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Stochastic neural network has the characteristics of good global convergence and fast gradient-based learning ability. It can be
applied to multidimensional nonlinear systems, but its generalization ability is poor. In this paper, combined with rule base,
through the PCA method, an improved multimodal variable-structure random-vector neural network algorithm (MM-P-
VSRVNN) is proposed for coagulant dosing, which is a key production process in water purification process. Ensuring for
qualified water, how to control coagulation dosage effectively, obtain valid production cost, and increase more profits is a focus in
the water treatment plan. Different with the normal neural networkmode, PCA is used to optimize hidden-layer nodes and update
the neural network structure at every computation. +is method rectifies coagulant dosage effectively while keeping valid
coagulation performance. By the way, the MM-P-VSRVNN algorithm can decrease computation time and avoid overfitting
learning ability. Finally, the method is proved feasible through the experiment and analyzed by the simulation result.

1. Introduction

In water purification process, one important point is co-
agulant dosing. +e effect of coagulation is to make dosage
mixed with colloidal particles and tiny suspended solids in
raw water, subsided in live embodiment of the amorphous
substance in the coagulation and sedimentation tank. Co-
agulant dosing is a complex, physical, and chemical process
with time-varied, delay, and nonlinear characteristics. In
addition, there are still many actual factors, such as pH value,
turbidity, water flow rate, and coagulation dosage that affect
coagulation performance. In many references about coag-
ulant dosing, most water plants take two methods, namely,
manual dosing and automatic dosing. Manual dosing mostly
depends on workers’ experience that is an obvious open-
loop control method. It is difficult to save cost effectively.
+e second is automatic dosing; its control method is related
with actual waterworks technology. +ere is still no uniform
control method. Currently, PID control and feedforward
control are commonly used, but some water plants still work

in manual dosing. Take a water plant in Changsha as an
example. Its coagulation effect takes about 90 minutes of
delay, and the turbidity after coagulation, named turbidity
before filtration, is generally about 5NTU or less. And the
most important thing is that the water plants are still in
manual dosing that needs more workers to work by turns.
+e above being concerned, how to complete coagulant
dosing automatically is a hot problem. At present, the au-
tomatic control of coagulant dosing mainly adopts a single-
factor closed-loop method, which needs to change the
method from traditional PID control to intelligent control
for complex control objects [1, 2]. Researchers take some
predictors to finish coagulant dosing with different
manufacturing techniques. Some people try to find a
mathematical model of coagulant dosing, as shown in [3–7].
In [3], based on the iterative feedback tuning (IFT), com-
bined with Smith predictive control, a data-driven direct
control method is proposed that need not understand the
actual time-delay object model. It can initialize the controller
and take online self-tuning. In [4], after studying coagulant
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dosing process in water plants, a feedforward and feedback
control method combined with the generalized predictive
control (GPC) and PID is proposed for dosing. In [5], a two-
stage control structure is designed for dosage target calcu-
lation and dynamic optimization of the coagulant dosing
system. +e model predictive control (MPC), a bounder
control method, requires less information of the controlled
object and proves its validity by simulation. In [6], this paper
focuses on analyzing the structure and principle of coagulant
dosing and uses predictive autodisturbance rejection control
(PADRC) to design an online self-tuning dosing controller.
In [7], a multimodal control strategy is proposed based on
artificial intelligence, which simulates actual operation
without any manual control and ensures the effect of co-
agulant dosing. Coagulant dosage mainly depends on the
accuracy of the computation outcome of the system's
mathematical mode. So, modeling accurately is the most
difficult to realize the target here.

