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ABSTRACT Chen et al. indicated the inner keyword guessing attack coming from the low entropy of
keywords, which eliminates the semantic security of most keyword search schemes. Then, they accordingly
propose the first dual-server PEKS scheme (abbreviated as DS-PEKS) and its related security models to
prevent such attacks. In the DS-PEKS architecture, two non-collusive servers must corporate to execute the
keyword search procedure. No individual server has the capability of determining the equivalence between
keywords alone, and thus the inner keyword guessing attacks can be avoided. In this paper, we found that
the security models are lack of soundness and strength, so our first result is to define new stronger and
sounder security models which implies all security aspects of original models. Secondly, we also propose a
generic construction of DS-PEKS schemes based on IND-CCA2 secure PKE schemes. Finally, we analyze
the newly proposed DS-PEKS scheme, and proof its security with the stronger models based on the IND-
CCA2 security in the standard model.

I. INTRODUCTION

NOWADAYS, the cloud services are ubiquitous in real-
life.For example, people would like to outsource their

photos to Google Drive for reducing cell-phone storage us-
age. If such data are confidential such as phone numbers,
birthdays, credit card numbers or even medical records, it
leads a serious security issue for secrecy and privacy. In fact,
some financial service providers and on-line banks store ex-
tremely sensitive data like bank account numbers and credit
card numbers from their consumers. In addition to the issue
of authenticity which can be done by authentication schemes
[1, 2], the security issue of the outsourced data has also
been highly attracted attention along with the spread of cloud
applications. A natural solution is directly to encrypt such
confidential data before storing but we are not able to do any
computation over these encrypted data. For general purposes,
fully homomorphic encryption (FHE) firstly introduced by
Gentry [3] is a very powerful tool to achieve the goal, but as

we knew the computation cost of FHE is quite expansive.
For specific purposes (i.e., searching, indexing, clustering,
optimizing), we should have some more efficient solutions,
and thus cryptosystems with extra specific functionalities [4]
have been regarded as an urgent requirement in the modern
technology.

Searchable encryption is a cryptographic notion that al-
lows servers to search over encrypted documents without
losing their privacy. The first public key encryption with
keyword search (abbreviated as PEKS) was proposed by
Boneh et al. [5] in 2004. It works in the following scenario
(illustrated in Fig. 1(a)): a sender encrypts a document and its
searchable keyword using a receiver’s public key. Then, the
sender stores the document as well as the index (encrypted
keyword) on a cloud data server. Once the receiver wants to
retrieve her own documents (related to some keywords), she
generates a trapdoor using her private key and the desired
keyword. On receiving the trapdoor from the receiver, the
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cloud storage server executes tests between the input trap-
door and all index stored on the server. The corresponding
documents will be returned when the keyword hidden in the
index is verified equal to the keyword in the trapdoor. For
simplicity, we usually focus on the ‘keyword search’ part,
and omit the security of the encryption and decryption of
documents. It is assumed that the encryption of documents
is secure.

FIGURE 1: Syntax of PEKS and dual-server PEKS.

PEKS immediately attracted lots of significant interests.
Based on the notion of [5], numerous follow-up works have
been proposed to achieve different requirements of keyword
search. Boneh and Waters [6] proposed a PEKS construction
about multi-keyword search, which is able to support con-
junctive keyword search, subset keyword search and range
queries. The conjunctive keyword search is widely discussed
in [7, 8]. However, on considering the security of trapdoors
[9], most PEKS schemes rely on a secure channel to secretly
transfer the trapdoor. Baek et al. proposed a secure-channel
free PEKS [10] solution to deal with this issue. Some PEKS
surveys [10–12] aim to compare existing PEKS schemes and
show some limitations in this area.

An inherent limitation is the low-entropy of keywords.
Byun et al. [13] introduced the off-line keyword guessing
attacks which can be referred to as a kind of brute force
attacks but is somehow realistic. More precisely, there is an
adversary who is able to obtain the hidden keyword of index
by testing one by one keyword in the dictionary. Some recent
works (i.e., [14][15][16]) tackle the security against off-line
keyword guessing attacks and some work for the version of
certificateless keyword search [17].

A threat, called Inner Keyword Guessing Attacks [18, 19],
is a new security issue about trapdoor privacy. On receiving a
trapdoor from a receiver, a malicious server can easily obtain
the hidden low-entropy keyword in the trapdoor by keeping
making index with different keywords and then executing
tests between the index and the trapdoor. This threat is
different from the prior attacks as above, and particularly
formalize weaknesses from the correlation between index
and trapdoor.

A. RELATED WORKS
To deal with the inner keyword guessing attacks, Huang and
Li [20] proposed a solution that an extra authentication token
of the sender is added into the index. In other words, the index

can only be generated by the sender; and the trapdoor has
to include the sender’s identity or public key as well. The
malicious server cannot produce the sender-specified token
so that it cannot repeatedly compute the index with various
keywords and test alone. However, in this architecture, the
index has to be bind with sender’s identity, just like a digital
signature aside by the index.

Ma et al. [26] considered another solution called witness-
based searchable encryption. In this scheme, trapdoor is only
valid for ciphertext with a witness relationship; therefore, the
malicious server cannot adaptively produce ciphertext to test
the trapdoor. Inspired by [26], Liu et al. [27] introduced a new
notion called designated-ciphertext searchable encryption.
Similar with [26], the trapdoor in this scheme is designated to
a ciphertext. Unfortunately, this scheme requires interaction
between the sender and the receiver, and may not be applica-
ble in many situations where interaction is not possible.

Chen et al. [18, 19] proposed the first dual-server public
key encryption with keyword search (DS-PEKS) to deal with
the inner keyword guessing attacks. In a high-level view,
the keyword equality testing part is split into two parts
operated by two servers so that single malicious server can
not run the brute force attack. Informally, there are two non-
collusive servers, a front server and a back server, in the
new architecture. The front server takes as input a pair of
index and trapdoor and executes some computations. Then
it outputs an ‘internal-testing-stage’ (ITS) to the back server
who takes ITS as input and outputs the keyword search result.
The framework of DS-PEKS scheme is depicted in Fig. 1(b).
The keyword search test is accomplished by the corporation
of two servers. More details about DS-PEKS could be found
in Section II-B and VI.
Assumption 1: No collusion occurs between the front server
and the back server. The security is discussed based on the
assumption that at most one server is malicious.

B. CONTRIBUTIONS
DS-PEKS schemes might be a solution which replaces ex-
isting PEKS schemes to be secure against inner keyword
guessing attacks. In this work, further than the preliminay
work [21] and two previous works [18, 19], we have two main
technical advances (new security definition and construction)
in a nutshell, which are briefly summarized as follows.

1) New security models. We advocate that existing secu-
rity models in DS-PEKS are sort of insufficient. Then,
referring to previous PEKS works such as [5, 7, 12,
22], we refine them and provide sounder and stronger
security models: the indistinguishability against cho-
sen keyword attacks for malicious front servers (IND-
CKA-FS) and malicious back servers (IND-CKA-BS).
In addition, we show that the new security notions
imply all aspects of security in the previous works.
However, the previous security models of Chen et al.
[18, 19] involve five different types of adversaries, but
our models do only two. A byproduct of the new secu-
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rity notion is to conceptually simplify and strengthen
the security analysis.
An additional assumption. The only assumption pro-
posed by Chen et al. is insufficient to guarantee the
semantic security of DS-PEKS schemes. We proposed
another assumption, the limit of trial times, to compen-
sate the security model.

