and query content,
the LBS provider can easily obtain a great deal of sensitive
information, such as users’ real identities, health status, trade
secrets, hobbies, and so on on [6]. At the same time, the
querying user would only be interested in a few POIs, which
are more relevant to her/his query. Returning a larger number
of POIs will cause considerable computation and communi-
cation costs. Hence, designing a privacy-preserving efficient
query scheme in LBS systems that protects the user’s location
and the query content privacy is still an active topic of LBS
research.

Let us consider the following application scenario. To
achieve low computation cost and flexible LBS deployment,
the LBS provider can be regarded as a data owner, which
outsources his/her LBS data (i.e., POIs) to a cloud server for
enjoying the abundant benefits brought by cloud computing
such as easy access, great flexibility, cost-saving, excellent
computation performance, and others. For the sake of protect-
ing the sensitive LBS data, all data are encrypted before being
outsourced to the cloud server. The authorized data users,
i.e., registered users, can issue a multi-keyword query to
find desirable POIs records within a given distance to his/her
current location from the cloud server. Then, the cloud server
searches its database and returns the corresponding POIs to
the data user. Such results help the data user to look for
desirable POIs accurately and quickly. For example, a tourist
can issue the following multi-keyword query to the LBS
provider through his/her smartphone: " what is the lowest
price for the most popular hotel within 1000 meters from
my current location ?". Then, the cloud server searches for
the POIs at a given distance and returns the charming hotels
considering price and reviews.

To protect the privacy of location data in the LBS system,
scholars have dedicated many research efforts to design pri-
vacy preserving schemes for LBS [7]. Many solutions have
been proposed in the literature [6, 8–24]. However, most
of schemes only protect either the location privacy [9–11]
or the query content privacy [14]. They fail to preserve the
location privacy and query content privacy simultaneously.
In [12, 13, 15–17], many approaches have been proposed
to protect the location information and the query content
privacy. But, they downgrade the accuracy of the user’s
location information and increase the communication cost
between the user and the LBS provider. Encryption based on
the various schemes [2, 4, 18, 19, 21] can fully ensure the se-
curity of data and provide accurate results to users. However,
most of those techniques bring relatively high computation
or communication costs on the user side, which lead to much
energy consumption over the mobile devices. Furthermore,

most of the prior works either address privacy preserving,
or instead result in poor user experience on POIs query. For
instance, such works only support location coordinate query
or single keyword search. However, nowadays, users prefer to
submit multiple keywords to retrieve the most relevant POIs.
Therefore, it is challenging to develop a secure, efficient
multi-keyword query scheme over encrypted LBS location
data in a flexible and scalable manner.

In this paper, different from existing works, aiming at
the challenges as mentioned above, we propose an efficient
privacy-preserving multi-keyword query scheme in LBS,
named PPMQ, which provides fine-grained queries and re-
turns more accurate POIs to users without divulging users’
sensitive information to both the cloud server or to other
unregistered users. To prevent the cloud server and the unau-
thorized users from knowing the exact location data of the
data owner, we adopt a systematic encryption to encrypt
the outsourced LBS data. To protect the location and query
content privacy, we first utilize linear quad-tree to design a
perfect grid system, in which the real location information of
the user and POI record can be represented as a grid location
coordinate. Then, combined quad-tree with decimal Morton
code technology, a secure index construction and trapdoor
generation algorithm is developed. To enable the cloud server
to perform secure multi-keyword searches, based on bilinear
pairing cryptography, we construct a secure query protocol.
Users can issue a multi-keyword query to accurately locate
the desirable POIs quickly and conveniently without reveal-
ing any sensitive information, which dramatically improves
the user experience. Furthermore, PPMQ is very suitable for
multi-user environments by providing flexible registration
and revocation mechanisms for users, which can help the
data owner to carry out the user’s identity authentication.
Finally, we conduct extensive experiments on real-world LBS
datasets and give a rigorous security analysis to confirm the
proposed scheme’s security and efficiency.

To summarize, the main contributions of this paper are:
• We propose an efficient and privacy-preserving multi-

keyword query scheme that can simultaneously preserve
the location and query content privacy. Besides, with
flexible user registration and revocation mechanisms,
our scheme is very suitable for the multi-user environ-
ment.

• We systematically construct a secure multi-keyword
query protocol, which not only enables the cloud servers
to perform a secure multi-keyword search without
knowing the actual value of both query condition and
POIs but also allows the data owners to encrypt key-
words of POIs with their secret keys, such that the reg-
istered data users can query the POIs without knowledge
of any secret key.

• To achieve query efficiency, we first utilize the quadtree
technique to build a grid system representing the lo-
cation information of user and POIs. Then, combining
with the Morton coding algorithm, we can build a
searchable index and generate a trapdoor securely. We

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

develop a fine-grained query protocol, where the data
user can query the POIs by initiating a multi-keyword
query and obtaining the desirable POIs according to
their preference.

• We give rigorous security analysis and conduct exten-
sive experiments on a real LBS data set. The analysis
shows that our scheme can protect user location privacy
and guarantee the confidentiality of LBS data simulta-
neously. Experimental results confirm the efficiency and
effectiveness of our proposed scheme.

The rest of our paper is structured as follows. We review
some related works in Section II. In Section III, we formalize
the system model, threat model and design goal. Then, the
preliminaries are presented in Section IV. In Section V, we
provide the location representation model and define the
proposed scheme. Moreover, our construction of the PPMQ
scheme is presented in Section VI, followed by the security
analysis of our scheme. The performance evaluations are
conducted in Sections VII and VIII, respectively. Finally, we
conclude our paper in Section IX.

II. RELATED WORK
A. LOCATION PRIVACY PRESERVATION IN LOCATION
BASED SERVICE
Protecting user’s location privacy in LBS has drawn a
lot of attention from researchers in recent years. Existing
privacy-preserving techniques in the LBS ecosystem can
be broadly categorized into four groups [7]: Anonymity
based schemes [9–11], Obfuscation mechanisms [12–17],
Encryption based schemes [18–20], and shared information
reduction mechanisms [21–23]. We briefly discuss some of
them as follows.

Anonymity based schemes aim to break the links be-
tween users’ identity and location information, such as k-
anonymity [9], l-diversity [10] and p-sensitivity [11]. These
schemes can protect the user’s identity and location privacy
effectively. However, they need a trusted third party (TTP)
to blur users’ exact location information into a cloaked area.
The TTP would easily become the target of attacks and
exhibit a single point of failure vulnerability. To avoid using
TTP, obfuscation based schemes reduce the precision of
users’ location information by adding dummy locations [12]
or noise [15, 16] and generalizing location data [13, 14].
Nevertheless, most of the schemes introduce additional sys-
tem costs or sacrifice the utility of the location data. En-
cryption based schemes, such as homomorphic encryption
schemes [17, 18, 20] can provide LBS accurately while
protecting the confidentiality of users’ location data. Nev-
ertheless, most of them impose relatively high computation
requirements on the user side, which is not suitable for
resource-constraint mobile devices.

Unlike existing works, we propose a privacy-preserving
multi-keyword query protocol in LBS, which enables the
data user to obtain the desirable POIs more accurately and
more conveniently without divulging the location and the

query content privacy. The proposed scheme is flexible and
efficient.