With the development of the artificial neural network
(ANN), it provides another data-driven solution without any
mathematical model for such a nonlinear system. Com-
monly used ANN also includes the radial basis function
(RGF) neural network, backpropagation (BP) neural net-
work, cerebella model control articulation (CMCA) neural
network, and self-organizing neural network. Some people
have applied these types of feedforward neural networks in
coagulant dosing, as shown in [8–11]. In [8], a predictive
control strategy is proposed for coagulant dosing in
wastewater treatment process, an adaptive neural network
model is established to analyze the relationship between
dosage and detergency, and it is optimized by the gradient
descent method. In [9], a RBF neural network predictor with
a feedforward compensation is proposed. For a single-input
and single-output system, a nonlinear autoregressive
moving average model is built up and predicted for coag-
ulant dosing. In [10] after analyzing the characters of raw
water and finding out related factors of coagulant dosing, a
feedforward controller is designed combined with the
CMAC neural network and fuzzy algorithm, and offline
modeling is finished in order to realize online optimization
and predict coagulant dosage. In [11], a neural network and
an adaptive fuzzy model are established to simulate the
coagulant dosing process. Finally, simulation is proved valid.
Take the neural network model is feasible that has a lower
request, self-learning ability, and generalization ability. +is
method can be applied to complex industry process without
building an accurate mathematical model [12]. However,
those mentioned gradient-learning algorithms have an ob-
vious problem: overfitting ability and local optimum. So, it is
little difficult to design a specific neural network structure
which is invariant with lower flexibility.

For improving the neural network, currently, random-
vector neural networks have been developed rapidly in re-
cent years because of their learning speed and generalization
ability better than traditional neural network algorithms
[13, 14]. In many applications, random-vector neural net-
works are also used in nonlinear complex systems and
verified effectively [15–18]. As we know, water purification
itself is a nonlinear complex industrial process; for the

dynamic mechanism of coagulant dosing is complex, the
internal state is unclear. If we need to find the functional
relationship between input and output factors about coag-
ulant dosing, it is very hard to do well in setting up a
mathematical model. In this paper, we select a water plant in
Changsha as the target and analyze its coagulant dosing
process and related factors. Considering the difficulty of
building up the neural network model, we propose a vari-
able-structure random-vector neural network (VS-RVNN)
model for online learning for optimization of coagulant
dosage.

2. Analysis and Modeling for Coagulation
Dosing Process

2.1. Analysis for Coagulation Dosing Process. +e water
purification process mainly includes drug administration,
coagulation-sedimentation, filtration, and chlorine disin-
fection. Each subprocess is independent and related to each
other. +e coagulation process is composed of data sampler,
controller, coagulation-sedimentation tank, and execution
equipment. Taking a water plant in Changsha as an example,
its process is shown in Figure 1.

When raw water passes through the water pump room,
its turbidity and flow velocity are measured before the co-
agulation tank. In addition, after the coagulant and running
water are mixed in an appropriate proportion, the mixture
enters the coagulation tank by the dosing pump and per-
forms coagulation reaction with raw water. +e coagulant
dosing will take effects after about 90 minutes, meaning a
long-delay process. At the outlet of the tank, turbidity is
measured one more time and judged whether its values
reach set values or not. +e key point is that necessary data
are sampled by equipment, computed by the controller, and
an optimum coagulant for dosing pump operation is ob-
tained. Pump adjusts its speed and opening to optimize
online coagulant dosage. As we know, coagulant dosing
process is complicated, varied, and nonlinear, with long
delay. It cannot find the direct relationship between input
and output information. So, it is not easy to establish a
correct mathematical model.

2.2. Modeling and Control for Coagulant Dosing Process.
+ere are three common modeling methods at current,
namely, mechanism model, knowledge-based model, and
data-driven model. Firstly, the mechanism model depends
too much on the system internal mechanism. However, a
system becomes more nonlinear and strong coupling than
before; its interior mechanism is complicated and cannot be
shown obviously and clearly by formula. Secondly, the
knowledge-based model mostly relies on limited expert
knowledge with poor adaptability. Lastly, the data-driven
model need not know what system’s inner state is; however,
it still can predict and give a reasonable decision by a lot of
data analyses and intelligent deduction. After analyzing the
three methods, establishing a data-driven model has become
one powerful method for a complex system in recent years.
Neural network model (NNM) is one of them that can deal
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with inaccurate and complicated information of the complex
system [19–21]. In the paper, coagulant dosing process is just
such a type without analyzing its mechanism, collecting
insufficient and inaccurate expert knowledge. However,
coagulant dosing process runs independently; its necessary
parameters can be measured and monitored. Taking a water
plant in Changsha as an example, water supply varies in
different seasons and at different times of a day. Especially at
rush hour, water supply must increase sharply. +en, co-
agulant dosage will be predicted appropriately in advance.
Furthermore, there are two main problems about the target
water plant at current. One is that it still takes simple manual