2) A generic construction. We advocate that the previous
works [18, 19] are not as secure as they claimed. One
critical flaw of their work is depicted in the Appendix.
Besides, we present a new generic construction of DS-
PEKS schemes from IND-CCA2 secure PKE schemes.
Furthermore, this construction can meet IND-CKA-FS
security and IND-CKA-BS security through a series of
rigorous security proofs in the standard model.

C. ORGANIZATION
The rest of this paper, some preliminaries, and building
blocks, and syntax and original security models of DS-PEKS
schemes will be introduced in Section II. The refined security
models will be described in Section III. A generic construc-
tion of DS-PEKS schemes based on IND-CCA2 secure PKE
schemes (with its security proof) is presented in Section IV.
The concrete instantiation and the comparison are provided
in Section V. Finally, we conclude this work in Section VI.

II. PRELIMINARIES AND BUILDING BLOCKS
We define an operator ‘ $←−’ as ‘randomly chosen from’ for
further usage; λ represents a secure parameter throughout
this work; and a symbol ω denotes the keyword space. Then,
several preliminaries and building blocks will be introduced
for latter uses. The syntax and original security models of
DS-PEKS will be introduced in this section as well.

Definition 1 (Hash function): A cryptographic hash function
is a deterministic function that maps elements from the
domain space to the codomain space. A hash function H
is called one-way if the following probability AdvOWA,H(λ) is
negligible.

AdvOWA,H(λ)
def
= Pr[m = m′ : m← A(H(m))]

Definition 2 (The CDH assumption): The computational
Deffie-Hellman assumption (CDH) [23] denotes that given
three group elements (g, gu, gv) ∈ G where the order of
G is big enough in λ, it is computationally difficult to
compute guv . The CDH assumption is sound if probability
AdvCDHA,G (λ) is negligible.

AdvCDHA,G (λ)
def
= Pr[guv ← A(g, gu, gv)]

Definition 3 (The CONF assumption): Given four group
elements (g, gu, guv, Z) ∈ G where Z is randomly picked
from G or Z = gv with the same probability (i.e., with
the probability 1/2, Z is a random number of G or, with
the probability 1/2, Z = gv). The CONF assumption [23]

denotes when the order of G is large enough in λ such that
the CDH assumption holds, it is computationally infeasible
to distinguish whether Z = gv or not. Let 1 denotes Z = gv

and 0 stands for otherwise, the CONF assumption is sound if
probability AdvCONFA,G (λ) is negligible.

AdvCONFA,G (λ)
def
= Pr[1/0← A(g, gu, guv, Z)]− 1/2

A. IND-CCA2 SECURE PKE SCHEMES
A public key encryption (PKE) is composed of the following
four algorithms.
• Setup(1λ): it generates the algebra environment like

cyclic groups or bilinear pairing for latter use.
• KG(pp): it probabilistically generates a pair of public

key pk and secret key sk.
• Enc(m, pk): it probabilistically encrypts a message m

into a ciphertext c using the public key pk.
• Dec(c, sk): it deterministically decrypts the ciphertext c

with secret key sk to obtain the message m.
The PKE scheme is called indistinguishability against

adaptive chosen ciphertext attack (IND-CCA2) secure
[24][25] if any polynomial-time adversary A in the ex-
periment ExpIND−CCA2

A,PKE (λ) (defined in Fig. 3) has at
most negligible advanced probability AdvIND−CCA2

A,PKE (λ) to
win. The advanced probability AdvIND−CCA2

A,PKE (λ) is de-

fined as AdvIND−CCA2
A,PKE (λ)

def
= Pr[b = b′ : b ←

ExpIND−CCA2−b
A,PKE (λ)]− 1/2.

B. SYNTAX OF DS-PEKS
We firstly revisit the framework of DS-PEKS defined in
Chen et al.’s works [18][19]. Let Setup, KeyGen, BuildIndex,
Trapdoor, FrontTest, BackTest denote a DS-PEKS scheme,
it is formalized below. Among these six algorithms, only
the BackTest is a deterministic algorithm that outputs 1
for tested match or 0 for mismatch. Other five algorithms
are probabilistic algorithms that takes random numbers into
computation.
• Setup(1λ): Take a secure parameter λ as input, this

algorithm generates a series of public parameters pp.
• KeyGen(pp): On input pp, this algorithm generates

two pairs of public/secret keys (pkFS , skFS) and
(pkBS , skBS) for front server and back server, respec-
tively.

• BuildIndex(pp, w, pkFS , pkBS): Anyone can build an
index corresponding to a keyword w using both public
keys of the front server and the back server. The algo-
rithm outputs an index cw at the end.

• Trapdoor(pp, w0, pkFS , pkBS): Anyone is able to gen-
erate a trapdoor tw′ of a keyword w′ using two servers’
public keys.

• FrontTest(pp, cw, tw′ , skFS): On receiving an index cw
and a trapdoor tw′ , the front server computes an ‘inter-
nal testing-state’ ITS using its private key skFS . Then it
sends ITS to the back server.
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• BackTest(pp, ITS, skBS): After receiving ITS, the back
server executes a deterministic back test using its private
key skBS . It outputs 1 if w = w′ or 0 otherwise.

Comparison with tradictional PEKS: Compared to orig-
inal PEKS schemes with single server (Setup, KeyGen,
BuildIndex, Trapdoor, Test) such as [5][7][12][22], two key
differences of the newly defined DS-PEKS architecture are
observed here.

1) Algorithm Test is replaced by two algorithms:
FrontTest and BackTest. The test server who is respon-
sible for the Test operation has been divided into two
servers, i.e. the front server FS and the back server BS.

2) Algorithm Trapdoor becomes publicly computable in
the DS-PEKS framework, which differs from the set-
ting in the singleserver PEKS setting that the trapdoor,
as a search request, can only be requested by the
corresponding secret key owner.

Both two modifications above are designed on the purpose
against the inner keyword-guessing attack. As mentioned
in Section I, most single-server PEKS schemes cannot be
semantic secure owing to the inner keyword-guessing attack.
Together with the assumption that at least one server in this
system is honest and uncompromised; then, in this scenar-
ion, the probability of the inner keyword-guessing attck is
expected eliminated to negligible.

C. CHEN ET AL.’S SECURITY NOTIONS
Interestingly, in the original single-server public key en-
cryption with keyword search schemes [5][7][12][22], they
discuss the chosen keyword attacks against malicious users.
However, in DS-PEKS scheme, the notions of security is
discussed against malicious front / back servers (inner ad-
versaries).

When it comes to the discussion about which role does
the adversary plays, it could be an outside attacker who
has no additional ability; or it could be one of two servers.
Obviously, the latter one owns absolutely greater power than
the former one; besides, the security against one of two
servers implies the security against outside attackers so that
the discussion only focuses on the senario that the adversary
plays one malicious server out of two servers, which the other
server is uncompromised.

