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Sparse arrays, which can localize multiple sources with less physical sensors, have attracted more attention since they were
proposed. However, for optimal performance of sparse arrays, it is usually assumed that the circumstances are ideal. But in
practice, the performance of sparse arrays will suffer from the model errors like mutual coupling, gain and phase error, and
sensor’s location error, which causes severe performance degradation or even failure of the direction of arrival (DOA) estimation
algorithms. In this study, we follow with interest and propose a covariance-based sparse representation method in the presence of
gain and phase errors, where a generalized nested array is employed. )e proposed strategy not only enhances the degrees of
freedom (DOFs) to deal with more sources but also obtains more accurate DOA estimations despite gain and phase errors. )e
Cramer–Rao bound (CRB) derivation is analyzed to demonstrate the robustness of the method. Finally, numerical examples
illustrate the effectiveness of the proposed method from DOA estimation.

1. Introduction

Superresolution direction finding is a key branch of signal
processing, which has received much attention in many
fields like radar systems, communication, and navigation
[1, 2]. In the last decades, the research of direction of arrival
(DOA) estimation has successively gone through three
stages: adaptive beamforming, subspace decomposition
(such as multiple signal classification (MUSIC) [3], esti-
mation of signal parameters via the rotational invariance
technique (ESPRIT) [4], etc.), and subspace fitting (such as
maximum-likelihood (ML) algorithm [5], weighted sub-
space fitting (WSF) algorithm [6], etc.). With the develop-
ment of the algorithms, issues such as aperture expansion,
optimization of hardware resource requirements, array
structure design, and resolution accuracy improvement
[7, 8] have been gradually solved, laying a solid foundation
for further broadening the application prospects.

However, the uniform linear array (ULA) is always
applied in most of the traditional DOA estimation methods
due to modeling and computation convenience. For ULAs,
most N − 1 sources can be detected with N physical sensors.

Besides, the arrangement of ULAs will make it difficult to
achieve in some scenarios and increase the system cost.
Several sparse arrays are designed in this context. Nested
array [9] and coprime array [10] are the most representative
geometries, which can resolve O(MN) sources with only
M + N − 1 physical sensors. Attracted by the effectiveness of
sparse array (e.g., enhancing degrees of freedom, reducing
mutual coupling, and eliminating angle ambiguity), a series
of DOA estimation algorithms have been developed [11–19].
A spatial smoothing method was proposed in [8], which
achieved superresolution direction finding for sparse arrays.
However, discrete virtual elements limit the ability to detect
more sources by utilizing the spatial smoothing method. In
order to improve the utilization of the discrete virtual ele-
ments, the multifrequency high-order cumulant algorithms
were proposed in [13] and virtual array interpolation
methods were introduced to build a nonuniform virtual
array by the idea of array interpolation [14, 15]. To achieve
better estimation performance, the category of sparse re-
construction algorithms, which can also be utilized to deal
with the coherent sources, was extended to sparse arrays
[16–19]. Another method of taking advantage of difference
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coarray is array geometry optimization method; the super
nested array (SNA) and generalized nested array (GNA)
were designed in [20, 21]. All the new forms of sparse arrays
aimed to construct the optimal array geometry with largest
DOFs and least mutual coupling.

However, the foregoing strategies are highly sensitive
to the accuracy of the manifold matrix. In practice, the
DOA estimation system will suffer from one or more
model uncertainties inevitably like gain and phase error,
mutual coupling, and sensor location error, which will
lead to severe performance degradation or even failure of
the direction of arrival estimations [22, 23]. Various
corresponding algorithms have been proposed to elimi-
nate the influence of gain and phase error, such as
Hadamard product method [24], eigenstructure method
[25], and ESPRIT-like method [26]. Unfortunately, most
of the calibration strategies were proposed based on the
assumption of ULA, which was invalid for sparse arrays in
underdetermined cases. Partial Toeplitz structure of the
covariance matrix and the sparse total least squares
(STLS) method were utilized to estimate the parameters
for nested array in [27]. But the prior knowledge of the
noise power was required. Tian aimed to calibrate the
error in the underdetermined case by applying a partly
calibrated nested array and a high-power calibrated
source [28]. )ough the mathematical derivation and
simulations demonstrated the effectiveness of the method,
it was difficult to find sensors with accurate calibration in
practice.