dosing.+e other problem is that system delay is a little long,
and working condition is changeable. So, only one simple
NNM cannot work useful with abrupt events. +rough local
investigation, we gather related data and get to a conclusion:
turbidity, flow velocity, working pumps affect coagulation
obviously. Other parameters such as pH and water tem-
perature also affect coagulation slowly. How to control
coagulant dosage is a concerned topic. It satisfies turbidity
while decreasing production cost as much as possible. To
sum up, aiming at the actual object, a nonlinear autore-
gressive multimode (NARM) is set up as follows:

Y(t) �

f1 x1(t), . . . , x1 t − p1( 􏼁, . . . , xk(t), . . . , xk t − pk( 􏼁, Y(t − 1), . . . , Y(t − q)( 􏼁, whenmodal � 1,

...

fi x1(t), . . . , x1 t − p1( 􏼁, . . . , xk(t), . . . , xk t − pk( 􏼁, Y(t − 1), . . . , Y(t − q)( 􏼁, whenmodal � i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where historical data are also concerned. A multimodal
function is provided in formula (1). xi(t), . . . , xi(t − pi) is
the input data set, Y(t) is the output, pi, q is the lag step
(i � 1, . . . , k), and f1(.), . . . , fi(.) are different respective
nonlinear relations between input parameters and output
parameters at different modes. Combining with NARM, for
solving the above two problems concerned in this paper, we
design a multimodal control scheme, as shown in Figure 2.

In the control scheme, rule base (RB) just contains a lot
of dosing parameters and several modal decision rules. +e
most important focus is the variable-structure random-
weight neural network (VS-RVNN). It can build up variable-
structure NN which can optimize its model and online-
compute the optimum dosage. RB will provide suitable
operational parameters for the dosing pump. All data will be
stored in a database after one computation is completed.
According to the analysis for related factors of coagulant
dosing in this part, RB will make a decision by systems’
operating state, select the most suitable mode, and rectify
existed rules. +e neural network controller updates the
target value and training data set, varies the computation
model, calculates optimum dosage, and keeps continuous
cycle operation.+e whole control method mainly combines
RB and VS-RVNN and designs a MM-P-VSRVNN algo-
rithm. +e design is figured out in Figures 3 and 4.

In Figure 3, about RB, we set multiple modes and design
a mode switcher. +rough the main influencing factors
which have been defined, a series of decision rules are
constructed and categorized into the designed mode. +ese
rules are also the criterion of judgement for the switching
mode. Furthermore, in each mode, there are some typical
control rules about water pump control parameters. +e
selected control rule will be connected to the ANN controller
as a guideline for further optimization.

In Figure 4, we design an initial NNM which has an
initial value of hidden-layer nodes in the leftmost. When
real-time data are sampled, NNM judges working mode
once again and takes a new computation after retraining the
neural network with the corresponding training data, and
the hidden-layer nodes decrease from L to Ki by PCA
(whenmode � i, i � 1, . . . , n), and the structure of the
neural network is updated for real-time computation. +is
means NNM will have n-type structures after the PCA
dimension.

Notation: here, NNM, proposed in Figure 4, has a
variable structure. Because the number of hidden-layer
nodes is always a key point for modeling, here, NNM is not
fixed when we perform principal component analysis (PCA)
for hidden-layer nodes. So, NNM has a variable structure at
each computation. +is method can effectively solve the
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Figure 1: Schematic diagram of coagulation process.
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problem of overfitting and robustness of neural networks
and improve the computational speed and generalization
ability.

3. MM-P-VSRVNN Algorithm

Combining with Section 2.2, the whole algorithm mainly
includes two parts, namely, modal switching and dimen-
sionality reduction by PCA. +e prediction algorithm is
executed by the MM-P-VSRVNN. It takes two stages: offline
modeling and online optimization.

Here, the whole algorithm steps are as follows:
Before computation, we choose a multimodal data set

for training samples: Z � (xk
i , yk

i ) | xk
i ∈ RM, yk

i ∈ RN,􏼈

i � 1, . . . , M |whenmode � k}. And each mode has its in-
dependent data subset Zi |whenmode � i􏼈 􏼉 in it.