The security issues in Chen et al.’s works [18][19] con-
cerns three parts (described in Fig. 2): (i) the privacy of index
(SS-CKA), (ii) the privacy of trapdoor (IND-KGA) and (iii)
the privacy on considering both index and trapdoor (IND-
KGA-II).

1) Privacy of a single index or trapdoor: Informally speak-
ing, both SS-CKA and IND-KGA are similar to the
adaptive chosen ciphertext attacks (IND-CCA2) for
public key encryption schemes. With the aids of or-
acles, the adversary A ∈ {FS,BS} outputs two
keywords for the simulator. The simulator randomly
selects one of them and encrypts it into a challenge
index / trapdoor. After being assigned a challenge,

the adversary has to recognize the selected keyword
to win the game. They are formalized as experiments
shown in Fig. 2; and they ensure neither w0 nor
w1 has been queried to test oracles before returning
b′. The DS-PEKS scheme is called SS-CKA secure
or IND-KGA secure if no polynomial-time adversary
has capability of earning a non-negligible probability
AdvSS−CKAA,DS−PEKS(λ) or AdvIND−KGAA,DS−PEKS(λ), respec-
tively.
AdvSS−CKAA,DS−PEKS(λ)

def
= Pr[b = b′ : b′ ←

ExpSS−CKA−bA,DS−PEKS(λ)]

AdvIND−KGAA,DS−PEKS(λ)
def
= Pr[b = b′ : b′ ←

ExpIND−KGA−bA,DS−PEKS (λ)]
2) Privacy on considering both index and trapdoor: The

security model IND-KGA-II concerns the security on
input an index and a trapdoor, which is formally de-
scribed in Fig. 2. Informally speaking, the simulator
randomly picks (b1, b2)

$←− {0, 1} and computes cwb1

and twb2
after the adversary outputs three keywords

(w0, w1, w2), (w0 6= w1 6= w2). The adversary ter-
minates the game by outputting a guess {b′1, b′2} ∈
{0, 1}2 and it wins if {b1, b2} = {b′1, b′2}. It is inter-
esting that (b1 = b′1) ∧ (b2 = b′2) is not necessary, the
adversary also wins when (b1 = b′2) ∧ (b2 = b′1). A
DS-PEKS scheme is called IND-KGA-II secure if the
following equation holds.

Pr

[
{b1, b2} = {b′1, b′2} :

{b′1, b′2} ← ExpIND−KGA−II−b1,b2A,DS−PEKS (λ)

]
−

3/8 ≤ negl(λ)
Worth noting that no oracle access is available in the
IND-KGA-II model. On the other hand, it only defines
the security against malicious back servers.

III. REFINEMENTS OF SECURITY NOTIONS
In this section, we firstly analyze the security models defined
by Chen et al. and indicate some points with respect to the
soundness and strength. Then, we introduce our refinements
of the security models which are more realistic and can
imply previous ones. In particular, there is a byproduct of our
refined models (but technically useful) that essentially simply
the procedure of the security analysis.

A. ANALYSIS OF EXISTING SECURITY MODELS
In a high-level view, the security models are designed to
prevent the front server or the back server to individually
distinguish the keyword hidden in the index or trapdoor.
For those existing security models, we argue that existing
security models are not sound and strong enough, where
sound means ‘close to the DS-PEKS syntax’.

1) In terms of soundness, we firstly recall the syntax of
DS-PEKS schemes that the front server inputs an index
and a trapdoor as well as outputs ITS; and the back
server inputs ITS as well as outputs 1 for verified
match or 0 otherwise. The front server is responsible
to generate an ITS, and the back server outputs the
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FIGURE 2: Chen et al.’s security models: SS-CKA, IND-KGA and IND-KGA-II.

equivalence, while none of them should be able to
distinguish the keywords.

a) For the front server, the SS-CKA security and
IND-KGA security denote the ‘keyword indistin-
guishability’ on seeing a single index or a single
trapdoor, respectively. However, the front server
inputs them in the same time. An ideal condition
is that the front server generates the correspond-
ing ITS without acquiring any knowledge from
the input index and trapdoor.

b) For the back server, despite the fact that the back
server might not access the index and trapdoor
directly, it might eavesdrop the index and trap-
door from the public network. Furthermore, ITS
is a part of input in the BackTest algorithm, which
gives the back server more power and opportunity
to distinguish the keywords than the front server.
In an ideal situation, on input the index, the trap-
door and the ITS, the back server should output
the equivalence without learning anything else.

c) For oracle accesses, take OT1
(·, ·) in experiment

SS-CKA for example, it takes as input a key-
word w′ and an index cw, computes tw′ ←
Trapdoor(pp, w′, pkFS , pkBS) and outputs the
equivalence between w and w′. The oracle plays
both the front server party and the back server
party (FrontTest(pp, cw, tw′ , skFS) and Back-
Test(pp, ITS, skBS)). However, the adversary in
experiment SS-CKA has its own capability to ex-
ecute one of FrontTest or BackTest. First, half of
the ‘two-server help’ provided by oracleOT1

(·, ·)
is redundant. Second, in case A = BS, there
might be some helpful information hidden in the
ITS, but ITS is absolutely unavailable in this
kind of oracle accesses. To summarize, the oracle
OT1(·, ·) in experiment SS-CKA is redundant,
and it might weaken the probability of winning
experiment SS-CKA. The similar problem oc-
curs with the oracle OT2

(·, ·) in experiment IND-
KGA.

2) In terms of strength, the original ‘chosen keyword
attack’ defined in [5] is an adaptive security with oracle
accesses, which is similar to the IND-CCA2 security
for PKE schemes. However, the IND-KGA-II model in
Chen et al.’s works do not provide oracle accesses to
adversaries. In other words, the IND-KGA-II security
for DS-PEKS schemes is similar to the IND-CPA secu-
rity for PKE schemes, which is not an adaptive security.

We advocate that the security models of DS-PEKS
schemes can be sounder and stronger. In the following sec-
tion, we propose two conceptually realistic security defini-
tions to conquer all aforementioned issues.

B. CONCEPTUALLY REALISTIC SECURITY
DEFINITIONS

Recall the security notions shown in Section II-C. Appar-
ently, the inputs and outputs are different between the front
server and the back server. Hence, unlike the previous works
that categorize security models based on index and trapdoor,
we define the indistinguishability against chosen keyword
attacks for front server (IND-CKA-FS), as well as for back
server (IND-CKA-BS) in Fig. 3.
Definition 4: The indistinguishability of chosen keyword
attack against malicious front servers, IND-CKA-FS.

Informally, IND-CKA-FS can be regarded as the combina-
tional version of SS-CKA and IND-KGA (against malicious
front server), whose challenge including the index and trap-
door at the same time. In addition, the oracle access OBT (·)
is answered by the simulator who plays the back server role in
the DS-PEKS scheme. We emphasize that the newly defined
IND-CKA-FS security not only implies the SS-CKA security
and the IND-KGA security but also achieves higher security
level than them because of following reasons:

1) Adversary’s key pair is chosen and fully controlled by
itself, which is unknown to the simulator.