B. SECURE KEYWORD SEARCH
To protect the sensitive information of users and enable the
cloud server to perform a keyword search, Wang et al. [25]
defined and solved the secure ranked keyword search over
encrypted cloud data. In [25], they found that invariably re-
trieving all files and returning undifferentiated results would
incur considerable communication costs for the data querier
to get the most relevant files. They propose a secure keyword
search scheme that returns top-k relevant files upon a single
keyword based on an order-preserving symmetric encryption
technique. To further enhance search efficiency, Curtmola et
al. [26] developed a single encrypted hash table index for
the entire file collection and then proposed a per-keyword
based scheme. However, as a common practice indicated by
today’s web search engines (e.g., Google search), data users
tend to issue a multiple keywords search rather than single
keyword search to retrieve the most relevant data. Further,
In [27], based on secure inner product computation, Cao et
al. proposed a preserving multi-keyword ranked search over
encrypted cloud data (MRSE). [28] also extended the secure
keyword search for multi-keyword queries. Their approaches
employ “inner product similarity” to quantitatively evaluate
the similarity between query keywords and outsourced data
files. Zhang et.al [29] proposed a scheme that deals with se-
cure ranked multi-keyword search in a multi-owners model.
To tolerate both of minor typos and format inconsistencies
given user’s search input, Li et al. [30] and Chuah et al. [31]
proposed fuzzy keyword search over encrypted data. To
enrich query predicates, conjunctive keyword search [32, 33]
over encrypted data has also been proposed. As a more
general search approach, predicate encryption schemes [34,
34, 36] are recently proposed to support both conjunctive and
disjunctive search.

Motivated by multi-keyword search in could computing,
we focus on the secure multi-keyword query in LBS, en-
abling the LBS provider to return the most relevant POIs to
query users accurately. Also, we seek to achieve an efficient
and scalable query system without sacrificing the user’s
privacy and security of data, so that the scheme could be
suitable for a more significant number of data users.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
First, we describe the notations in this paper, as shown in
Table. 1. Then, we present the system model. In Fig. 1, our
system model consists of three different entities: the data
owner, the cloud server and the multiple data users. The data
owner (i.e., LBS provider) collects a series of location and
related information from the business called poi records so
as to provide LBS service to data users. These poi records
comprise a LBS location dataset. Since the cloud server can
provide low-cost storage and powerful computation services,
we assume that the data owner is willing to outsource the

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Summary of Notations

Notations Descriptions

IDi, loci = (lati, loni) The identifier, and the location latitude and longitude coordinates of the poii

Wi = {wi1, wi2, · · · , wim} The set of keywords that describes the poii in all aspect

poii = (IDi, loci,Wi) The point of interest record poii

POI = {poi1, poi2, . . . , poin} The POIs set

P̃OI = {p̃oi1, p̃oi2, · · · , p̃oin} The encrypted POIs set

W̃ = {W̃1, W̃2, · · · , W̃n} The encrypted keywords set associated with POI, where each W̃i is the encrypted form of Wi

I = (I1, I2, · · · , In) The searchable index associated with POI, where each subindex Ii is built for poii

Mi, QM The Morton code value of the poii and the set of Morton code values of query region

Ŵ = (w1, w2, · · · , wt), TŴ The query keywords, and the trapdoor for the query keywords Ŵ

P̃OI
Ŵ

The relevant encrypted POIs that contains query keywords Ŵ

UL, ERKu The list of identifiers of registered users, and the search public key of the user u

M̃i,KF (·) The encrypted Morton code value for the point poii, and a key derivation function

Q̃M = (M̃1, M̃2, · · · , M̃µ) The encrypted Morton code values set of the query region

Data Owner

Cloud Server

En
cr

yp
te

d 
LB

S 
da

ta
 

an
d 

In
de

x

Register

Secret keys and hash 
function

Multi-keyword query request

Query response

Data Users

FIGURE 1. System model for proposed scheme.

location dataset to the cloud server for better LBS offers to
data users. In order to protect the confidentially and privacy
of the location data, the data owner encrypts each poii record
before outsourcing it to the cloud server. When a data user
wants to join the system, the LBS provider provides authen-
tication and registration service for the data user. The data
users must provide their own identity information to register
with the data owner (i.e., LBS provider). If the data user
passes the authentication, the data owner grants the search
capabilities to the legal users by sending some important
security parameters to data users. The legal data users can
enjoy the LBS service by submitting their multi-keyword
queries to the cloud server. After that, the cloud checks the
identity information and search capabilities of data users and
then performs the query process. Without the valid security
parameters of the data users, the cloud cannot complete the
query process for the data users. At last, the cloud returns

query results to the data users. Correspondingly, the LBS
provider can also revoke any expired data user, who no longer
has the search capability over the outsourced LBS data. Note
that how to achieve decryption capabilities is out of the scope
of this paper, some excellent work to this problem can be
found in [36, 37]. Attribute based encryption is a better way
to manage user’s access towards outsourced LBS data. Next,
we will describe each entity of our model as follows in detail.

1) Data Owner: Data owner assumes the role of a LBS
provider (LBSP) who owns a large-scale poi records,
denoted as POI = {poi1, poi2, . . . , poin}. For con-
venience, we assume each record poii contains three
elements. We use (IDi, loci,Wi) to represent the poii
record, where IDi is the identifier of the poii’s record,
loci = (lati, loni) denotes the location coordinate,
Wi = {wi1, wi2, · · · , wim} is the skeleton description
of the poii record containing m keywords. To prevent
the cloud server from knowing the actual content of
the poi record, the data owner encrypts each poii
record to form an encrypted location dataset, denoted
as P̃OI = {p̃oi1, p̃oi2, . . . , p̃oin}. To enable efficient
search on the encrypted LBS location data P̃OI, the
data owner has to build a secure searchable index I for
the location data. Finally, both searchable index I and
P̃OI are outsourced to the cloud server.

2) Cloud Server: Cloud server stores the encrypted LBS
data P̃OI and verifies the search capabilities for the
data user. If the data user obtained the search capabil-
ities from the data owner, then the cloud server stores
the search public key and identity information of the
registered data user. Thus, the registered data user can
pass the authentication for being a valid user. When
receiving the encrypted queries from the authorized
users, the cloud server performs the secure multi-

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

keyword search over encrypted data P̃OI and then
returns the satisfied query results to the users. The
cloud server does not know any context of the poii
records, the user’s query context, or the location of
authorized users. Only the authorized users can search
the encrypted dataset and recover the query results after
sending a multi-keyword query to the cloud.

3) Data Users: The data users are authorized LBS users,
who enjoy convenient location-based services by sub-
mitting multi-keyword queries to the cloud server
anywhere and anytime. The data user first registers
him/herself with the data owner and then obtains a
secret key and a secret hash function from the data
owner. For example, the query request, “find a 24-
hour Indian curry restaurant near me”, contains three
keywords, “24-hour", “Indian curry" and “restaurant".
To hide the query request for protecting query privacy,
the user can use his secret key to encrypt the query
keywords and then send the encrypted query keywords
to the cloud server. When a data user receives the query
results returned from the cloud server, he/she can re-
cover the actual content of the POIs by decryption. The
unregistered and revoked users from the data owner
cannot enjoy the LBS query service.

B. THREAT MODEL
In this paper, we mainly consider two attacks, the external
attacks, and the internal attacks. Unauthorized outsiders ini-
tiate external attacks. We can build secure communication
channels between all parts using standard security protocols,
such as Secure Socket Layer (SSL) [37] and Secure Socket
Shell (SSH) protocol [38], to resist the external attacks. The
SSL and SSH protocol can use a combination of crypto-
graphic processes to provide secure access to a computer over
an unsecured network. Thus, we only focus on the internal
attacks initiated by the cloud server and the unregistered data
users. In our threat model, we assume that the data owner
and authorized data users are trusted. However, the cloud
server is not trusted. We regard it as “honest but curious“,
which is the same as previous works [25, 27, 36, 39]. That
is to say, the cloud server is “curious“ to learn and infer
the encrypted record p̃oii and the received message. It may
attempt to deduce the actual information of the user’s query
content, stored LBS data, and location information of users.
We also assume that the cloud cannot collude with revoked
users to derive additional information about the data owner’s
encrypted poi records.