(i) Step 1: sample real-time data, and judge the working
mode by RB. For example, if mode � i, it gives a
decision for NNM and switches to the ith control
strategy.

(ii) Step 2: build up a VS-RVNNwith a random layer (L
nodes) and an output layer (N nodes). +e initial
value of L is set to 60. +e random layer can be
constructed by the hidden layer and input layer.

(iii) Step 3: take the corresponding data subset of
training samples for NNM. +en, the functional of
the random layer is defined as x1, . . . ,􏼈

xN | θ1, . . . , θN} when mode� k.
+en, the function of the random layer is defined as

gj xi, θj􏼐 􏼑 � φj ωjxi + bj􏼐 􏼑, 1≤ j≤ L, (2)

where ωj � (ωj1,ωj2, . . . ,ωjn) is the input weight
of the jth hidden-layer node, bj is the threshold
value of the jth hidden-layer node, θj � ωωj

j is the
random-weight vector of the hidden-layer nodes,
and xi(i � 1, 2, . . . , N) is the input to the network.

(iv) Step 4: set the training target, and start to train the
NNM with the given data subset.

(v) Step 5: let Gh � gj(xi, θj). Repeat to run step 4 until
training meets the given target. Otherwise, it re-
starts at step 2 and computes once again.

(vi) Step 6: construct a random-layer training matrix
G � [G1, . . . , GH]T. Each column of G represents a
random-layer output node, and each row repre-
sents a training sample output.

(vii) Step 7: perform weighted difference to training
matrix G, and remove its nonlinear or multimodal
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characteristics. Next, continue to standardize G.
+en, the standardized matrix is G, and find its
correlation coefficient matrix S, which meets its
mean value per column which is 0 and standard
deviation which is 1:

S �

r11 r12 .. r1l

r21 r22 .. r2l

.. .. .. ..

rl1 rl2 .. rll

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i � 1, . . . , l), (3)

where rij represents the correlation coefficient
between variable i and variable j. After that, the
eigenvalue decomposition of S is done, eigenvalues
λ1, . . . , λL􏼈 􏼉 and eigenvectors of S are computed,
and these eigenvalues are sorted by size.

(viii) Step 8: calculate the contribution rate of each ei-
genvalue, and sort all eigenvalues to sum up the
components’ added contribution rate one by one
and compute whether it is over 95 percent or not. If

it is, then count the d number of major compo-
nents and construct a transfer matrix:

p �

p11 p12 .. p1L

p21 p22 .. p2L

.. .. .. ..

pk1 pk2 .. pkL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

when mode � i, (4)

which is based on its corresponding d eigenvectors,
and the random-layer matrix G is met and satisfies
the equality 􏽢G � GP.

(ix) Step 9: input the latest collected samples into NNM,
and calculate the function value of each output-
layer node fl � 􏽐 βjgj(xi, θj), 1≤ l≤N. All neces-
sary data are stored.

(x) Step 10: compare the predicted outcome with the
dosage value in the RB, correct control parameters
of pumps online, and finish dosing.

(xi) Step 11: update the training sample set.

...
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Figure 4: +e diagram of a multimodal neural network.
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(xii) Step 12: wait for the next sampling, and repeat the
work from steps 1 to 11.
Notation: compared with the traditional RVNN,
RS-RVNN can perform mode switching and train
the original neural network with the corresponding
data set and system’s control state. +e output
matrix of the hidden layer is obtained through
multiple training times and can be reduced di-
mensionally by PCA. +e neural network structure
can be optimized under different modalities to
ensure the system’s continuous stability. Further-
more, the neural network controller implements
dynamic optimization of the variable structure
every time. Network training is performed during
mode switching, and it enhances the flexibility of
the controller.

4. Experiment Results and Discussion

In this paper, we analyze the actual water purification
process of Changsha’s water plant. +is plant was built up as
a two-phase project, which mainly has two storage tanks,
alum tanks, coagulation tanks, and pump workshop for
capacity expansion. And now, one of them is working. +e
water purification process with related parameters is shown
timely and stored in the system database. Its coagulant
dosing system is shown in Figure 5.