2) The oracle access is sounder in the DS-PEKS architec-
ture without losing its help to the adversary. Compared
to previous oracle settings, oracle OBT (·) in IND-
CKA-FS provides the same assistant.
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3) For the challenge in IND-CKA-FS, the index and trap-
door are considered together to discuss their security,
which is sounder in the DS-PEKS syntax.

Restriction. An important restriction is worthy to be em-
phasized that the ITS generated from FrontTest(cwb

, ·) or
FrontTest(·, twb

), the simulator need to recognize, is forbid-
den to be queried to oracle OBT (·). In our opinion, the
simulator should be able to identify above situation if the DS-
PEKS scheme is IND-CKA-FS security.
Assumption 2: The trial time limit. For both servers, a specific
index can be requested to test only in a limited times; e.x. 3
trials in 1 minute. It is not in Chen et al.’s works; nevertheless,
it is one of the key points to guarantee the semantic security.
Definition 5: The indistinguishability of chosen keyword
attack against malicious back servers, IND-CKA-BS.

In principle, the back server in the DS-PEKS syntax is
expected to tell the equivalence of keywords between the
index side and the trapdoor side (with the aid of front server),
rather than being able to distinguish the keywords on both
sides. Owing to this principle, the experiment IND-CKA-BS
is different from ‘common indistinguishability experiments’
that distinguish the chosen input from the challenge.

The newly proposed IND-CKA-BS model can be seen as a
upgraded IND-KGA-II model which integrates the SS-CKA
security and the IND-KGA security (against malicious back
server); and IND-CKA-BS implies all of them. Roughly,
the adversary has to output a correct b′1 for index security
(SS-CKA), and relatively, a correct b′2 denotes for trapdoor
security (IND-KGA) at the same time. Since the adversary
who plays the back server role has capability to verify the
equivalence of keywords between the index side and the
trapdoor side on input the challenge ITS, recognizing the
keyword of index (wb1 ) implies knowing the keyword of
trapdoor (wb2 ), and vice versa. The IND-CKA-BS takes
all previous security models into an overall consideration.
Compared to previous security models, it is sounder and
higher-level security due to the following reasons:

1) Adversary’s key pair is chosen and fully controlled by
itself, which is unknown to the simulator.

2) The oracle access is sounder in the DS-PEKS architec-
ture without losing its help to the adversary. That is,
the oracle access in IND-CKA-BS provides the same
assistant as those in SS-CKA and IND-KGA.

3) For the challenge of the IND-CKA-BS model, the
index, trapdoor and ITS are jointly considered to dis-
cuss their security, which is sounder in the DS-PEKS
syntax.

C. REDUCTIONS AMONG SECURITY MODELS

Now we give proofs of our claims in which the refined se-
curity models can imply the previous ones shown in Section
II-C.
Theorem 1: IND-CKA-FS secure implies SS-CKA and IND-
KGA secure.

Proof 1: The reduction is illustrated in Fig. 4. Some different
settings which differ from different experiment are explained
below.

• In the SS-CKA case, OT = OT1
and C = cwb1

.
The IND-CKA-FS secure directly implies the SS-CKA
secure against malicious front servers.

• In the IND-KGA case, OT = OT2
and C = cwb2

. The
IND-CKA-FS secure directly implies the IND-KGA
secure against malicious front servers.

Theorem 2: IND-CKA-BS secure implies SS-CKA, IND-
KGA and IND-KGA-II secure.
Proof 2: The reduction illustrated in Fig. 5. Some different
settings which differ from different experiment are explained
below.

• In the SS-CKA case, OT = OT1
, C = cwb1

,
W = (w0, w1) and B′ = B, b′2. The simulator ex-
ecutes a BackTest before outputs B′. If BackTest(pp,
ITS∗, skBS) = 1, b′2 ← B; otherwise b′2 ← (1 − B).
The IND-CKA-BS secure directly implies the SS-CKA
secure against malicious back servers.

• In the IND-KGA case, OT = OT2
, C = cwb2

,
W = (w0, w1) and B′ = B, b′1. The simulator ex-
ecutes a BackTest before outputs B′. If BackTest(pp,
ITS∗, skBS) = 1, b′1 ← B; otherwise b′1 ← (1−B). The
IND-CKA-BS secure directly implies the IND-KGA
secure against malicious back servers.

• In the IND-KGA-II case, OT =⊥, C = ITS∗, W =
(w0, w1, w2) and B′ = B. The relationship of winning
IND-CKA-BS and winning IND-KGA-II is discussed
below:
Assume that there is an adversary A who has non-
negligible probability ∈ to win experiment IND-KGA-
II, a simulator can follow operations illustrated in Fig.
5 to win experiment IND-CKA-BS with non-negligible
probability.
The public parameters and key settings are depicted in
Fig. 5. On input W = (w0, w1, w2) from the adversary,
the simulator randomly picks two of them and delivers
to experiment IND-CKA-BS. Without loss of generality,
let (w0, w1) are selected and delivered. Then, after re-
ceiving the challenge (cwb1

, twb2
, ITS∗), the simulator

sends ITS∗ to the adversary and waits for its output
B = (b′1, b

′
2). Finally, the simulator outputs B′ = B to

IND-CKA-BS. Following, it is discussed case by case.

– If b′1 = b′2, which occurs in half probability. The
adversary has advanced probability ∈ that b′1 =
b′2 = b1 = b2. The simulator inherently wins with
advanced probability ∈.

– If b′1 6= b′2, which also occurs in half probabil-
ity. Two possible scenarios including (1) (b′1 =
b1) ∧ (b′2 = b2) and (2) (b′1 = b2) ∧ (b′2 = b1)
might happen, but the simulator has no idea to
distinguish. No advanced probability is obtained in
this scenario.
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FIGURE 3: New IND-CKA-FS notion and IND-CKA-BS notion for DS-PEKS schemes; and IND-CCA2 notion for PKE
schemes.

On one hand, an overall advanced probability ∈/2 will
be obtained to break IND-CKA-BS if an adversary
who has non-negligible probability ∈ to break IND-
KGA-II exists. The security of IND-KGA-II relies on
the security of IND-CKA-BS. On the other hand, it
is obvious that if one can break IND-CKA-BS, it can
directly break IND-KGA-II with (b′1 = b1) ∧ (b′2 = b2)
where (b1, b2) comes from the break of IND-CKA-BS.
We can say IND-CKA-BS secure implies IND-KGA-II
secure.

IV. GENERIC CONSTRUCTION FROM IND-CCA2
SECURE PUBLIC KEY ENCRYPTION
In this section, we take IND-CCA2 secure PKE schemes like
Cramer and Shoup’s schemes [24][25] as a building block
to construct a DS-PEKS scheme. Let (Setupcca, KGcca,
Enc, Dec) be an IND-CCA2 secure PKE scheme with
public parameters ppcca ← Setupcca(1λ) which including a
multiplicative cyclic groupG, a prime order q and a generator
g. The keyword spaceW is a small subgroup of Z∗q .