Motivated by the sparse arrays and the proposed
methods, a novel strategy for an underdetermined case is
proposed in this paper. Firstly, a GNA is applied to enhance
the DOFs which enable us to deal with more sources than
traditional sparse arrays. To achieve better DOA estimation
performance and reduce the adverse effect of gain and phase
error, we transfer the DOA estimation into a sparse re-
construction problem with nonnegativity constraint by
exploiting a covariance-based sparse representation method.
To further demonstrate the robustness of the strategy, the
Cramer–Rao bound is derived subsequently.

)e remainder of this paper is organized as follows. In
Section 2, the geometry and signal model of GNA are
constructed, respectively. Next, it is proved that the tradi-
tional eigenstructure method is invalid in the under-
determined case and a covariance-based sparse
representation method is introduced in Section 3. In Section
4, we derive the Cramer–Rao bound (CRB) for further
demonstration. Numerical results are provided to evaluate
the effectiveness of the proposed method in Section 5, and
the conclusion is drawn in Section 6.

Notations: throughout this paper, ⊗, ∘, and ⊛ represent
the Kronecker product, Khatri–Rao product, and con-
volution product, respectively. (·)T, (·)H, and (·)∗ denote
the transpose, conjugate transpose, and complex conju-
gate operations, respectively. R(·) and I(·) denote the
real part and imagery part of a complex number. diag(·),
vec(·), and E[·] represent the diagonal matrix operation,
vectorization operation, and expectation operation,
respectively.

2. Problem Formulation

2.1. Generalized Nested Array. Generalized nested array is a
flexible sparse array with more DOFs and less mutual
coupling. As shown in Figure 1, the GNA is constructed by
two concatenated ULAs, where the inner subarray is an
N1-elements ULA with interelement spacing of αd and the
outer is an N2-elements array with spacing β d. Herein, d

equals λ/2, where λ represents the wavelength of the signal.
Different from the traditional nested array, the element
spacings α and β are two arbitrary coprime integers.

Figure 1 indicates that the sensor position set as follows:

DGNA � 1, 1 + α, ..., 1 + N1α, 1 + N1α + β, ..., 1 + N1α + N2 − 1( 􏼁β􏼈 􏼉.

(1)

According to (1), it is easy to find that the GNA has two
special cases. When α � 1 and β � N1 + 1, the GNA becomes
the nested array. When α � N2 and β � N1, the GNA can be
interpreted as Coprime Array with Displaced Subarrays
(CADiS) [19].

Based on the sensor position setDGNA, we can obtain the
difference coarray of GNA by the following equation:

SGNA � S+
GNA∪S

−
GNA

S+
GNA � n1α + n2β, n1 ∈ 0, N1􏼂 􏼃, n2 ∈ 0, N2 − 1􏼂 􏼃􏼈 􏼉,

(2)

where S+
GNA and S−

GNA denote the positive and negative part
of the difference coarray, respectively. And the values in
S+
GNA and S−

GNA are symmetric to zero.
By analyzing the vectorized covariance matrix, only

when α � 1 or β � 1 can the values in difference coarray
SGNA be contiguous. )e larger α and β are, the more in-
consecutive lags exist. According to the proof in Ref. [13],
when α ∈ [1, N2] and β ∈ [1, N1 + 1], the range of contig-
uous lags in the positive part of S+

GNA is
[(α − 1)(β − 1), N1αN2β − αβ + α − 1]. In addition, if we
define [f � N1α + N2β − αβ + α − 1], the number of unique
lags in SGNA can reach 2f + 1 in the same assumption.

Consider a GNA with N � N1 + N2 sensors, the DOFs
of the array under the constraints of α ∈ [1, N2] and
β ∈ [1, N1 + 1] can be obtained by the following equation:

fmax �
N2 + 2N − 1( 􏼁/2, N is odd, N1 � N2 − 1,

N2 + 2N − 2( 􏼁/2, N is even, N1 � N2.

⎧⎨

⎩

(3)

With the optimal factors of α � N2, β ∈ [1, N1 + 1], or
α ∈ [1, N2], β � N1 + 1. In that case, the DOFs of GNA are
the same as the nested array or SNA.