C. DESIGN GOAL
1) Security Guarantee: The proposed scheme should

prevent the cloud server from inferring the accurate
location of users, user’s query content, and the actual
contents and keywords value of encrypted poi records
stored in the cloud. The cloud server should not know
the user’s query interest, the exact location of users,
and the context of each encrypted poi record. Besides,

we still need to guarantee that the cloud server cannot
recover the actual content of the query result.

2) Access Control: The cloud server only provides multi-
keyword query service to current data users who have
been authorized by the data owner (i.e., LBSP). The
unregistered or revoked users cannot enjoy this LBS
service.

3) Scalability: This system can provide a multi-keyword
query service for a large number of data users at the
same time. The proposed scheme allows a data user to
enter or leave the system without affecting other data
users.

4) Computation Efficiency: The cloud server should
process the multi-keyword query efficiently without
disclosing query content and location privacy of data
users. The data owner should encrypt these poi records
speedily and then send it to the cloud. Moreover, the
data users also can compute the trapdoors quickly
according to the query condition. The proposed scheme
should be as efficient as possible.

IV. PRELIMINARIES
In this section, we recall the bilinear paring map and review
the quad-tree technique, which will serve as the basis of our
proposed PPMQ scheme.

A. BILINEAR PAIRING MAP
Let G and GT be two multiplicative cyclic groups with the
same large prime order q, and let g be a generator of G . A
bilinear pairing map e : G × G → GT has the following
properties: 1) Bilinearity, i.e., for all a, b ∈ Z∗

q and u, v ∈ G,
we have e(ua, vb) = e(u, v)ab; 2) Non-degeneracy, if g ∈ G,
then e(g, g) 6= 1 ∈ GT ; 3) Computability, for all u, v ∈ G,
there exists a efficient algorithm to compute e(u, v) ∈ GT .
Definition 1 (Discrete logarithm problem:): Given a mul-
tiplicative cyclic group G with the prime order q, g is a
generator of G, we first select an element a from Z∗

q , and
compute ga ∈ G. Then, it is difficult to compute the correct
value of a. In other words, given a tuple (G, q, ga, g), there is
not an efficient algorithm to output a.

B. QUADTREE STRUCTURE
A quadtree is a tree data structure in which each inter-
nal node has exactly four children, as shown in Fig. 2.
Quadtrees is most often used to partition a two-dimensional
space by recursively subdividing it into four quadrants or
regions [40]. Quadtrees are used to store data of point on a
two-dimensional space efficiently. For example, a quadtree
provides a uniform space decomposition mechanism for spa-
tial data such as coordinates in a Geographic Information
System (GIS). Quadtree decomposes the location coordinate
space into a hierarchy tree. Due to its simplicity and regular-
ity, the quadtree technique has been widely applied in many
applications, such as image compression, collision detection,
search for nearby points.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

R

R3R2 R4

R11 R14R12 R13 R41 R44R42 R43

Depth=0

Depth=1

Depth=2

R1

ŏ ŏ ŏ

R

(a)   Quadtree

Depth=0 Depth=1 Depth=2

R1 R2

R3 R4

R11

R2

R3

R41

R12

R13 R14

R42

R43 R44

(b)  The Grid System Corresponding to the Above Quadtree

Depth=τ

FIGURE 2. The structure of the quadtree.

The process of constructing a linear quadtree from a two-
dimensional spatial area is described as follows. First of all,
we assume that the depth of a quadtree has a maximum value.
Then, we recursively divide a city area on the map into four
equally-sized parts, forming four grids with the same sizes. If
the depth of the quadtree does not reach the maximum value,
the grid is split into four smaller grids with the same size, and
the POIs in the parent grid is inserted into child grids. In this
way, a hierarchy quadtree has been built from this region. As
we can see from Fig. 2, if the city area has been recursively
divided τ times, the depth of quadtree is τ . This quadtree has
2τ ×2τ leaf nodes. Thus, the city area is divided into 2τ ×2τ

grids comprising of a grid system. The grid coordinates are
numbered uniquely from 0 to 2τ − 1.

In our proposed scheme, we construct a linear quadtree
from the city area. Since each distinct poi is located in a
unique leaf node of the linear quadtree, we can use a tuple of
grid coordinates (xi, yi) to represent the location coordinates
(lati, loni) of the poi in the city area. Thus, the GPS location
information of poi can be represented in the form of grid
location coordinates in our grid system.

C. MORTON CODE

G.M Morton [41] first proposed the concept of Morton code
in 1966. Morton code is often used to map multidimensional
data to one dimension while preserving the locality of the
data point. It can be applied to generate a unique index for
a tuple integer numbers. For example, the encoded value
of a point in the two-dimensional space can be uniquely
indexed. These indexes values are sorted in a “Z" shape.

Fig. 3 illustrates the space partition and the corresponding
decimal Morton code of the linear quadtree, where the depth
of the linear quadtree is 3. The z-order of Morton codes have
such an excellent characteristic that the coordinates of the
adjacent Morton code numbers are also spatially close to
each other in the multidimensional space. In recent years, the
Morton code has been extensively used in computer graphics,
such as tree construction, raster data compression, and spatial
sorting.

In our proposed scheme, we utilize the Morton code’s
charming feature to find the nearest neighborhood poi
record.The basic idea of the search nearly point is to test
whether the Morton code value of a point is equal or close
to another point in the grid system. The z-value of a point
in two-dimensional space can be calculated by interleaving
the binary representation of its coordinate values. We assume
that II and JJ represent the row and column number of
a point in the two-dimensional space, respectively. Given a
row coordinate II of n bits whose binary presentation is
II = (i1i2 · · · in) and a column coordinate JJ of n bits
whose binary presentation is JJ = (j1j2 · · · jn), the decimal
Morton code is M = (injnin−1jn−1 · · · i3j3i2j2i1j1)2. For
example, if the gird coordinate of a point p1 is (3, 4) as shown
in Fig.3, the binary representation of the row and column
coordinate is 011 and 100, respectively. The Morton code
value of this point is M1 = (011010)2 = 26.

V. OVERVIEW OF PPMQ SCHEME
In this section, we first introduce the location representation
model. Then, we describe the formal definition of the pro-

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0

1

3

4

2

6

7

5

0 1 3 42 6 75

0 1

32

4 5

76

16 17

1918

20 21

2322

8 9

1110

12 13

1514

24 25

2726

28 29

3130

32 33

3534

36 37

3938

48 49

5150

52 53

5554

40 41

4342

44 45

4746

56 57

5958

60 61

6362

P1

FIGURE 3. The decimal Morton code of the linear quadtree.

posed scheme.

A. LOCATION REPRESENTATION MODEL
In this paper, we utilize the quadtree technique to describe
the location coordinate of the poi in the searchable index I
and encrypted query condition. For simplicity, we construct a
balanced linear quadtree with depth τ based on the city area.
That is to say, the city area has been recursively divided τ
times. Thus, the city area is partitioned into N × N grids,
where N = 2τ , the length of the basic grid is denoted as
σ. The grid coordinates are numbered uniquely from 0 to
N − 1. As described above, we use a tuple of coordinates
to represent a point in the city area’s gird system. The GPS
location latitude and longitude coordinates of the poi can be
represented as the grid coordinates of the poi. Fig.4 shows
a grid system for the linear quadtree, where N = 8. In
Fig.4, the grid coordinates of the point p1, p2, p3, p4 can be
expressed as (3, 4), (5, 2), (5, 5), (2, 5), respectively.