• Setup(1λ): The algorithm randomly selects h $←− G and
a one-way hash functionH : G→ {0, 1}λ. The discrete
logarithm problem of h over base g is unknown. Then,
it outputs pp← {ppcca, h,H}.

• KeyGen(pp): The front server picks x $←− Z∗q as private
key skFS and publishes its public key pkFS = X where
X ← gx. The back server generates its key pair by
computing (pkBS , skBS)← KGcca(ppcca).

• BuildIndex(pp, w, pkFS , pkBS): It picks r $←− Z∗q and
outputs cw ← grhw, Enc(Xr, pkBS).

• Trapdoor(pp, w′, pkFS , pkBS): It selects r′ $←− G and
outputs t′w ← gr

′
h−w

′
, Enc(Xr′ , pkBS).

• FrontTest(pp, cw, tw′ , skFS): The front server firstly
parses (c[1], c[2]) ← cw and (t[1], t[2]) ← cw′ . Then, it

picksR $←− G and outputs ITS← (c[2], t[2], H(R), (c[1] ·
t[1])xR).

• BackTest(pp, ITS, skBS): The back server parses ITS
as (I [1], I [2], I [3], I [4]) and outputs 1 if the following
equation holds; or 0, otherwise.

I [3] = H(I [4]/(Dec(I [1], skBS) ·Dec(I [2], skBS))) (1)

Correctness. The perfect correctness is clear when w =
w′,
H(I [4]/(Dec(I [1], skBS) ·Dec(I [2], skBS))

= H(((c[1] · t[1])xR)/(Xr ·Xr′))
= H(((grhw · gr′h−w′

)xR)/(Xr ·Xr′)) = H(R) = I [3]

A. SECURITY PROOF
We first recall the definition of IND-CCA2, which is shown
as the experiment ExpIND−CCA2−b

A,PKE (λ) in Figure 3. The
IND-CCA2 security is guaranteed if no polynomial-time
adversary can obtain a non-negligible advanced probability
AdvIND−CCA2

A,PKE (λ) where AdvIND−CCA2
A,PKE (λ)

def
= Pr[b∗ =

b : b∗ ← ExpIND−CCA2−b
A,PKE (λ)]− 1/2.

Theorem 3: The generic DS-PEKS construction is IND-
CKA-FS secure based on the IND-CCA2 security of the
applied PKE scheme.
Proof 3: In the experiment, S plays two roles: the first one
is a challenger (who takes advantage of A) to challenge the
IND-CCA2 experiment for the applied PKE schemes; and
the second one is the back server and oracle responser in the
IND-CKA-FS experiment. As an challenger, the simulator
first receives ppcca and pkBS from the IND-CCA2 exper-
iment. It picks h $←− G and H and delivers pp, pkBS to
the adversary where pp← {ppcca, h,H} as the beginning of
the IND-CKA-FS experiment. The formal description about

VOLUME 4, 2016 7
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FIGURE 4: IND-CKA-FS secure implies both SS-CKA and IND-KGA secure. The oracle OT and the challenge C are defined
in Definition 1.

FIGURE 5: IND-CKA-BS secure implies all SS-CKA, IND-KGA and IND-KGA-II secure. The oracle OT , the challenge C,
the input W and the outputs (B and B′) are defined in Definition 2.
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interactions and oracle accesses between the simulator and
the adversary are depicted in Fig. 6.

The challenged index (c[1], c[2]) ← cwb
and trapdoor

(t[1], t[2]) ← twb
are in the similar form. For both possible

w ∈ {w0, w1}, there exists numbers r, r′ ∈ Z∗q that satisfies
c[1] = grhw or t[1] = gr

′
h−w, respectively. In other words,

the information of wd is perfectly hidden by gr and gr
′

unless the adversary can distinguish gr or gr
′

from ciphertext
c[2] or t[2]. The indistinguishability between w0 and w1 is
determined through the distinguishability of gr (or gr

′
) from

the ciphertext because Xr(or Xr′ ) might be encrypted as c[2]

(or t[2]), and X = gx where x is the private key only known
by the adversary. Two scenarios are discussed below depends
on the relationship between b and d.

• Case 1: b = d which occurs with half probability. In the
true statement, cwb

and twb
are a legal index and a legal

trapdoor. As aforementioned, to distinguish the keyword
wd, it is necessary to distinguish at least one plaintext
from c[2] or t[2], which definitely breaks their IND-CCA
security. The advanced probability of case 1 is estimated
as 2AdvIND−CCA2

A,PKE (λ) since the adversary can easily
distinguish wd if any one of those two ciphertext is
distinguishable.

• Case 2: b 6= d which occurs with half probability.
Clearly, {grhw, Enc(m1−d, pkBS)} ← cwb

is an illegal
DS-PEKS index since m1−d 6= Xr. It differs in the
following two conditions:

– In case A terminates after detecting that the
given challenge cwb

is invalid, the simulator di-
rectly outputs b = 1 − d to break the IND-
CCA2 security. We mark this probability as
AdvIND−CCA2

A,PKE (λ) since the adversary distin-
guishes Enc(m1−d, pkBS) from Enc(Xr, pkBS)
in an IND-CCA2 secure encryption.

– In caseA didn’t recognize the illegal challenge cwb
.

The keyword wd is perfectly hidden in cwb
because

no information about the randomness r is available
from c[2]. On the contrary, twb

remains a legal trap-
door so that the adversary has advanced probabil-
ity AdvIND−CCA2

A,PKE (λ) to distinguish wd from t[2],
which makes the adversary be more willing to out-
put a wrong guess b′ = d 6= b. To summarize, the
adversary is estimated with −AdvIND−CCA2

A,PKE (λ)
advanced probability to outputs b′ = b because
d = 1− b.

As a result, the probability that the simulator breaks the
IND-CCA2 security in case 2 is estimated as 1/2. In an over-
all review, the probability that S output b∗ = bwhich denotes
the correct choice of the IND-CCA2 game is calculated as
following.

1/2 · (1/2 + 2AdvIND−CCA2
A,PKE (λ)) + 1/2 · 1/2 = 1/2

+AdvIND−CCA2
A,PKE (λ).

In summary, above proof tells that any polynomial-time
adversary has at most AdvIND−CCA2

A,PKE (λ) advanced proba-
bility to win the IND-CKA-FS experiment. The only extra
cost is twice times of decryption oracle accesses than the
IND-CCA2 secure PKE scheme. By the intractability of
AdvIND−CCA2

A,PKE (λ), we can say the proposed generic DS-
PEKS construction is IND-CKA-FS secure.
Theorem 4: The generic DS-PEKS construction is IND-
CKA-BS secure based on the intractability of the CDH
assumption and the CONF assumption as well as the one-
wayness of the hash function H .
Proof 4: In the beginning of experimentExpIND−CKA−BSDS−PEKS,A (λ),
the simulator executes PP← Setup(1λ) and (skFS , pkFS)←
KeyGen(pp), where skFS = x and pkFS = X = gx.
Then, it delivers ers(pp, pkFS to the adversary in order to
start the experiment ExpIND−CKA−BSDS−PEKS,A (λ). On input an
oracle query OFT (cw, tw′), the simulator returns ITS ←
FrontTest(pp, cw, tw′ , skFS). When the adversary outputs
keywords (w0, w1), the simulator picks b1, b2 ← {0, 1},
r, r′

$←− Z∗q , R $←− G and computes cwb1
←BuildIndex(pp,

wb1 , pkFS , pkBS), twb2
←Trapdoor(pp, wb2 , pkFS , pkBS).