+rough these data provided by applied instruments and
electromechanical equipment, we choose the important
factors related to coagulation efficiency: turbidity before
filtration (NTU), turbidity of raw water (NTU), discharge of
water (m3/h), water temperature (°C), frequency (Hz), pH,
pump stroke (percent), target turbidity (NTU), historical
data of turbidity (NTU), water flow rate (m3/h), and co-
agulant dosing (m3/h). +ese are prepared for building up a
NNM. Two of them, target turbidity (NTU) and prediction
value of coagulant dosing (m3/h), are output targets of the
NNM. From parts 2 and 3, the number of hidden-layer
nodes cannot be determined. In our NNM, we set an initial
value (60) for hidden-layer nodes, which can be decreased by
PCA. +en, the structure of the NNM is optimized, and the
prediction for coagulant dosage is obtained. A new NNM is
named P-VSRVNN.

Coagulant dosing process contains 3 working modes. In
this experiment, we select 1000 groups of data. Among
them, 960-group data are divided into 3 subsets for training
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Figure 5: +e diagram of the dosage system.

Table 1: Dimension reduction for NNM by PCA (40 groups).

Data set (group) Modal Hidden-layer nodes after PCA
1 1 8
2 1 8
3 1 8
4 1 7
5 2 8
6 2 8
7 2 8
8 2 8
9 1 8
10 1 8
11 1 8
12 1 7
13 1 7
14 1 7
15 1 8
16 1 8
17 1 7
18 1 8
19 3 7
20 3 8
21 1 8
22 1 8
23 1 8
24 1 8
25 1 8
26 1 8
27 1 7
28 1 9
29 1 8
30 3 8
31 3 7
32 2 7
33 2 9
34 1 8
35 1 8
36 1 8
37 1 8
38 1 8
39 1 9
40 1 8
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Table 2: +e first eight principal components’ eigenvalue and variance contribution by PCA in one computation.

Principal components Eigenvalue Variance contribution (percent) Accumulated variance contribution (percent)
1 20.1607660138651 33.6012766897752 33.6012766897752
2 14.1382412479112 23.5637354131853 57.1650121029605
3 9.55968664322995 15.9328110720499 73.0978231750104
4 5.33738215800062 8.89563693000104 81.9934601050114
5 4.28516886114769 7.14194810191281 89.1354082069243
6 1.83532313856500 3.05887189760834 92.1942801045326
7 1.24409369821930 2.62008336345786 94.2677696015648
8 0.895336966029005 1.49222827671501 95.7599978782798
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Figure 6: Prediction and actual value of coagulant dosage.
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different working modes. And each subset includes 320-
group data.+e remaining data are also divided into 3 types
for testing. A new group of data is obtained by hourly
sampling, which includes connected information working
mode. We need to set up different NNMs for each different
training set. +e whole experiment includes such works as
follows.+e whole control model mentioned in the paper is
called MM-P-VSRVNN.

(1) As NARM is described, building a valid optimized
VSRVNN is a key work. It mainly computes node

contribution about 95 percent, retains the corresponding
nodes, and avoids overfitting learning. VSRVNN is con-
structed offline with updated training set by PCA, which
reduces 60 original hidden-layer nodes to ki when it works in
the ith mode. 40 groups of dimension reduction for the
testing set are listed in Table 1.

Table 1 shows us that the structure of the VSRVNN is
variable at different modes. Even at the same mode, opti-
mized result may not be the same. +e value of k is changed
from 7 to 9, and 8 is the majority. Taking one computation as
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Figure 8: Prediction output for dosing with four different algorithms.
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an example, the first eight principal components’ analysis
outcomes are shown in Table 2.

+e first eight principal components’ effects are added to
more than 95 percent, which are displayed on the VSRVNN.
Because its training set changes after one computation, the
optimized result is also varied but still meets 95 percent node
contribution. (2) For checking the validity of the VSRVNN,
we program an algorithm named MM-P-VSRVNN. And
contrasting its predicted results to actual values, the total 40
points are shown in Figures 6 and 7.