To improve the query process’s efficiency, we encode the
quadtree leaf nodes based on the Morton code. As we can see
from Fig. 4, the Morton value of the point p1, p2, p3, p4 is
26, 38, 51 and 25 respectively. The two-point location coor-
dinates, which are close to each other in the two-dimensional
space, have Morton values that are close to each other. To
achieve location query, the data user can specify his/her re-
gion of interest, which can be represented as a circle centered
at the query user’s current location li = (xi, yi) with a radius
of d in our grid system. The radius d can be regarded as a
search range. Based on the query location li = (xi, yi) and
radius d, the data user can compute the minimum bounding
rectangle, where the range of row and column number can
be denoted as [xmin, xmax] and [ymin, ymax], respectively.
Note that data users can adjust the size of the radius d. The

37

0

1

3

4

2

6

7

5

0 1 3 42 6 75

0 1

32

4 5

76

16 17

1918

20 21

2322

8 9

1110

12 13

1514

24 25

2726

28 29

3130

32 33

3534

36

3938

48 49

5150

52 53

5554

40 41

4342

44 45

4746

56 57

5958

60 61

6362

P1

P4

P3P2

(xi,yj)

FIGURE 4. The details of the grids system.

larger the d, the more POIs will be searched. As a matter
of simplicity, if most of a grid is covered by a data user’s
region of interest, this grid is added to the query region.
For example, if the query location is (4, 3) and d = 1000
meters, the region of interest of the data user is shown in
Fig. 4. In Fig. 4, we can find that, the query range of the row
and column for the data user is [1, 5] and [2, 6], respectively.
After that, the set of Morton code values of query region is
QM = {14, 15, 26, 36, 37, 38, 39, 45, 48, 49, 50}. The cloud
server only needs to return the POIs, which meet the multi-
keyword query condition, and the Morton code values of
these POIs are in the set of Morton code values of query
region to the data user.

As described above, the location of poi can be encoded
as an integer number, and the query location range of the
data users can be encoded as an integer set by the Morton
encoding algorithm. We can covert the testing of whether the
location of a point falls within a query region to the testing
of whether the Morton code value of a point is one of the
elements in the set of Morton code values of query region.
That is to say, if a point is within the query region, the Morton
code value of a point is a member of the set of Morton code
values of the query region. A last, to protect location and
query content privacy, we can design public key encryption
to encrypt the set of Morton code values of query region and
location coordinates of POIs.

B. FORMAL DEFINITION
The formal definition of the proposed scheme is defined
as follows. Our scheme consists of six algorithms: System
Setup, User Register, Encryption, Generate Trapdoor,
Query, User Revocation.

• System Setup(1λ) → (PK,MSK): The LBSP (i.e.,

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

data owner) takes a security parameter λ as input, and
outputs public key PK, and master secret key MSK.

• User Register(PK,MSK, u) → (SKu, ERKu):
The LBSP takes public key PK, master secret key
MSK, a random number su ∈ Z∗

q , a user-defined
random number ru ∈ Z∗

q as input, and outputs the user’s
ID UIdu, gk·r/su , and the user’s search public key
ERKu. At last, the LBSP delivers UIdu, gk·r/su , hk0,
the grid system parameters τ , σ, and su to the user u via
a secure communication channel and (UIdu, ERKu) is
sent to the cloud server by a secure channel.

• Encryption(POI, PK,MSK)) → C = I||P̃OI:
Based on the LBS dataset POI, the data owner first
builds a searchable index I. After that, the LBS dataset
can be independently encrypted by a systematic en-
cryption. Finally, the data owner obtains P̃OI. At last,
C = I||P̃OI is outsourced to the cloud server.

• Generate Trapdoor(Ŵ, loci, d)→ T
Ŵ

: The data user
first extracts t keywords from user’s query content. With
t keywords of interest in Ŵ , the query location loci
and query range d as input, it generates a corresponding
trapdoor T

Ŵ
.

• Query(C, T
Ŵ
) → P̃OI

Ŵ
: The cloud server takes the

trapdoor T
Ŵ

and ciphertext C as input, and outputs
the identifier list of relevant encrypted POIs, namely
P̃OI

Ŵ
.

• User Revocation(UIdu, UL) → UL
′
: The cloud

server takes the identify information UIdu of user u,
the registered users list UL as inputs, and then delete
corresponding user’s identify information to obtain a
new users list UL

′
.

VI. CONSTRUCTION OF PPMQ SCHEME
In this section, we use the bilinear paring map and quad-
tree technique to construct the PPMQ scheme. We present
the construction of PPMQ scheme as follows:

A. SYSTEM SETUP
Given a system parameter λ, the LBSP first generates two
multiplication cyclic group G and GT with the large prime
order q, and a bilinear paring map e : G × G → GT ,
where e is a non-degenerate bilinear pairing operation. Let
g be a generator of G. Then, the LBSP defines a random
oracle H1 : {0, 1}∗ → G, a hash secret key hk0, the
grid system parameters σ, τ , and a key derivation function
KF (.), which are shared with the valid query users. Next,
the LBSP generates a secret key k ∈ Z∗

q , and a random
number r ∈ Z∗

q , which helps improve the flexibility and
security of our system. Finally, the LBSP keeps the master
key MSK = (k, r) secretly, and opens the public key
PK = {G,GT , e,H1, g,KF (.)}.

B. USER REGISTER
When a user u wants to enjoy the LBS, he/she first needs to
register with the LBSP to obtain the search capability. The

LBSP verifies the identity information of the user u. After
the user u passed the authentication, the LBSP assigns a
ID number UIdu to user u. Then, LBSP selects a random
number su ∈ Z∗

q for u and compute gk·r/su . Next, the LBSP
sends gk·r/su , su, hk0,UIdu, and the grid system parameters
τ , σ to the user u by a secure communication channel. When
the user u receives gk·r/su , su, UIdu, hk0, τ , and σ, he/she
randomly selects ru ∈ Z∗

q and then further computes gru with
keeping the private key SKu = {ru} secretly. According to
the received gkr/su , he/she calculates his/her search public
key ERK,

ERKu = gk·r/su × gru = gk·r/su+ru (1)

At last, the user u also keeps (su, ru, hk0, σ, τ ) secretly.
(UIdu, ERKu) is sent to the cloud server. The cloud server
stores this tuple into a registered users list UL.

C. ENCRYPTION
To make the system secure and easy to search, before up-
loading POIs to the cloud server, the LBSP should first build
a secure index I for encrypted data P̃OI. As mentioned
before, the searchable index I consists of the encrypted
keywords W̃ that describe the POIs in all aspect, and the
encrypted Morton code value M̃ of location coordinates of
the POIs .

To enable the registered users to find the desirable POIs
conveniently and quickly, the LBSP use several keywords
to describe the POIs in a fine-grained model. Each keyword
wi,j(1 ≤ j ≤ m) in Wi describes a certain aspect of the
poii. For a point poii, the LBSP uses the following method
to encrypt each keyword wi,j(1 ≤ j ≤ m) in Wi as follows.

w̃i,j = gk·r·H1(wi,j) (2)

where 1 ≤ j ≤ m, H1 is a random oracle shared between
LBSP and the registered data users, k is the secret key for the
LBSP to encrypt keywords of POI, and r ∈ Z∗

q is a random
number for the LBSP to improve the flexibility and security
of our system.

To protect the location privacy, the LBSP first converts the
GPS location coordinate of the poii to the grid coordinate
based on the grid system. Then, the LBSP computes the
Morton code value of the grid coordinate of the poii. At
last, the LBSP uses the following method to encrypt the grid
coordinate of poii.