Let (c[1], c[2]) ← cwb1
and (t[1], t[2]) ← twb2

, the challenge
ITS is composed of (I [1], I [2], I [3], I [4]) ← ITS∗ where
I [1] ← c[2], I [2] ← t[2], I [3] ← H(R) and I [4] ← (c[1] ·
t[1])xR. After receiving the challenge (cwb1

, twb2 , ITS∗),
the adversary is still allowed to access oracle OFT (cw, tw′)
if cw 6= cwb1 and tw′ 6= twb2

. Finally, the adversary outputs
(b′1, b

′
2) to terminate the experiment. The challenge includes

cwb1 , twb2 and ITS∗ where

(c[1], c[2])← cwb1
, grhwb1 ← c[1], Enc(X

r, pkBS)← c[2]

(t[1], t[2])← twb2
gr

′
h−wb2 ← t[1], Enc(X

r, pkBS)← t[2]

(I [1], I [2], I [3], I [4])← ITS∗, c[2] ← I [2], t[2] ← I [2]

H(R)← I [3], Xr+r′hx(wb1
−wb2

)R← I [4]

In fact, c[2] and t[2] can be regarded as plaintext Xr and
Xr′ , respectively, because they are encrypted using the ad-
versary’s public key. The question can be simplified as:

(b′1, b
′
2)← AOFT (·,·)(grhwb1 , Xr, gr

′
h−wb2 , Xr′ ,

H(R), Xr+r′hx(wb1
−wb2

)R)

Claim 1: By the one-wayness of the hash function H and the
intractability of the CDH assumption, it is hard to distinguish
b1 and b2 from ITS∗.
Proof 5: The randomness R perfectly covers I [4] unless R
can be obtained from I [3] = H(R). By the one-wayness of
the hash function, the adversary can only gradually cancel
each part of I [4] to gain R and verify it through I [3]. Obvi-
ously, Xr and Xr′ are known by the adversary; two possible
scenarios about value hx(wb1

wb2
) are discussed below:

• Case 1: b1 = b2, which happens in half probability. In
this case, neither keyword wb1 nor wb2 exists so that
there is no advanced probability to distinguish.
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FIGURE 6: The simulator S takes advantage of A (in experiment IND-CKA-FS) to break the IND-CCA2 experiment.

• Case 2: b1 6= b2, which also happens in half probabil-
ity. By the intractability of the CDH assumption, it is
computational hard to acquire hx on input (g,X, h).

In summary, the advanced probability of gaining b1 and b2
from ITS∗ is estimated as AdvOWA,H(λ) + 1/2AdvCDHA,G (λ).
Claim 2: By the intractability of the CONF assumption, it is
hard to distinguish b1 and b2 from cwb1

and twb2
, respectively.

Proof 6: By theorem 1, the probability of information leaked
from ITS∗ is negligible so that we continue to discuss the
probability of cwb1

and twb1
. For cwb1

, for two possible
Z0 ← c[1]/hw0 and Z1 ← c[1]/hw1 , it is indistinguishable
based on the intractability of the CONF assumption: deter-
mine whether Zb1 = gr or not on input (g, gx, gxr, Zb1). The
advanced probability of distinguish b1 from cwb1

is estimated
as AdvCONFA,G (λ). The similar condition above occurs in twb2

with Z0 ← t[1]/hw0 and Z1 ← t[1]/hw1 so that the advanced
probability on seeing twb2

is estimated as AdvCONFA,G (λ) as
well.

By and large, the overall advanced probability of a cor-
rect output ((b1 = b′1) ∧ (b2 = b′2)) is estimated less
than AdvOWA,H(λ) + 1/2AdvCDHA,G (λ) + +2AdvCONFA,G (λ).
The IND-CKA-BS security obliviously holds owing to the
aforementioned negligible advanced probability.

V. CONCRETE INSTANTIATION AND COMPARISON
In this section we first give a concrete instantiation by
adopting Cramer and Shoup’s IND-CCA2 secure public key
encryption scheme. Then, we compare our instantiation with
Chen et al.’s DS-PEKS [19].

A. CONCRETE INSTANTIATION
The following we describe how to obtain an instantiation
using Cramer and Shoup’s encryption scheme [24].
• Setup(1λ): This algorithm runs as follows.

– Choose a cyclic groupG of prime order q, with two
generators g1, g2, and select h← G.

– Choose two secure hash functions H1 : G →
{0, 1}λ, H2 : {0, 1}∗ ×G2 → G.

– Output a public parameter pp← (H1, H2, g1, g2, G, h).
• KeyGen(pp): This algorithm runs as follows.

– Choose x $←− Z∗q , and compute X = gx.

– Choose (s, a, b, a′, b′)
$←− Z∗q

– Compute h = gs1, c = ga1g
b
2, d = ga

′

1 g
b′

2 .
– Output front server and back server’s key pair
skFS = x, pkFS = X, pkBS = (h, c, d), skBS =
(s, a, b, a′, b′).

• BuildIndex(pp, w, pkFS , pkBS): This algorithm runs as
follows.
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– Choose r $←− Z∗q .
– Compute u1 = gr1, u2 = gr2, e = hrw, v =

(cdH2(u1,u2,e))r.
– Output searchable ciphertext cw = (grhw, (u1, u2, e, v)).

• Trapdoor(pp, w′, pkFS , pkBS : This algorithm runs as
follows.

– Choose r′ ← Z∗q
– Compute u′1 = gr

′

1 , u
′
2 = gr

′

2 , e
′ = hr

′
w, v′ =

(cdH2(u
′
1,u

′
2,e

′))r
′

– Output a trapdoor tw′ = (gr
′
h−w

′
, (u′1, u

′
2, e
′, v′)).

• FrontTest(pp, cw, tw′ , skFS): This algorithm runs as
follows.

– Parse cw = (c[1] = grhw, c[2] = (u1, u2, e, v)).
– Parse tw′ = (t[1] = gr

′
h−w

′
, t[2] =

(u′1, u
′
2, e
′, v′)).

– Pick R $←− G.
– Output ITS← (c[2], t[2], H1(R), (c[1] · t[1])xR.

BackTest(pp, ITS, skBS): This algorithm runs as fol-
lows.

– Parse ITS = (I [1] = c[2] = (u1, u2, e, v), I [2] =
t[2] = (u′1, u

′
2, e
′, v′), I [3] = H1(R), I [4] = (c[1] ·

t[1])xR.
– Check whether v = ua+ζa

′

1 · ub+ζb
′

2 , for ζ =
H1(u1, u2, e).

– Compute σ = e/us1.
– Check whether v′ = u′1

a+ζ′a′ · u′2
b+ζ′b′ , for ζ ′ =

H1(u′1, u
′
2, e
′).