)e nested array and coprime array with the same el-
ements as GNA (α � 4, β � 3) are selected for direct com-
parison. Sensors location and DOFs of the three kinds of
arrays are listed in Table 1.

Figure 2 shows the coarray location of the sparse arrays.
Compared with nested array and coprime array, both the
GNA and nested array have the same DOFs, while the
coprime array has the least DOFs.

In general, the GNA possesses the advantages of both
nested array and coprime array. )e GNA not only provides
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the larger DOFs but also reduces the mutual coupling
owning to the large element spacing. However, the large
factors lead to short contiguous lags, which makes spatial
smoothing MUSIC (SS-MUSIC) algorithm inapplicable. In
practice, the compressive sensing (CS) algorithm can be
widely utilized to estimate the DOA in this case.

2.2.ArraySignalModel. Consider a GNAwith N � N1 + N2
sensors, which receives K uncorrelated far-field narrow-
band sources from θ1, θ2, ..., θK􏼈 􏼉. )en the received signal
under ideal condition is denoted by the following equation:

x(t) � As(t) + n(t), (4)

where s(t) denotes the signal vector and
A � [a(θ1), a(θ2), ..., a(θK)]T is the manifold matrix. a(θk) �

[e− j2πd1d sin θk/λ, ..., e− j2πdNd sin θk/λ]T represents the steering
vector, where dn(n � 1, 2, ..., N) denotes the n-th sensor’s
position. n(t) is the noise vector, which is assumed to follow
the Gaussian distribution and uncorrelated with the sources.

Now consider the scenario that each sensor is affected by
gain and phase error, then (4) can be rewritten as follows:

x(t) � 􏽦As(t) + n(t) � ΦΨAs(t) + n(t), (5)

whereΦ andΨ denote the gain error matrix and phase error
matrix, respectively. Φ and Ψ are both N × N diagonal
matrices, whose diagonal entries are given by the following
equation:

[Φ]ii � ρi, [Ψ]ii � e
jψi , i � 1, 2, ..., N. (6)

)en, we obtain the covariance matrix of the received
signal based on (5)

􏽥R � E x(t)xH
(t)􏽨 􏽩� ΦΨARSA

HΨHΦH
+ σ2IN ≈

1
L

􏽘
L

l�1
x(t)xH

(t),

(7)

where RS � diag(p) � diag([σ21, σ22, ..., σ2K]T) denotes the
source covariance matrix and σ2k represents the power of the
k-th source. In addition, σ2 denotes the power of the noise
signal and L is the number of snapshots.

Define the covariance matrix S without gain and phase
error or noise, then we have the following equation:

S � ARSA
H

. (8)

Rewriting the relation in (7), it can be obtained as
follows:

􏽥R � ΦΨSΨHΦH
+ σ2IN. (9)

As we all know, gain and phase errors will lead to severe
performance degradation or even failure of traditional DOA
estimation algorithms. For ULA conditions, the covariance
matrix 􏽥R has Toeplitz structure, which makes it easy to
correct the model errors. However, the nonuniformity of
GNA destroys the Toeplitz structure and increases the
difficulty of DOA estimation.

Sparse ULA with N1 elements

dd

Sparse ULA with N2 elements

Figure 1: Geometry of generalized nested array.

Table 1: Sensor location and DOFs of NA, CPA, and GNA.

NA CPA GNA
Sensors location {1, 2, 3, 4, 5, 10, 15, 20} {0, 3, 6, 9, 4, 8, 12, 16} {1, 5, 9, 13, 17, 20, 23, 26}
DOFs 39 27 39
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Figure 2: Coarray location of the (a) nested array, (b) coprime array, and (c) GNA.
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3. DOA Estimation Strategy

Although the Toeplitz structure of the covariance matrix will
be destroyed by the nonuniformity of sparse arrays, it still
can be utilized to estimate some parameters of the gain and
phase error. Define a function zp,q � dp − dq, p, q ∈ [1, N]

to indicate the positions of the virtual elements.
It is obvious that the (p, q)-th element of S can be

defined as follows:

[S]p,q � 􏽘
K

k�1
σ2ke

j2π dp−dq( 􏼁d sin θk/λ. (10)

)en, we rewrite the covariance matrix without noise as
follows:

R � 􏽥R − σ2I. (11)

σ2 denotes the noise power, which can be obtained by es-
timating theminimum eigenvalue of 􏽥R.)e element ofR can
be defined as rp,q � [S]p,qρpρqej(ψp−ψq).