M̃i = gk·r·H1(Ed(xi,yj)) = gk·r·H1(Mi) (3)

where Ed(.) represents the Morton encoding algorithm,
(xi, yj) is the grid coordinate of the poii, and Mi is the
Morton code value of the grid coordinate of the poii. Through
the above operations, the searchable index Ii has been built,
which can be represented as Ii = (W̃i, M̃i).

To preserve the confidentiality of POIs, the LBSP encrypts
each data item poii ∈ POI using the following formula.

p̃oii = Enc(poii, hki) (4)

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where Enc(.) is a systematic encryption method, such as
AES, DES, and hki is a secret key. The secret key hki can be
obtained by a key derivation function KF (.) shared between
query user and LBSP. The secret key hki is generated as
follows:

hki = KF (hk0,Mi) (5)

After that, we obtain the resultant ciphertext of encrypted
POIs, denoted as I||P̃OI, where || is concatenation charac-
ter.

D. GENERATE TRAPDOOR
To implement the fine-grained query, the data user uses mul-
tiple keywords to describe the query requirements accurately.
The data user first extracts t keywords from the user’s query
content, we call it query keywords. Then, the data user
computes the query region based on the grid system, which
is produced by the parameters σ and τ . To preserve the query
content and location privacy, the data user encrypts each
query keyword and query region before submitting a query
request to the cloud. The data user takes two steps to generate
a trapdoor. First, the data user encrypts the query keywords.
Second, the data user uses the same method to encrypt the set
of Morton code values of the query region.

In order to make the data users generate trapdoors se-
curely, the query keywords encryption should satisfy two
main conditions. First, for the same keyword, the data users
can generate different trapdoor each time. Second, the data
user does not need to ask the data owner for the secret key to
generate a trapdoor. That is to say, the data user can generate
a trapdoor independently. The data user encrypts each query
keyword wi(1 ≤ i ≤ t) ∈ Ŵ as follows:

Twi
= (gr

′
·su·ru·H1(wi), gr

′
·su·H1(wi), gr

′

) (6)

where r
′ ∈ Z∗

q is a random number and the value of r
′

is
variable. The data user can set r

′
to a different value each

time, which helps to improve the randomness and security of
the query content.

To prevent the attackers from obtaining the location of the
data user through analyzing the set of Morton code values
of query region and disguising a valid query user to launch
a query, the data user encrypts each Morton code value
Mj(1 ≤ j ≤ µ) ∈ QM as follows:

M̃j = (gr
′
·su·ru·H1(Ed(xi,yj)), gr

′
·su·H1(Ed(xi,yj)), gr

′

)

= (gr
′
·su·ru·H1(Mj), gr

′
·su·H1(Mj), gr

′

)
(7)

where Ed(.) represents the Morton encoding algorithm,
(xi, yj) is the grid coordinate of the point in the query region,
andMj is the Morton code value of the grid coordinate of the
point in the query region.

Through the above operations, the trapdoor has been gen-
erated, T

Ŵ
= (Tw1

, Tw2
, · · · , Twt

)||(M̃1, · · · , M̃j , · · · , M̃µ)

E. QUERY
After receiving a trapdoor T

Ŵ
from data user u, the cloud

server searches Ii ∈ I one by one. The query process is
conducted in three steps:

In the first step, the cloud server first reads the encrypted
location dataset I||P̃OI. Next, the cloud server parses the
ciphertext, and then gets the searchable index I. Afterward,
for each subindex Ii, the cloud server can easily obtain the
W̃i and M̃i for the point poii.

In the second step, the cloud server tests whether the grid
coordinate of the point poii is located in the query region of
u. The cloud server will match the encrypted Morton code
value M̃i of the point poii with the element M̃j in the set of
encrypted Morton code values of query region Q̃M using the
following equation.

e(gr
′
·su·H1(Mj), ERKu)

= e(gr
′
·su·H1(Mj), gk·r/su+ru)

= e(gr
′
·su·H1(Mj), gkṙ/su) · e(gr

′
·su·H1(Mj), gru)

= e(gk·r·H1(Mj), gr
′

) · e(gr
′
·su·ru·H1(Mj), g)

= e(gk·r·H1(Mi), gr
′

) · e(gr
′
·su·ru·H1(Mj), g)

= e(gk·r·H1(Mi), gr
′

) · e(gr
′
·su·ru·H1(Mj), g)

(8)

where ERKu is the search public key of u. If the above
equation holds, the location grid coordinate of the poii is
located in the query region of u. The cloud server obtains all
POIs that their location coordinates are located in the query
region.

In the third step, the cloud server judges whether the
keywords of the point match in the query keywords submitted
by data users or not. The cloud server tests whether the
keywordwji ∈Wj of the point poij is contained in the query
keywords set Ŵ or not. If the following equation holds, the
keyword wji correctly matches the query keyword wi.

e(gr
′
·su·H1(wi), ERKu)

= e(gr
′
·su·H1(wi), gk·r/su+ru)

= e(gr
′
·su·H1(wi), gkṙ/su) · e(gr

′
·su·H1(wi), gru)

= e(gk·r·H1(wi), gr
′

) · e(gr
′
·su·ru·H1(wi), g)

= e(gk·r·H1(wji), gr
′

) · e(gr
′
·su·ru·H1(wi), g)

(9)

Note that, a point poij cloud be returned if and only if it
has at least one keyword matching the user’s query keywords.
If the above equation holds, wi is equal to wji. After that,
the cloud server filters unqualified results obtained in the
previous step. With these three steps, the cloud server has
found all qualified POIs that their location and keywords
match the query condition, and then returned the qualified
encrypted POIs to the querying user u. The query user uses
hk0 and corresponding Morton code value Mi of the poii
to generates the decrypt secret key hki. Lastly, the querying
user utilizes hki to recover the plaintext of the poii by the

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

AES decryption algorithm. The could server cannot obtain
any sensitive data from the returned POIs.

F. USER REVOCATION
User revocation is an important and challenging take in an
LBS system. If the LBSP wants to revoke a user u, the LBSP
first sends the ID of user u, UIdu, to the cloud server. Then,
the cloud server scans users’ information in the registered
users list UL to find out the information of user u. Next,
the cloud server deletes (UIdu, ERKu) to obtain a new
users list, denoted as UL

′
. Once (UIdu, ERKu) is deleted

from users list stored at the cloud server, the data user u no
longer has the search capabilities to query the encrypted LBS
location data. Since, without ERKu, the cloud server cannot
perform keywords matching between trapdoor and encrypted
query keywords. Once the LBSP has revoked u, he/she can
still generate a legal trapdoor. However, he/she no longer has
the capability to search the encrypted POIs. The cloud server
can reject the query request from the data user u.

VII. SECURITY ANALYSIS
In this section, we step by step analyze our proposed
scheme’s security to demonstrate that the security and pri-
vacy requirements have been satisfied for the POIs, the
keywords, the queries, and the location information.

POIs : In our proposed scheme, these POIs are encrypted
by the semantically secure symmetric encryption algorithm,
such as AES, DES, before uploaded to the cloud server. As
long as the encryption algorithm is secure, the attacker cannot
know the actual content of poi. Since the secret key hki is
keeping secretly by the data user who has been registered to
the LBSP, the unauthorized data user is hard to obtain the
actual contents of these POIs.Thus, POIs are protected from
unauthorized access. The privacy of POIs is preserved.

Keywords : The keywords that describe the poi record
from all aspects are encrypted before uploaded to the cloud
server. Let us consider a popular game played between a
challenger C and a probabilistic polynomial-time (PPT) at-
tacker A. In our scheme, the cloud server can be regarded
as an attacker A. The LBSP or authorized data user can be
acted as the challenger C. For keywords encryption, C first
generates the following parameters, k, r, g, q, and a random
oracle H1, Then, C makes these parameters public. Next, C
selects a keyword w

′

ij from Wi of the poii, and subsequently

sends gk·r·H1(w
′
ij) to A. Based on this information, A would

try to guess w
′

ij . However, the Decisional Diffie-Hellman

Problem (DDHP) is hard; it is difficult to obtain gH1(w
′
ij).