– Compute σ′ = e′/u′1
s.

– If I[3] = H1(I [4]/(σ · σ′)), then output 1. Other-
wise, output 0.

B. COMPARISON
Let |G| denote the bit size of an element in group G. Let
TExp, TH , and TMul represent the modular exponentiation
over point operation, multiplication over point operation,
and hash-to-point operation, respectively. Table 1 shows the
compared result of our scheme and Chen et al.’s scheme [19]
terms of the computation cost, communication cost, and the
security properties. For the computation, we only consider
three time-consuming operations, i.e., TExp, TH , and TMul.
The result shows that our instantiation has more security
properties in terms of SS-CKA and IND-KGA in compared
with Chen et al’s scheme. Unfortunately, to support more
security, our instantiation needs more time to generate ci-
phertext, trapdoor and testing and the size of ciphertext and
trapdoor of our instantiation are large than Chen et al.’s
scheme.

Next, to evaluate the efficiency of our scheme and Chen et
al’s work, we experiments the time-consuming operations on
the desktop, where the detail of system environment is listed
is Table 2. The data are obtained (Table 3) by using pairing-
based cryptography library (PBC)1 with Type-A pairing

1https://crypto.stanford.edu/pbc/
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FIGURE 7: Compared the computation cost of ciphertext
generation with Chen et al’s scheme [19].

where group order and group element are 160-bit and 2048-
bit, respectively. The results of computation costs, includ-
ing detailed ciphertext generation, trapdoor generation, and
testing, are shown in Fig. 7, Fig. 8, and Fig 9, respectively.
According to the results in Fig. 7 and Fig. 8, although our
instantiation requires more operations, the actual operation
time varies little. When the number of searching keywords
is 50, our instantiation and Chen et al’s scheme takes about
4.22035 seconds and 3.80395 seconds respectively to process
ciphertext generation and trapdoor generation. Additionally,
according to the results in Fig. 9, when the number of
searching keywords is 50, our instantiation and Chen et al’s
scheme takes about 1.46015 seconds and 1.45685 seconds
respectively to process testing. Therefore, the results show
that with a little more computing time, our instntiation can
achieve more robust securities.

VI. CONCLUSION
The inner keyword guessing attacks threat the semantic secu-
rity of most traditional PEKS schemes. For this issue, Chen
et al. proposed the first DS-PEKS scheme as a solution which
separates the testing server into two servers to resist the
threat. However, their security models can be significantly
enhanced which are discussed in Section III; meanwhile,
their works are found not as secure as they claimed. Fol-
lowing, we propose new security models and new general
constructions for DS-PEKS schemes. For the security no-
tions, the indistinguishability against chosen keyword attacks
models, IND-CKA-FS and IND-CKA-BS, are proposed to
regulate the security against malicious front servers and
back servers, respectively. Moreover, the newly proposed two
security models imply all five previous models, which are
even sounder and stronger. For the general construction, we
take IND-CCA2 secure PKE schemes as building blocks to
construct a IND-CKA-FS secure and IND-CKA-BS secure
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TABLE 1: Comparisons between Chen et al.s’ work [19] and our scheme.

Schemes Computation Size (bits) Security
Ciphertext Gen. Trapdoor Gen. Testing Ciphertext Trapdoor SS-CKA IND-KGA

Chen el al.’s 4TExp + TH + 2TMul 4TExp + TH + 2TMul 7TExp + 3TMul 3|G| 3|G| × ×
Ours 6TExp + TH + 3TMul 6TExp + TH + 3TMul 7TExp + 6TMul 5|G| 5|G| X X

TABLE 2: Experimentation platform information.

Description Data
CPU AMD Ryzen 5-2600 3.4GHz
CPU processor number 6
Operation system Ubuntu 18.04
Linux kernel version 5.3.0-59-generic
Random access memory 16.3GB
Solid state disk 232.9GB

TABLE 3: Notations of operations and their running time.

Notations Operations Running time (ms)
TH Hash-to-point 59.423115
TMul Multiplication over Point 0.022
TExp Modular exponentiation over Point 4.153842

DS-PEKS schemes. The formal security proof is discussed
in standard model in Section IV-A.

APPENDIX
Flaws of Chen et al.’s security

We briefly recall Chen et al.’s construction here and then
introduce its flaw which makes them fail to be proved SS-
CKA security and IND-KGA security. Because the newly
proposed IND-CKA-FS security implies SS-CKA security
and IND-KGA security for malicious front servers, their
work is definitely not IND-CKA-FS security. Chen et al.’s
works fail to be proved IND-CKA-BS security as well be-
cause of the same reasons. In brief, they adopted a variant lin-
ear and homomorphic smooth projective hash function (LH-

0 10 20 30 40 50

Number of Searching Keyword

0

1

2

3

4

T
im

e
(s

)

Chen et al.’s

Ours

FIGURE 8: Compared the computation cost of trapdoor
generation with Chen et al’s scheme [19].
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FIGURE 9: Compared the computation cost of testing with
Chen et al’s scheme [19].

SPHF) to build a DS-PEKS scheme, which is summarized as
follows:

Let H be a cryptographic hash function and
⊗

is an
operator among some group elements; hk denotes the hash
key (like a secret key) and hp stands for the hash projective
key (like a public key) in the SPHF system. In the SPHF
computation, for all randomnessW (in some language L) and
its witness wt, ProjHash(hp,W,wt) = Hash(hk,W ).

The sender picks a randomness W1 with its witness wt1 to
build an index (W1, C1) for his selected keywords w using
the public key of the front server (hpFS) and the back server
(hpBS), respectively.

x1 ← ProjHash(hpFS ,W1, wt1),

y1 ← ProjHash(hpBS ,W1, wt1),

C1 ← H(w)
⊗

x1
⊗

y1

The trapdoor is in a similar form with the index. A ran-
domness W2 is chosen first with its witness wt2, then, the
trapdoor (W2, C2) of keyword w′ is computed by

x2 ← ProjHash(hpFS ,W2, wt2),

y2 ← ProjHash(hpBS ,W2, wt2),

C2 ← H(w′)−1
⊗

x2
⊗

y2

The front test relies on the linear property and homomor-
phism of the LH-SPHF.

1) It firstly computes W ← W1

⊙
W2 for some ho-

momorphic operator
⊙

between randomnesses where
Hash(hk,W1

⊙
W2) = Hash(hk,W1)

⊗
Hash(hk,W2).
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2) Secondly, it computesC ← C1

⊗
C2

⊗
(Hash(hkFS ,W ))−1.

3) Thirdly, it picks another witness ∆w and computes
ITS ← (W∗, C∗) where W∗ ← ∆w ◦ W and
C∗ ← ∆w • C. The linear operators ◦ and • are de-
fined for all randomnesses and their witnesses, where
Hash(hk,∆w ◦W ) = ∆w •Hash(hk,W ).