Considering the gain error, a series of equations can be
given by the following equation:

μi,t,p,q � ln
|r|i,t
|r|p,q

􏼨 􏼩 � ln
ρiρt

ρpρq

􏼠 􏼡 + ln
[S]i,te

j ψi−ψt( )
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

[S]p,qej ψp−ψq( 􏼁
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(12)

where μi,t,p,q denotes a quantity determined from R.
Similar to the ULA case [27], select the elements which

satisfy di − dt � dp − dq. )erefore, (12) can be simplified as
follows:

μi,t,p,q � ln ρi + ln ρt − ln ρp − ln ρq. (13)

In order to estimate the gain error, no less than N

equations are required; otherwise, the parameter estimation
will be underdetermined. However, by analyzing the

elements of 􏽥R, the number of equations like (13) is as follows
[29]:

􏽘
w(n)≥2,n≥0

w(n)(w(n) − 1)

2
, (14)

where w(n) � (c⊛ c− )(n) denotes weight function calcu-
lated by convolution. c(n) is a conditional function. If there
is a virtual element located at znd, the value of c(n) is 1;
otherwise it is 0 and c− (n) � c(−n). It is obvious that w(0) �

N when n � 0; thus, the number of equations provided
similar to (13) is (N(N − 1)/2). )at means the gain error
can be estimated by an overdetermined equation set.

Taking all the nonredundant relations satisfy di − dt �

dp − dq and constructing an equation set, it can be described
compactly as follows:

Bρ ln ρ1, ln ρ2, ..., ln ρN􏼂 􏼃
T

� . . . , μi,t,p,q, . . .􏽨 􏽩
T
, (15)

where Bρ is a kρ × N matrix that the 1 × N row vector
[1, 1, ..., 1]T is its lone null space spanning vector, kρ denotes
the result of (14).

However, due to the estimation error of μi,t,p,q, (15) is not
strictly correct. )e singular value decomposition (SVD)
method can be utilized to obtain the least squares solution.

ln ρ1, ln ρ2, ..., ln ρN􏼂 􏼃
T

� B
+
ρ . . . , μi,t,p,q, . . .􏽨 􏽩

T
, (16)

where B+
ρ represents the pseudoinverse of Bρ.

Equation (16) provides a minimum norm least squares
solution, and a general solution can be regarded as adding an
arbitrary scalar to the null space spanning vector. )en, the
gain error can be estimated by an arbitrary multiplicative
constant; i.e., 􏽥Φ � eεΦ, where ε is an arbitrary scalar.

Hence, the previous conclusionmeans that the gain error
will only affect the amplitude of the spectrum.

For phase error, we utilize a similar strategy. Defining

τi,t,p,q � angle r|i,t
􏼌􏼌􏼌􏼌􏼐 􏼑 − angle |r|p,q􏼐 􏼑 � angle [S]i,t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + ψi − ψt − angle [S]p,q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − ψp + ψq, (17)

where angle(r) � arctan(I(r)/R(r)) and τi,t,p,q is a quan-
tity determined from R.

If di − dt � dp − dq is satisfied, (17) can be simplified as
follows:

τi,t,p,q � ψi − ψt − ψp + ψq. (18)

Since the elements in the main diagonal are inapplicable
as they have no phase error information, the number of
meaningful equations provided by (18) is as follows [29]:

􏽘
w(n)≥2,n≥1

w(n)(w(n) − 1)

2
. (19)

Unfortunately, the large coprime factors of GNA lead to
a few repeated virtual sensors, making the number of
meaningful equations even less than the estimated param-
eters. In other words, we cannot construct an overdeter-
mined equation set like (15) to estimate the phase error in
most scenarios.

To deal with the situation, a covariance-based sparse
representation method is introduced for DOA estimation.