As the Discrete Logarithm Problem (DLP) is also hard, it is
intractable to compute H1(w

′

ij) in polynomial time. Even if
the ciphertext of the keywords has been stripped, the attacker
obtains the hash value of keywords, H1(w

′

ij). Due to the
one-wayness and collision resistance properties of the hash
function, A cannot recover the keyword w

′

ij by semantic
analysis. Our scheme implements semantic security against
adaptive chosen keyword attack (IND-CKA) secure using

random oracle and bilinear paring technique. Therefore, the
security of the keywords is well preserved.
Trapdoors : The security of trapdoor can be analyzed

from three aspects. Recall the trapdoor construction formula,

Twi
= (gr

′
·su·ru·H1(wi), gr

′
·su·H1(wi), gr

′

) (10)

On the one hand, as the discrete logarithm problem is hard
to solve, the attacker is difficult to obtain H1(wi). The
attacker must have known something about H1(.) and using
semantic analysis to guess the queried keywordwi. However,
the attacker has no idea about the H1(.), it is infeasible
to recover wi. On the other hand, in our scheme, only the
registered data users and LBSP knows the random oracle
H1(.). Without knowing H1(.), the attacker cannot generate
a correct trapdoor for the chosen keyword. It is inapplicable
to try out many possible keyword values to find out wi.
Besides, the attacker would try to infer sensitive information
based on query results. The attacker would go to a specific
place to obtain the corresponding POIs and then guess the
query content of the data users. Nevertheless, this attack is
impractical. The reason is that, to prevent the attacker from
knowing the query content, we insert a random number r

′
to

encrypt the keyword, which can blur the encrypted keywords.
The same keyword can be encrypted into different ciphertext
each time. For the encrypted location information Q̃Mj ,
we can adopt the same method to analyze the security of
Q̃Mj . Relying on the semantic analysis, the attacker cannot
distinguish a specific encrypted query keyword from the
trapdoors, the attacker cannot guess the query content of the
data user. Hence, the query privacy is preserved.
Location Information: In our scheme, the location

information is encoded with the Morton coding algorithm
and then encrypted in the same way as the keyword en-
cryption. Since the DDHP is hard, the location information
encryption algorithm is IND-CKA secure. The reason is
demonstrated as follows. We consider a game played between
a PPT adversary A and a challenger C, which acts as the
authorized data user and LBSP in the location information
encryption algorithm. We assume that adversaryA has a non-
negligible advantage ε as the attacker in this game. The game
is conducted in the following steps.

Step 1: C runs the system setup algorithm to generate the
public parameters (g, q, H1, e, G, GT , gr, C1), and then
sends these parameters to A.

Step 2: A generates two location coordinates, l0 =
(x0, y0), l1 = (x1, y1) and then sends l0, l1 to C . Next, C ran-
domly chooses lb(b ∈ 0, 1) and encodes it intoMj(j = 0, 1).
Finally, C encrypts Mj by Eq. 3 and gives M̃j = gk·r·H1(Mj)

to A.
Step 3: Based on these information, A would try to calcu-

late Mj and outputs the guess j
′ ∈ {0, 1} for j. We denote

t as the bit that A is trying to guess. When t = 0, C1 is
given gk·r; OtherwiseC1 is set randomly in G. The adversary
outputs 0 if and only if j

′
= j. If j

′
= j, we can say the

adversaryAwins the game. Let Pr[j
′
= j] be the probability

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 2 3 4 5
Number of keywords of each POI

0

5

10

15

20

25

30

35

40

45
Ti

m
e 

of
 P

O
I r

ec
or

ds
 e

nc
ry

pt
io

n(
s)

n = 400
n = 600
n = 800

(a) For different number of keywords of each POI

100 200 300 400 500 600 700 800 900 1000
Number of POI records

0

5

10

15

20

25

30

35

40

45

50

55

Ti
m

e 
of

 P
O

I  
re

co
rd

s e
nc

ry
pt

io
n(

s)

m = 1
m = 3
m = 5

(b) For different number of POI records

FIGURE 5. Time cost of POI encryption

that the adversary guesses correct. The advantage of A that
wins this game is AdvA = |Pr[j′ = j]− 1/2|.

Proof: If t = 0(i.e., C1 = gk·r), it means that M̃j =
C1 · gH1(Mj) is a valid location information encryption. In
this sense, the adversary A guess correctly with probability
1/2 + ε. If t = 1, the adversary receives the ciphertext
C1 · gH1(Mj) = gr

′

, where r
′

is a random number in Z∗
q .

In this case, the value of j is hidden to A, A will guess
it correctly with probability 1/2. Hence, Pr[j

′
= j] =

1/2 · (1/2 + ε) + 1/2 · 1/2 = 1/2 + ε.
Since ε is non-negligible,AdvA = |Pr[j′ = j]−1/2| = ε.

The advantage of A to win this game is non-negligible. This
conclusion violates the assumption that DDHP is hard. Thus,
our location information encryption is semantically secure.
The privacy of the location is preserved.

VIII. PERFORMANCE EVALUATIONS
In this section, we measure the efficiency of the PPMQ in
terms of the encryption of POIs time, trapdoor generation
time, and query processing time with a real LBS dataset. The
proposed scheme supports multi-user settings and provides a
flexible multi-keyword location query service to data users.

A. SIMULATION EXPERIMENT SETTINGS

We conduct a thorough performance experimental evaluation
of the proposed scheme on a real LBS data set, the Open-
StreetMap project in Singapore [42]. The dataset’s POIs are
extracted from the LBS resource items in Singapore, which
has 32730 POIs. Most POIs in the dataset have less than
5 keywords, while a few of them may contain more than
5 keywords. In our experiment, we randomly register 100
users into the geographic area of Singapore. We build a
linear quadtree and then obtain a grid system based on the
geographic area of Singapore. We assume that the length of
the basic grid is σ = 1000 meters. Then, the number of
recursive divisions of the geographic area can be set to τ = 5.

For every 5 minute, 10% of users are randomly selected to
issue queries.

The experiment programs are coded using JAVA pro-
gramming language on a PC running JDK1.8 platform with
3.30GHz Intel(R) Xeon(R) E3-1225 CPU, 8G memory, and
a Linux Mint 17.3 Rosa operation system. We use the type-A
elliptic cure parameter, where the group order q is 160-bits,
and SHA1 as the random oracle for hashing keywords and
Morton code value. We use the AES algorithm to encrypt
POIs records with a 128-bit key. In our evaluations, we
implement the pow and paring operation under type-A pa-
rameters without preprocessing. All the experiments are run
10 times to calculate the average time cost in different phases.
We implement all necessary routines for LBS providers to
process location data such as encryption of POIs, data users
to generate trap doors, and the cloud server to perform the
multi-keyword searches.

1000 2000 3000 4000 5000
Query range(m)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
of

 q
ue

ry
 g

en
er

at
io

n(
s)

0.13

0.44

0.95

1.65

2.58

0.19

0.51

0.99

1.71

2.62

0.25

0.55

1.06

1.75

2.72t = 1
t = 3
t = 5

FIGURE 6. Time cost of query generation.