Two parameters are compared in separated figures. Real
line labeled as “•” symbol is the actual dosage, and the other
line labeled as “∘” is the predicted dosage. In this test,
predicted dosage varies around the actual value and remains
consistent with its tendency. Average predicted dosage is

reduced about 0.4165 percent in Figure 6; meanwhile, av-
erage predicted turbidity increases about 0.5 percent in
Figure 7. +e simulation result is acceptable for enterprise.
To them, it alreadymeets needs of water purification process,
reduces total coagulant dosage and saves manufacturing cost
to a certain extent. (3) A further test is to analyze the
performance of the MM-P-VSRVNN in contrast with other
three similar algorithms. Other similar algorithms are sin-
gle-modal random-vector neural network (SM-RVNN),
SM-RVNN after dimension reduction (SM-P-RVNN), and
multimodal random-vector neural network (MM-RVNN).
All predictive results are in contrast, visually, as shown in
Figures 8 and 9.

On the contrary, all the algorithms are in contrast with
their statistical parameters, separately named root mean

Table 3: Statistics result comparison among four algorithms for predictive turbidity before filtration.

Predictive turbidity MM-P-VSRVNN MM-RVNN SM-P-RVNN SM-RVNN
Mean value (NTU) 5.026066 5.0387364 5.0339242 5.0571979
RMSE 0.0546 0.0735 0.0773 0.0968
MAE 0.1918 0.2303 0.2365 0.2817
SD 0.0480 0.0653 0.0670 0.0781

Table 4: Statistics result comparison among four algorithms for predictive dosage before filtration.

Predictive dosage MM-P-VSRVNN MM-RVNN SM-P-RVNN SM-RVNN
Mean value (m3/h) 0.09853900 0.10123137 0.10128999 0.10019643
RMSE 0.0013 0.0016 0.0020 0.0063
MAE 0.0396 0.0587 0.0650 0.0645
SD 0.0251 0.0273 0.0282 0.0276
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Figure 10: RMSE for predicted dosage by different algorithms when hidden-layer nodes varied from 1 to 20.
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square error (RMSE), mean absolute error (MAE), and
standard deviation (SD). +e statistical results are computed
by different methods and shown in Tables 3 and 4.

+ese four aforementioned algorithms used the same
data set and original mode. In Figure 6, the method provided
in this paper has better result accuracy and tendency. It
proves that, after quantitative computation, MM-P-
VSRVNN can optimize the neural network mode and
classify the operating mode that led to a better prediction.

(4) For improving the generalization ability of the MM-
P-VSRVNN, NNM takes a new computation once a new
group of data is measured. +en, NNM is optimized again
because hidden-layer nodes vary. Now, for a further check,
the next experiment changes the hidden-layer node number
from 1 to 20 and computes RMSE for different algorithms.
And these results are compared with those provided by the
MM-P-VSRVNN in Figures 10 and 11.

In Figures 10 and 11, MM-P-VSRVNN provided in the
paper has lower RMSE and better generalization ability,
which can avoid the overfitting problem when the neural
network is operating.

Notation: with all the experiments, as we know, the number
of hidden-layer nodes takes a new update when a new com-
putation occurs, computation mode is optimized, and the
system provides a suitable result. By the way, this computation
for RMSE is also operated until hidden-layer nodes increased to
300 one by one, but we found the operating time is too long,
and the contrast result is indistinct. +erefore, considering the
known information, we set the maximum number as 20.

5. Conclusion

+is paper aims at coagulant dosing in water purification
process for a water plant in Changsha. After analyzing the
actual process and previous control modes, we put up a NNM
and applied a new MM-P-VSRVNN algorithm for dosage
prediction. +is NNM is optimized by the MM-P-VSRVNN
algorithm and gives an appropriate control result to perform a
new dynamic dosing. At last, we also perform a series of ex-
periments with the designed NNM and its algorithm to prove
the practicability.+e algorithm provides an improvedmethod,
and the coagulant dosing control realizes automatically.

Data Availability

All the data used to support the findings of this study are
included within the article.

Conflicts of Interest

+e authors declare no conflicts of interest.

Acknowledgments

+is study was funded by the Natural Science Foundation of
Hunan Province (Grant no. 2018JJ3891).

References
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