Based on (9) and 􏽥Φ � eεΦ, the covariance matrix after
gain error calibration can be obtained by the following
equation:
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􏽥R′ � 􏽥Φ−1 ΦΨSΨHΦH
+ σ2IN􏼐 􏼑Φ− H

� Ψ
S

e2ε
ΨH

+ σ2IN,

(20)

)en, vectorizing the covariance matrix with calibrated
gain error, we have the following:

z � vec 􏽥R′( 􏼁 � vec Ψ
S

e2ε
ΨH

+ σ2IN􏼒 􏼓 � 􏽥A∗ ∘ 􏽥A􏼐 􏼑
p

e2ε
+ σ2 1

→
,

(21)

where (􏽥A
∗∘􏽥A)� [􏽥α∗(θ1)⊗􏽥α(θ1), 􏽥α∗(θ2)⊗􏽥α(θ2), ..., 􏽥α∗(θK)⊗

􏽥α(θK)] and 1
→

� [ e→T

1 , e→T

2 , ..., e→T

N]T. e→i is a column vector
whose i-th element is 1 and the rest elements are all zeros. As
there are onlyN nonzero values in specific positions of 1

→
, an

N(N −1) × N2 selection matrix to remove the nonzero
values can be defined as follows [30]:

JT
� J1, J2, ..., JN−1􏼂 􏼃, (22)

where Jn � [e(n−1)(N+1)+2, e(n−1)(N+1)+3, ..., en(N+1)] ∈ RN2×N,

n � 1, 2, ..., N − 1. en is an N2 × 1 column vector of all zeros
except a 1 at the n-th position. )erefore, (21) can be re-
written as follows:

z � Jz � J 􏽥A∗∘􏽥A􏼐 􏼑
p

e2ε
+ σ2 1

→
􏼒 􏼓 � J 􏽥A∗∘􏽥A􏼐 􏼑

p
e2ε

. (23)

After this arithmetical operation, the noise item can be
completely eliminated.

Directions of source signals impinging on the GNA
range from (−π/2, π/2) as the assumption, then the grid
sampling over the space domain is utilized. Next, we can
construct a grid set Θ � θ1, θ2, ..., θL􏼈 􏼉, L≫N(N − 1) which
contains all the origin signal directions.

)e equivalent expression of (23) is denoted by the
following equation:

z � J 􏽥A∗(Θ) ∘ 􏽥A(Θ)􏼐 􏼑
p

e2ε
, (24)

where J(􏽥A∗(Θ) ∘ 􏽥A(Θ)) represents the overcomplete dic-
tionary. p denotes the K-sparse vector whose ℓ0-norm is K,
and its nonzero values correspond to the exact DOAs in Θ.
Based on the analysis, the DOA estimation can be trans-
formed into the recovery of p and the location detection of
nonzero values.

For the convenience of calculations, it would be better to
transform the high-computation ℓ0-norm minimization
problem into the ℓ1-norm minimization problem. )us, the
equivalent expression is represented as follows:

min
p

‖p‖1

s.t. z � J 􏽥A∗(Θ)∘􏽥A(Θ)􏼐 􏼑
p

e2ε
, [p]i ≥ 0,

(25)

where [p]i denotes the i-th elements of p.
However, as the number of snapshots is limited, the

estimated covariance matrix cannot be equal to the exact
covariance matrix, and the error exists. )e relations can be
expressed by the following:

Δz � 􏽢z − z, Δz � 􏽢z − z � JΔz. (26)

)erefore, we can transform (25) into the following
optimization problem:

min
p

‖p‖1

s.t. 􏽢z − J 􏽥A∗(Θ)∘􏽥A(Θ)􏼐 􏼑
p

e2ε

�����

�����
2

2
≤ ξ, [p]i ≥ 0,

(27)

where ξ denotes the threshold parameter on the upper
bound of Δz. By applying the Orthogonal Matching Pursuit
(OMP) algorithm or other sparse reconstruction algorithms
like L1-SVD algorithm [31], the optimal solution is obtained,
and the DOA can be estimated accurately. It should be noted
that e2ε has no influence on the locations of nonzero value in
p.

4. The Cramer–Rao Bound

)e Cramer–Rao bound provides a theoretical lower bound
on the variance of any unbiased estimation, which can be
applied for the evaluation of the optimal performance of the
estimation algorithms. However, traditional mathematical
derivations are based on the assumption of the overdeter-
mined system (the number of sensors is more than sources),
which may be invalid for underdetermined cases like a
nested array, coprime array, and GNA.

