
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

782

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

Abstract: Still in its early years, containers are increasingly

being used in production environments. Containers offer a

streamlined approach, easy deployment, and secure method of

implementing infrastructure requirements also provide a

much-improved alternative to virtual machines. A load balancer is

required to distribute traffic across clusters. And now, with

multiple container environments becoming widespread, load

balancers are becoming a necessity to distribute traffic and reduce

server load. Different load balancing algorithms provide a

solution to this with varying efficiency. This paper presents a study

on the latest methods which are being implemented to perform

effective load balancing on containers. Docker Swarm and

Kubernetes are the most widely used systems for deploying and

managing a cluster of containers in an environment. The paper

further demonstrates how Docker Swarm and Kubernetes can be

used to minimize load traffic through load balancing techniques.

We have introduced load balancing and different algorithms.

Also, we have shown the implementations of load balancing

algorithms in Docker and Kubernetes and finally compared the

results. The paper finally concludes why Kubernetes is often

preferred over Docker Swarm for load balancing.

Keywords: Docker, Docker Swarm, Kubernetes, Ingress, Load

balancing, NodePort, LoadBalancer, Nginx.

I. INTRODUCTION

Containers have changed the way we develop, distribute,

and run the software. Developers can freely develop software,

containerize them and distribute them as they wish – be it a

co-worker, an entire department, or some random person on a

network. Before running a container, the user will know

exactly how it will proceed- the process of running a container

is simple, formulaic, immutable and repeatable. Developers

can spend more time developing the code rather than waste

time setting up the environment. Earlier, the process of

application deployment was manual, time-consuming and

utilized a lot of company resources. With the emergence of

containerization tools like Docker and Kubernetes, there has

been a significant improvement in the deployment,

Revised Manuscript Received on June 22, 2020.

* Correspondence Author

Prajval Mohan*, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.

Email: prajval.mohan23@gmail.com

Tejas Jambhale, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.

Email: tejas.jambhale98@gmail.com

Lakshya Sharma, School of Computer Science and Engineering Vellore

Institute of Technology, Vellore, Tamil Nadu, India.

Email: lakshya99sh@gmail.com

Simran Koul, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.

Email: simran.koul@yahoo.com

Simriti Koul, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.

Email: simriti.koul@yahoo.com

management and scaling of the software applications. The

entire process has now become more efficient, faster and

systematized. Docker is an open-source tool developed to

make the process of creation, deployment and running of

applications in different platforms much more accessible.

Docker uses standard containers to package an application

along with all its dependencies and modules. These containers

are gaining a massive stronghold in the market as it is

simplifying and improving the efficiency of the entire

development process. More often than not, micro-services

and cloud web services require us to run multiple containers

across numerous machines, but Docker containers do not

provide a scalable solution. Kubernetes, which is developed

and maintained by Google, is the main compartment

coordination motor in the area of containerization. It makes

use of pictures made by Docker. Compared with other virtual

machines, Kubernetes provides more accessible, more

efficient and faster to convey administrations and

applications. We have to start the containers at the

appropriate time, find out how the containers communicate

with each other and store them appropriately. Kubernetes

solves this problem efficiently. At the first look, Docker and

Kubernetes may seem like similar technologies aiming to

containerize applications, but on closer inspection, it becomes

pellucid that both these tools function at different layers in an

operating system stack and that they can be used together as

well. In this growing era of cloud computing, modern cloud

architectures often demand a specific understanding of

Docker and Kubernetes applications. Some of the main

reasons why Kubernetes is widely used rather than the Docker

cluster are scalability, portability and self-healing. A

website may be accessed by more than a thousand users at a

time. Managing this load becomes an arduous task and puts

immense pressure on the host server. This sometimes also

results in a system crash. Load balancing is a process used in

cloud computing to manage the traffic load by distributing

resources and workload units among different servers, hard

drives, etc., which results in more utilization and improved

system response time. Containers are changing the way we

develop and ship code. They have become an integral part of

the development process. With the increasingly widespread

use of these containers, multiple container environments have

become common. This leads to significant constraints on

servers. Therefore, load balancing these containers can help

improve not only the utilization of server resources but also

enhance the efficiency of the entire development process.

The main components of a Kubernetes cluster include

Pods, Flat Networking Space, Labels, Replication Controllers

and Services.

Load Balancing using Docker and Kubernetes: A

Comparative Study
Prajval Mohan, Tejas Jambhale, Lakshya Sharma, Simran Koul, Simriti Koul

mailto:prajval.mohan23@gmail.com
mailto:tejas.jambhale98@gmail.com
mailto:lakshya99sh@gmail.com
mailto:simran.koul@yahoo.com
mailto:simriti.koul@yahoo.com

Load Balancing using Docker and Kubernetes: A Comparative Study

783

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

Load Balancing in Docker

The extended Docker API provides effective methods to

create and scale administrations, health checks, load

balancing, traffic distribution, etc. Administrations are a

collection of holders which are quite similar to Docker

compose, however, with a lot more highlights.