The back test outputs 1 if C∗ = Hash(hkBS ,W∗).
Flaws. We claim that Chen et al.’s schemes are neither SS-

CKA security nor IND-KGA security, which implies they are
neither IND-CKA-FS security nor IND-CKA-BS security.
Take the SS-CKA security against malicious front servers
for example, the attack even does not rely on the knowledge
of the back server’s secret key. In the SS-CKA experiment,
after the adversary outputs (w0, w1) and receives a challenge
index (W1, C1)=BuildIndex(wb, hpFS , hpBS), b ∈ {0, 1},
the adversary randomly picks a witness ŵ and computes
Ŵ ← ŵ ◦ W1 and Ĉ ← ŵ • C1. Then, b can be easily
obtained by sending a query ((Ŵ , Ĉ), w1) to oracle OT1

.
The same problem also happens with the SS-CKA security
against malicious back servers, and the IND-KGA security
against malicious front servers and back servers. The linear
property of LH-SPHF eliminates the its adaptively secure.
The same problem will not occur in our new proposed generic
construction because any tampered index or trapdoor will be
detected and rejected by the simulator.

REFERENCES
[1] Chien-Ming Chen, King-Hang Wang, Kuo-Hui Yeh, Bin Xiang, Tsu-Yang

Wu, Attacks and solutions on a three-party password-based authenticated
key exchange protocol for wireless communications, Journal of Ambient
Intelligence and Humanized Computing, Vol. 10, Issue 8, pp. 3133-3142,
2019.

[2] Chien-Ming Chen, Bin Xiang, Yining Liu, King-Hang Wang, “A Secure
Authentication Protocol for Internet of Vehicles”, IEEE ACCESS, vol. 7,
Issue 1, pp. 12047-12057, 2019.

[3] C. Gentry, Fully homomorphic encryption using ideal lattices, in:
STOC’09, ACM, 2009, pp. 169–178. doi:10.1145/1536414.1536440.

[4] D. Boneh, A. Raghunathan, G. Segev, Function-private subspace-
membership encryption and its applications, in: ASIACRYPT’13, Vol.
8269 of LNCS, Springer, 2013, pp. 255–275. doi:10.1007/978-3-642-
42033-7.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, G. Persiano, Public key en-
cryption with keyword search, in: EUROCRYPT’04, Vol. 3027 of LNCS,
Springer, 2004, pp. 50–522.

[6] D. Boneh, B. Waters, Conjunctive, subset, and range queries on encrypted
data, in: TCC’07, Vol. 4392 of LNCS, Springer, 2007, pp. 535– 554.

[7] P. Wang, H. Wang, J. Pieprzyk, Keyword field-free conjunctive key-
word searches on encrypted data and extension for dynamic groups, in:
CANS’08, Vol. 5339 of LNCS, Springer, 2008, pp. 178–195.

[8] P. Wang, H. Wang, J. Pieprzyk, Common secure index for conjunctive
keyword-based retrieval over encrypted data, in: Secure Data Manage-
ment,SDM’07, Vol. 4721 of LNCS, Springer, 2007, pp. 108–123.

[9] A. Arriaga, Q. Tang, P. Ryan, Trapdoor privacy in asymmetric search-
able encryption schemes, in: AFRICACRYPT’14, Vol. 8469 of LNCS,
Springer, 2014, pp. 31–50. doi:10.1007/978-3-319-06734-6.

[10] J. Baek, R. Safavi-Naini, W. Susilo, Public key encryption with key-
word search revisited, in: Computational Science and Its Applications -
ICCSA’08, Vol. 5072 of LNCS, Springer, 2008, pp. 1249–1259.

[11] C. B"osch, P. H. Hartel, W. Jonker, A. Peter, A survey of provably secure
searchable encryption, ACM Comput. Surv. 47 (2) (2014) 18:1–18:51.

[12] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.
Malone-Lee, G. Neven, P. Paillier, H. Shi, Searchable encryption revisited:
Consistency properties, relation to anonymous ibe, and extensions, J.
Cryptology 21 (3) (2008) 350–391.

[13] J. W. Byun, H. S. Rhee, H. Park, D. H. Lee, Off-line keyword guessing
attacks on recent keyword search schemes over encrypted data, in: Secure
Data Management, SDM’06, Vol. 4165 of LNCS, Springer, 2006, pp. 75–
83.

[14] I. R. Jeong, J. O. Kwon, D. Hong, D. H. Lee, Constructing PEKS
schemes secure against keyword guessing attacks is possible?, Computer
Communications 32 (2) (2009) 394–396.

[15] P. Xu, H. Jin, Q. Wu, W. Wang, Public-key encryption with fuzzy keyword
search: A provably secure scheme under keyword guessing attack, IEEE
Trans. Computers 62 (11) (2013) 2266–2277.

[16] Y.-C. Chen, Speks: Secure server-designation public key encryption with
keyword search against keyword guessing attacks, The Computer Journal.

[17] Tsu-Yang Wu, Chien-Ming Chen, King-Hang Wang, Chao Meng, Eric
Ke Wang, A Provably Secure Certificateless Public Key Encryption with
Keyword Search, Journal of the Chinese Institute of Engineers, vol. 42, no.
1, pp. 20-28, 2019.

[18] R. Chen, Y. Mu, G. Yang, F. Guo, X. Wang, A new general framework
for secure public key encryption with keyword search, in: E. Foo, D. Ste-
bila (Eds.), ACISP’15, Vol. 9144 of LNCS, Springer, 2015, pp. 59–76.
doi:10.1007/978-3-319-19962-7.

[19] R. Chen, Y. Mu, G. Yang, F. Guo, X. Wang, Dual-server public-key
encryption with keyword search for secure cloud storage, IEEE Trans.
Information Forensics and Security 11 (4) (2016) 789–798.

[20] Q. Huang, H. Li, An efficient public-key searchable encryption scheme
secure against inside keyword guessing attacks, Information Sciences.

[21] K. Huang, R. Tso, Provable secure dual-server public key encryption with
keyword search, in: IVSW 2017, 2017, pp. 39–44.

[22] E. Ryu, T. Takagi, Efficient conjunctive keyword-searchable encryption,
in: Advanced Information Networking and Applications AINA’07, IEEE
Computer Society, 2007, pp. 409–414.

[23] K. Sakurai, H. Shizuya, Relationships among the computational powers
of breaking discrete log cryptosystems, in: EUROCRYPT’95, Vol. 921 of
LNCS, Springer, 1995, pp. 341–355.

[24] R. Cramer, V. Shoup, A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack, in: CRYPTO’98, Vol. 1462 of
LNCS, Springer, 1998, pp. 13–25.

[25] M. Abdalla, F. Benhamouda, D. Pointcheval, Public-key encryption indis-
tinguishable under plaintext-checkable attacks, in: PKC’15, Vol. 9020 of
LNCS, Springer, 2015, pp. 332–352. doi:10.1007/978-3-662-46447-2.

[26] S. Ma, Y. Mu, W. Susilo, B. Yang, Witness-based searchable encryption,
in: Information Sciences, vol. 453, pp. 364–378, 2018.

[27] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, Designated-ciphertext Search-
able Encryption, in Cryptology ePrint Archive, Report 2019/1418, 2019.

VOLUME 4, 2016 13