Assuming that the signal model is unconditional, we
derive the CRB for DOAs based on the Ref. [32,33], the
expression is shown as follows:

CRBθ �
1
L

MθΠ
⊥
MG

Mθ􏼐 􏼑
−1

,

Π⊥MG
� I − MG MH

GMG􏼐 􏼑
−1
MG,

Mθ � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

Nθ,

MG � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

NG,

Nθ � 􏽥Ad
′RS, NG � 􏽥Aρ′RS, j􏽥Aψ′RS􏽨 􏽩,

􏽥Ad
′ � 􏽥A∗′∘􏽥A + 􏽥A∗∘􏽥A′, 􏽥A′ �

z􏽥a θ1( 􏼁

zθ1
,
z􏽥a θ2( 􏼁

zθ2
, ...,

z􏽥a θK( 􏼁

zθK

􏼢 􏼣,

􏽥Aρ′ �
z(􏽥A∘􏽥A)

zρ1
,
z( 􏽥A∘􏽥A)

zρ2
, ...,

z(􏽥A∘􏽥A)

zρN

􏼢 􏼣,

􏽥Aψ′ �
z(􏽥A∘􏽥A)

zψ1
,
z( 􏽥A∘􏽥A)

zψ2
, ...,

z(􏽥A∘􏽥A)

zψN

􏼢 􏼣,

(28)

where Π⊥MG
represents the orthogonal projection matrix of

MG.
)e detailed derivation is presented in the Appendix.
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5. Simulation Results

In order to verify the DOA estimation performance of the
proposed strategy, several numerical simulations are pro-
vided in this section. For DOA estimation performance
comparison, the nested array and coprime array are utilized.
Meanwhile, sparse total least squares (STSL) algorithm and
CRB are provided for error calibration performance com-
parison. )roughout the experiments, we assume that the
physical sensors of GNA are 8 and the coprime factors are
α � 4 and β � 3, respectively. Further, the noise term satisfies
zero-mean Gaussian distribution.

5.1. Effect of Gain and Phase Error on DOA Estimation.
In this simulation, we study the effect of gain error and phase
error, respectively. In the first case, only gain error exists.
Similarly, only phase error affects in the second case. Assume
that the gain error matrix and phase error matrix are Φ �

diag([1, 0.95, 1.2, 0.75, 0.81, 1.36, 1.14, 0.9]) and Ψ � diag
([1, ejπ/6, e−jπ/3, ejπ/15, ejπ/4, e−jπ/8, e−jπ/6, ejπ/5]), respectively.
We choose 9 sources ranging from −40° to 40°, with a step 10°.
)e snapshot number is L � 200. Simulation results when
SNR � 0dB are given by Figure 3. In the following figures, the
dotted red line represents the real DOAs.

Compared with Figures 3(a) and 3(b), it can be found
that only phase error affects the performance of DOA es-
timation, leading to large performance degradation or even
failure, while the gain error only leads to influence on the
amplitude of the spectrum.

5.2.DOAEstimationPerformanceunderGainandPhaseError
Condition. Firstly, assume that the gain error matrix and
phase error matrix in this experiment are the same as the
matrices in Section 1. )en, we plot the CS spectrum [34] of
GNA in Figure 4. We observe that the effect of gain and
phase error can be eliminated and all the sources can be
identified by the proposed method at the same time.

For further evaluations, we discuss the effect of SNR and
snapshot numbers on DOA estimation performance.
)erefore, the root mean square error (RMSE) is introduced
for quantitative analysis. )e STSL algorithm is selected as a
comparison for DOA estimation performance simulations
under the gain and phase error. In this section, it is assumed
that two uncorrelated sources impinge on the array from
directions of 10° and 20°. )en, we provide the estimation
performance curves versus SNR and snapshot numbers by
fixing snapshot numbers or SNR, respectively.)e RMSE via
200 Monte Carlo trails is denoted by the following equation:

RMSE �

�������������������

1
200K

􏽘

200

q�1
􏽘

K

k�1

􏽢θ
q

k − θk􏼐 􏼑
2

􏽶
􏽴

, (29)

where 􏽢θ
q

k represents the estimated value of θk in the q-th trail.
Firstly, assume that SNR ranges from −10 dB to 10 dB,

while the snapshot number is 200. )e DOA estimation
performances of two strategies and CRB versus SNR under
gain and phase error condition are shown in Figure 5.
Similarly, the SNR is set to 0 dB and the snapshot number
varies from 20 to 400. )en, we obtain the DOA estimation
performance of three strategies and CRB versus snapshot
numbers under the influence of gain and phase error as
shown in Figure 6. It can be found from Figures 5 and 6 that
the DOA estimation of each strategy will be more accurate as
SNR or snapshot number increasing. However, compared
with the STSL method, the proposed method in this paper
has the lower RMSE curve and becomes closest to the CRB.