Docker Swarm Load Balancing Topology

Docker Swarm is a Layer 4 TCP load balancer. For this

paper, we have created three Swarm hubs, which include two

specialist hubs and one ace hub. The swarm directions are

being run in the ace hub. The Swarm takes care of load

adjusting and distribution, scaling and DNS administration

booking and revelation.

The Docker Swarm LB executes on all the hubs and can

process equalization requests over either of the holder/hosts

in the hub. In the absence of NGINX or NGINX Plus, the

Docker Swarm Lb. takes care of the incoming customer

demands in the swarm organization.

Advanced Load Balancing Using NGINX Plus

A scope of cutting edge includes in NGINX Plus make it a

perfect load balancer before ranches of upstream servers:

 Load adjusting and session determination – Better

burden adjusting crosswise over specialist procedures

and session industriousness techniques to distinguish

and respect application sessions

 HTTP wellbeing checking and server moderate

beginning – Asynchronous' engineered exchanges to

test the right activity of each upstream server, and

agile 'moderate beginning' reintroduction of servers

when they recuperate

 Live movement observing – Immediate report of action

and execution

 Dynamically designed upstream server gatherings –

Tool to encourage some regular upstream

administration undertakings, for example, the

protected and brief evacuation of a server

II. RELATED WORK

Docker and Kubernetes are open-source tools developed to

make the process of creation, deployment and running of

applications in different platforms much easier. They are

increasingly being utilized for microservices and cloud-based

services. They find their application in almost all the domains

of information technology. One of the major purposes of

using docker swarm and Kubernetes is utilizing their load

balancing capabilities. Most of the research work in this

domain has been focused on exploring and analyzing various

scheduling strategies for container management and

improving docker security. Some papers also talk about the

different load balancing techniques and how they can be

utilized for cloud services. Many recent research papers

introduce improved methods for dynamic load balancing in

cloud platforms. Most of the industries today are unaware of

all the different load balancing functionalities provided by

docker swarm and Kubernetes and the most efficient use cases

for these different techniques. Our research paper provides a

thorough analysis of different dynamic load balancing

techniques afforded by Docker and Kubernetes. We also

discuss the ideal scenarios for using each of these techniques

and compare them with other methods

 In-State machine replication in containers managed by

Kubernetes [1], they have proposed the integration of

coordination services Kubernetes (k8s), seeking to control the

containers' size and to allow automatic state replication. For

this purpose, they have presented a new protocol named

DORADO (Dering Over Shared Memory) for the integration

of coordination services in Kubernetes and to perform state

machine replication in the containers. In the first three

sections, they have explained the concepts about containers

and Kubernetes, coordination and state replication protocol in

Kubernetes. The fourth section of this research paper talks

about the evaluation of DORADO on a number of preliminary

tests. They have mentioned in detail about the execution

environment and the experiments that they conducted to

evaluate their protocol. Finally, they conclude the research

paper by mentioning the challenges and future scope of their

protocol. In a decentralized system for load balancing of

containerized microservices in the Cloud [2], they have

proposed a decentralized orchestration system for load

balancing of containerized microservices and web services.

They explained the internal working of virtualization

containers and analyzed it, mentioning the shortcomings and

limitations of containers for load balancing of microservices.

They explain how a decentralized system for this purpose can

yield increased throughputs, lower response time and better

scalability of the services. Further, they introduce their

swarm-like algorithm for container migration. This research

paper also includes some preliminary experimental results of

their proposed algorithm for decentralized systems. Finally,

they conclude the paper with a brief summary and remarks.

 Load Balancing and its Algorithms in Cloud Computing:

A Survey [3] discusses the concept of load balancing and its

ever-increasing importance in this era of cloud computing.

They have prepared a literature survey on the different load

balancing techniques available considering the following

measurement parameters: fairness, throughput, fault

tolerance, overhead, performance, and response time and

resource utilization. They have analyzed two different

categories of load balancing techniques (1) Static algorithms,

which include Load Balancing Min-Min Algorithm, Load

Balancing Min-Max Algorithm and Round Robin Load

Balancing Algorithm. (2) Dynamic algorithms, which include

Throttled Load Balancing Algorithm, ESCE (Equally Spread

Current Execution) Load Balancing Algorithm, Ant Colony

Load Balancing Algorithm, Biased Random Sampling Load

Balancing Algorithm, Modified Throttled Load Balancing

Algorithm and Honeybee Foraging Behavior Load Balancing

Algorithm. Finally, they conclude the paper with a brief

summary and remarks. Using Docker Containers to

Improve Reproducibility in Software and Web Engineering

Research [4] discusses the importance and applications of

Docker containers in this age of virtualization and how they

can be utilized to aid the reproducibility of research artifacts

in software and web engineering.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