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1000 2000 3000 4000 5000
Query range(m)

0

20

40

60

80

100

120

140

Q
ue

ry
 ti

m
e(

s)

5.8

22.2

51.5

88.8

141.8

5.9

22.9

52.1

89.4

143.4

6.1

23.1

53.1

93.9

143.7t = 1
t = 3
t = 5

(a) For different query range with fixed number of
POI records and the same number of POI keywords,
n=100, m=5

1 2 3 4 5
Number of keywords of each POI

22.0

22.5

23.0

23.5

24.0

24.5

25.0

Q
ue

ry
 ti

m
e(

s)

t = 1
t = 3
t = 5

(b) For different number keywords of each POI
with fixed number of POI records and the same
query range, n=100, d=2000

100 200 300 400 500
Number of POI records

0

20

40

60

80

100

120

Q
ue

ry
 ti

m
e(

s)

21.3

42.2

66.9

91.5

108.0

22.2

43.2

68.0

92.2

114.4

23.5

45.3

69.0

94.3

118.8t = 1
t = 3
t = 5

(c) For different number of POI records with fixed
query range and the same number of POI keywords,
d=2000, m=5

FIGURE 7. Time cost of query. Note that the time cost should much lower once deployed at a real cloud

B. THE TIME COST OF DATA PROVIDER

In our proposed PPMQ scheme, the main operations of
the LBSP is to prepare POIs. Before outsourced these POI
records to the cloud server, we should encrypt these POI
records. The encryption execution at the LBSP consists of
building secure index for these POI records and encryption
of them. The factors affecting the computation cost of en-
cryption algorithm are the number of POIs n, the number of
keywords m of each POI record. Thus, we test the efficiency
with the different number of keywords m of each POI, and
different number of POI records n, respectively. The number
of keywords of each POI is selected from 1 to 5. As shown in
Fig. 5(a), the time costs of POI records encryption increase
with m. Fig. 5(b) shows that, with the n increases, the time
cost of POI records encryption increases linearly approxi-
mately. We can see that, givenm = 5, when n increases from
100 to 1000, the average time costs increases from 5.27s to
51.75s. The reason is that a larger m or n results in a longer
POI records ciphertext. Hence, more time cost is needed to
construct the secure searchable index and encrypt the POI
records.

C. THE TIME COST OF DATA USER

The primary operations of the data user are to generate
the trapdoor. To see whether the time cost is acceptable
for mobile LBS user or not, we measured the time cost of
trapdoor generation. The different number of query keywords
t and query range d are chosen to illustrate the time cost of
the data user. To observe the query generation’s time cost,
five query ranges are uniformly selected from 1000 to 5000
meters, and then 10 different query coordinates are randomly
selected from the open street map of Singapore for each
query range. The number of query keywords increases from 1
to 5. Next, for different query keywords and query range, we
execute 10 times trapdoor generation algorithm with different
query coordinates and calculate the average time cost for
each query condition. Fig.6 shows the time cost of generating
query conditions. From Fig. 6, we can observe that the time

of generating trapdoor increases as t increases. We can also
observe that from Fig. 6, with the query range d increases,
the time cost of generating trapdoor also increases. That is
because the larger the number of query keywords t, the more
encrypt operation computations are required. Given a fixed t,
the larger the query range d, the more time cost is needed to
construct the query region and encrypted the Morton values
of the query region. When the query range d increases from
1000 to 5000 meters, the average trapdoor generation time
cost is less than 2.72s. In general, the data user will often
choose very seldom query keywords and a relatively small
query range to search the desirable POIs. Note that, when the
query range d <= 2000, the time cost of query generation is
about 0.5s. Thus, the time cost in data users is acceptable for
mobile devices.

D. THE TIME COST OF CLOUD SERVER

We now consider the query algorithm. The query algorithm
execution at the cloud server consists of matching location
and keywords. The cloud server computes a bilinear paring
over a prime order group for each location coordinate in the
query region to match the location information. Then, the
cloud server matches the query keywords with the keywords
of each POI. The number of query keywords t increases,
the number of keywords m of each POI, query range d, and
the number of POI records n may impact the computation
complexity in the cloud server. Therefore, different t, m, d
and n are choose to illustrate the time cost of query. Both
t and m varies from 1 to 5. The number of POI records n
grows from 100 to 500. Form Fig. 7(a), we can see that,
given m = 5 and n = 100, the time cost increases as the
number of query keywords t increases and when the query
range d increases, the time cost of query also increases.
The influence of the query range parameter is greater than
the number of query keywords. That is, because the larger
the query range d, the more POIs need to be matched,
the more query operations, the cloud server needs to be
performed. Fig. 7(b) illustrates that given n = 100 and

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

d = 2000, the time cost in cloud servers rises with the
increasing in the number of query keywords t. When the
number of keywords of each POI m increases, the time cost
increases linearly approximately. Since the larger the m, the
more keywords matching operations the cloud server needs to
perform. Fig. 7(c) demonstrates that, given a fixed d = 2000
and m = 5, with the number of POI records increases, the
time cost also increases. Furthermore, the more number of
query keywords, the more time cost is required for keyword
matching. The reason is that the larger the n, the more time
cost is needed to match the query keywords and location
information. Note that our experiments were simulated on
a PC, which plays the role of cloud, and only one CPU
core can be utilized to computing. Our scheme’s performance
will be perfect on a real cloud server, which has much more
computing resources.

IX. CONCLUSION
In this paper, we explore the problem of the multi-keyword
query in LBS. Different from prior works, we have pro-
posed a novel efficient and privacy-preserving multi-keyword
query scheme in LBS over the outsourced cloud, named
PPMQ, which preserves location and query content privacy,
and achieves confidentiality of location data. The designed
scheme can prevent the LBS provider or unregistered users
from deducing the query content. The authorized data user
can obtain accurate LBS query results without divulging
his/her location information efficiently. Specifically, we de-
veloped a flexible user registration and a user revocation
mechanism, the proposed scheme is scalable. Furthermore,
we give security analysis and conduct extensive experiments
on a real LBS data set to evaluate our scheme’s performance,
and experimental results demonstrate the efficacy and effi-
ciency of our proposed scheme. In the future work, we will
take into consideration of the integrity verification for the
query results.

REFERENCES
[1] Statista Reaserch Department, “Number of

location based service users in the United States
from 2013 to 2018," Statista, 2015, Available:
https://www.statista.com/statistics/436071/location-
based-service-users-usa.

[2] L. Li, R. Lu and C. Huang, “EPLQ: Efficient Privacy-
Preserving Location-Based Query Over Outsourced En-
crypted Data," in IEEE Internet of Things Journal, vol.
3, no. 2, pp. 206-218, April 2016.

[3] W. Liang, Y. Fan, C. Li,D. Zhang, J.-L.Gaudiot. “Secure
Data Storage and Recovery in Industrial Blockchain
Network Environments," IEEE Transactions on Indus-
trial Informatics. 2020, pp.1-10, doi:10.1109/ TII. 2020.
2966069.

[4] J. Shao, R. Lu, and X. Lin, “FINE: A fine-grained
privacy-preserving location-based service framework
for mobile devices," in Proc. IEEE INFOCOM, pp.
244–252, 2014.

[5] W. Liang, K.C. Li, J. Long, X. Kui, Zomaya. “An In-
dustrial Network Intrusion Detection Algorithm based
on Multi-Characteristic Data Clustering Optimization
Model,” IEEE Transactions on Industrial Informatics,
2019.10, doi:10.1109/TII.2019.2946791.

[6] S. Zhang, Y.Lin, Q. Liu et al. “Secure hitch in location
based social networks," Computer Communications,
vol.100, pp.65-77, 2017

[7] B. Liu, W. Zhou, T. Zhu, L. Gao and Y. Xiang, "Loca-
tion Privacy and Its Applications: A Systematic Study,"
in IEEE Access, vol. 6, pp. 17606-17624, 2018.