6. Conclusions

)is paper investigates into sparsity-based strategy for DOA
estimation in the case of gain and phase errors via gener-
alized nested array. With the advantage of sparsity, the
generalized nested array is utilized to enhance the degrees of
freedom and decrease the influence of mutual coupling
firstly. )en, the signal model and error model are estab-
lished, and a covariance-based sparse representation method
is provided to estimate the DOAs. Besides, the Cramer–Rao
bound is derived, and the robustness of DOA estimation is
analyzed. Although the covariance matrix no longer has the
Toeplitz structure in the case of gain and phase errors, which
makes DOA estimation become an underdetermined
problem, the proposed strategy still has excellent parameter
estimation performance. Numerical simulations verify the
advantages and effectiveness of the theoretical analysis.

Appendix

CRB for DOA

Under the assumption of unconditional signal model as-
sumption, a parameter vector can be defined as follows:

η � θ1, θ2, ..., θK, ρ1, ρ2, ..., ρN,ψ1,ψ2, ...,ψN􏼂 􏼃
T
. (A.1)

)us, the entries of the Fisher Information Matrix (FIM)
is formulated by the following equation:

FIMi,j � Ltr
z􏽥R
zηi

􏽥R− 1 z􏽥R
zηj

􏽥R− 1
􏼢 􏼣 � L

z􏽥r
zηi

􏼢 􏼣 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1 z􏽥r

zηj

,

(A.2)

where 􏽥r � vec(􏽥R), tr[·] represents the trace of a matrix, ηi is
the i-th element of the vector η, and ηj is the j-th element,
respectively.

Assume that

z􏽥r
zη

�
z􏽥r
zθ1

, ...,
z􏽥r

zθK

,
z􏽥r
zρ1

, ...,
z􏽥r

zρN

,
z􏽥r

zψ1
, ...,

z􏽥r
zψN

􏼢 􏼣 � 􏽥Ad
′RS, 􏽥Aρ′RS, j􏽥Aψ′RS􏽨 􏽩 � Nθ,NG􏼂 􏼃, (A.3)
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where
􏽥Ad
′ � 􏽥A∗′∘􏽥A + 􏽥A∗∘􏽥A′,

􏽥A′ �
z􏽥a θ1( 􏼁

zθ1
,
z􏽥a θ2( 􏼁

zθ2
, ...,

z􏽥a θK( 􏼁

zθK

􏼢 􏼣,

􏽥Aρ′ �
z(􏽥A∘􏽥A)

zρ1
,
z(􏽥A∘􏽥A)

zρ2
, ...,

z(􏽥A∘􏽥A)

zρN

􏼢 􏼣,

􏽥Aψ′ �
z(􏽥A∘􏽥A)

zψ1
,
z(􏽥A∘􏽥A)

zψ2
, ...,

z(􏽥A∘􏽥A)

zψN

􏼢 􏼣.

(A.4)

)en, (A.3) can be further transferred to the following
equation:

FIM � L
z􏽥r
zη

􏼢 􏼣 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1z􏽥r

zη
. (A.5)

Since 􏽥R is positive semidefinite, it is easy to obtain that
the FIM is positive semidefinite.

)erefore, we can obtain the following:

FIM � L
MH

θ Mθ MH
θ MG

MH
GMθ MH

GMG

⎡⎣ ⎤⎦, (A.6)

where

Mθ � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

Nθ, (A.7)

MG � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

NG. (A.8)

According to (A.8), the CRB for DOAs can be calculated
by the following:

CRBθ �
1
L

MθΠ
⊥
MG

Mθ􏼐 􏼑
−1

, (A.9)
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Figure 3: )e effect of only (a) gain error and (b) phase error on DOA estimation.
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where Π⊥MG
denotes the orthogonal projection matrix of

MG.
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