[8] W. Liang, W. Huang, J. Long, K.C Li, D. Zhang. “Deep
Reinforcement Learning for Resource Protection and
Real-time Detection in IOT Environment," IEEE Inter-
net of Things Journal, 2020.1, doi:10.1109/JIOT.2020.
2974281

[9] B. Gedik and L. Liu, “Protecting location privacy
with personalized k-anonymity: Architecture and algo-
rithms," IEEE Trans. Mobile Comput., vol. 7, no. 1, pp.
1–18, Jan. 2008.

[10] A. Machanavajjhala, D. Kifer, J. Gehrke, M.
Venkitasubramaniam, “L-diversity: Privacy beyond
k-anonymity," ACM Trans. Knowl. Discovery Data,
vol. 1, no. 1, p. 24-26, Mar. 2007.

[11] N. Li, T. Li and S. Venkatasubramanian, “t-Closeness:
Privacy Beyond k-Anonymity and l-Diversity," 2007
IEEE 23rd International Conference on Data Engineer-
ing, Istanbul, 2007, pp. 106-115.

[12] H. Kido, Y. Yanagisawa, and T. Satoh, “An anonymous
communication technique using dummies for location-
based services," in Proc. IEEE ICPS, Jul. 2005, pp.
88–97.

[13] C. A. Ardagna, M. Cremonini, S. D. C. di Vimercati,
and P. Samarati, “An obfuscation-based approach for
protecting location privacy," IEEE Trans. Depend. Sec.
Comput., vol. 8, no. 1, pp. 13–27, Jan./Feb. 2011.

[14] A. Pingley, N. Zhang, X. Fu, H.-A. Choi, S. Subrama-
niam, W. Zhao, “Protection of query privacy for con-
tinuous location based services,” in INFOCOM, 2011
Proceedings IEEE. IEEE, 2011, pp. 1710–1718

[15] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A peer-to-peer
spatial cloaking algorithm for anonymous location-
based service,” in Proc. 14th Annu. ACM Int. Symp.
Adv. Geograph. Inf. Syst., Arlington, VA, USA, 2006,
pp. 171–178

[16] H.To, G.Ghinita, L.Fan, C.Shahabi,“Differentially pri-
vate location protection for worker datasets in spatial
crowdsourcing," IEEE Trans. Mobile Comput., vol. 16,
no. 4, pp. 934–949, Apr. 2017.

[17] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis,
and C. Palamidessi, “Geo-indistinguishability: Differ-
ential privacy for location based systems," in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 901–914.

[18] M. R. Paulet, G. Kaosar, X. Yi, and E. Bertino,
“Privacy-preserving and content-protecting location

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018417, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

based queries,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 5, pp. 1200–1210, May 2014.

[19] G.Ghinita, P.Kalnis, A.Khoshgozaran, C.Shahabi, K.-
L.Tan, “ Private queries in location based services:
Anonymizers are not necessary,” in Proc. ACM SIG-
MOD, 2008, pp. 121–132.

[20] S Zhang, X. Li, Y. Lin, et al. “A privacy-preserving
friend recommendation scheme in online social net-
works." Sustainable cities and society 38 (2018): 275-
285.

[21] H. Zhu, R. Lu, C. Huang, L. Chen, and H. Li, “An effi-
cient privacy-preserving location-based services query
scheme in outsourced cloud," IEEE Trans. Veh. Tech-
nol., vol. 65, no. 9, pp. 7729–7739, Sep. 2016.

[22] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li, “En-
hancing privacy through caching in location-based ser-
vices," in Proc. IEEE INFOCOM, Apr./May 2015, pp.
1017–1025.

[23] B. Liu, W. Zhou, T. Zhu, L. Gao, T. H. Luan, and
H. Zhou, “Silence is golden: Enhancing privacy of
location-based services by content broad- casting and
active caching in wireless vehicular networks," IEEE
Trans. Veh. Technol., vol. 65, no. 12, pp. 9942–9953,
Dec. 2016.

[24] B. Liu, W. Zhou, T. Zhu, H. Zhou, and X. Lin, “Invisi-
ble hand: A privacy preserving mobile crowd sensing
framework based on economic models,” IEEE Trans.
Veh. Technol., vol. 66, no. 5, pp. 4410–4423, May 2017.

[25] C. Wang, N. Cao, J. Li, K. Ren and W. Lou, “Se-
cure Ranked Keyword Search over Encrypted Cloud
Data," 2010 IEEE 30th International Conference on
Distributed Computing Systems, Genova, 2010, pp.
253-262.

[26] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved defini-
tions and efficient constructions," in Proc. of ACM
CCS’06, 2006, 79-88

[27] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
preserving multi-keyword ranked search over encrypted
cloud data,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2014, vol. 25, no. 1, pp. 222–233.

[28] R. L. K. Y. Z. Xu, W. Kang and C. Xu, “Efficient
multi-keyword ranked query on encrypted data in the
cloud,” in Proc. IEEE Parallel and Distributed Systems
(ICPADS’12), Singapore, Dec. 2012, pp. 244–251

[29] W. Zhang, Y. Lin, S. Xiao, J. Wu and S. Zhou, “Privacy
Preserving Ranked Multi-Keyword Search for Multiple
Data Owners in Cloud Computing," in IEEE Transac-
tions on Computers, 2016, vol. 65, no. 5, pp. 1566-1577

[30] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou,
“Fuzzy keyword search over encrypted data in cloud
computing,” in Proc. IEEE INFOCOM’10, San Diego,
CA, Mar. 2010, pp. 1–5.

[31] M. Chuah and W. Hu, “Privacy-aware bedtree based
solution for fuzzy multi-keyword search over encrypted
data,” in Proc. IEEE 31th Inter- national Conference

on Distributed Computing Systems (ICDCS’11), Min-
neapolis, MN, Jun. 2011, pp. 383–392.

[32] P. Golle, J. Staddon, and B. R. Waters, “Secure Con-
junctive Keyword Search over Encrypted Data,” in
Proc. of ACNS’04, 2004, pp. 31–45.

[33] L. Ballard, S. Kamara, and F. Monrose, “Achieving
efficient conjunctive keyword searches over encrypted
data,” in Proc. of ICICS’05, 2005

[34] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B.
Waters, “Fully secure functional encryption: Attribute-
based encryption and (hierarchical) inner product en-
cryption,” in Proc. of EUROCRYPT, 2010.

[35] E. Shen, E. Shi, and B. Waters, “Predicate privacy in
encryption systems,” in Proc. of TCC, 2009.

[36] V. K.A Sandor, Y Lin, X Li , et al. “Efficient decen-
tralized multi-authority attribute based encryption for
mobile cloud data storage". Journal of network and
computer applications, 2019, 129:25-36.

[37] A. O. Freier, P. Karlton, and P. C. Kocher, “The Secure
Sockets Layer (SSL) Protocol Version 3.0," RFC 6101
(Historic), Internet Engineering Task Force, Aug. 2011.

[38] T. Ylonen, “The Secure Shell (SSH) Protocol Architec-
ture," IETF RFC:4251, Jan. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4251.txt

[39] J. Hur and D. K. Noh. “Attribute-based access control
with efficient revocation in data outsourcing systems,"
IEEE Trans. Parallel Distrib. Syst., 2011, 22(7):1214-
1221

[40] I. Gargantini, “An effective way to represent quadtrees",
ACM Commun. vol. 25, no. 12, pp. 905–910, 1982.

[41] G. M. Morton, “A computer oriented geodetic data base
and a new technique in file sequencing,” IBM Ltd,
Ottawa, Canada, Tech. Rep., 1966.

[42] Openstreetmap Foundation, West Midlands,
U.K., Openstreetmap, 2020. [Online]. Available:
http://www.openstreetmap.org

14 VOLUME 4, 2016