784

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

This research paper also throws some light on the

challenges in the current web engineering researches and how

the Docker containers can provide a promising solution to the

same. They have provided a comprehensive tutorial on

Docker containers, which also includes a discussion on the

advantages, limitations and challenges of the containers. The

tutorial also covers the Docker container basics, which walk

through the basic commands, running Docker images,

building custom images, deployment and production of web

apps. They conclude the paper with a brief summary and

remarks. In A New Docker Swarm Scheduling Strategy [5],

they have presented a new economical scheduling strategy

implementation for Docker swarm. Their strategy's novelty

lies in the use of user's SLA classes (Long service, Short

service and microservice) to schedule the containers and the

dynamic allocation of CPU cores to execute the selected

container. This model is loosely based on the observation that

hosting solutions do not allow manufacturers or cloud

providers to offer to their customers a fair or accurate invoice.

They have explained their scheduling algorithm in great detail

along with the code and compared it with the existing

scheduling strategy in Docker swarm. Finally, they have

included the results of the test conducted on their strategy by

emulation and demonstrated the scope of their approach for

further development. A Scheduling Strategy on Load

Balancing of Virtual Machine Resources in Cloud Computing

Environment [6] introduces a new scheduling strategy on load

balancing of VM resources based on a genetic algorithm. This

strategy computes beforehand the influence it will have on the

system after the deployment of the needed VM resources and

then selects the least effective solution, through which it

achieves the best load balancing and reduces or avoids

dynamic migration [6]. In the end, an analysis of the method is

made and an experiment and summary are also conducted.

 Research on Kubernetes' Resource Scheduling Scheme [7]

presented a better scheduling algorithm than the original

algorithm used in Kubernetes for resource scheduling. The

proposed algorithm is a combination of an improved ant

colony algorithm (ACA) and an adaptive particle swarm

optimization algorithm (PSO). In the later sections of the

paper, they have demonstrated each of the algorithms

individually in great detail. Further, they presented their

improved versions of ACA and PSO, followed by the

combination of these algorithms. In the final section of the

research paper, they have included the experimental results,

which show that the proposed algorithm is suggestively better

than the original Kube-scheduler model, which can

effectively reduce the resource consumption cost and reduce

the maximum load of the node. Finally, they have mentioned

about the future scope of improvements in their algorithm to

obtain even better use effect and lower usage cost. The need

for virtualization has increased remarkably over the last few

years. Container-based virtualization, like Docker, is one of

the leading products used in this field. In the Analysis of

Docker security [8], they have analyzed the security features

of Docker containers. They have focused on two areas: (1) the

internal security of Docker and (2) how does Docker works

with the security features of the Linux kernel, such as

SELinux and AppArmor, in order to secure the host system.

Section 2 of this paper gives an introduction about the two

types of main types of virtualization technology solutions in

the market, i.e., Container-based virtualization and

hypervisor-based virtualization. Section 3 discusses Docker

and its underlying technologies. In section 4, they have

presented their analysis of Docker security, and then finally,

in Section 5, they discuss the security level of Docker and

what could be done to increase its level of security. The paper

winds up with a summary and brief remarks in Section 6.

 Genomic pipelines include various pieces of third-party

software and are prone to frequent changes and updates,

which lead to a number of deployment and reproducibility

issues. Docker containers are one of the most promising

solutions for many of these problems as they allow the

packaging of pipelines in a self-contained manner. But this

might compromise with the performance of these pipelines.

The impact of Docker containers on the performance of

genomic pipelines [9], they have analyzed the effect of

Docker containers on the genomic pipelines. In order to

measure the impact of containers on the execution

performance of bioinformatics tools, they have benchmarked

three different genomic pipelines. The results show that

Docker containerization has a negligible impact on the

execution performance of common genomic pipelines, where

tasks are generally very time-consuming. The paper winds up

with a summary and brief remarks. In Slacker: Fast

distribution with lazy Docker containers [10], they have

introduced a new container benchmark, HelloBench, to

measure the startup times of 57 different containerized

applications. They have utilized HelloBench to analyses

workloads in detail, studying the block I/O patterns produced

during startup and the compressibility of container images.

Their study shows that pulling packages accounts for 76% of

the container start time, but only 6.4% of that data is read.

They have used this and other results to design Slacker, a new

Docker storage driver optimized for fast container startup.

Slacker is based on centralized storage that is shared between

all Docker workers and registries. In the later sections of the

paper, they have demonstrated various benchmark tests used

to evaluate Slacker's performance and also included the

results of these tests, which revealed that Slacker speeds up

the median container development cycle by 20 times and

deployment cycle by five times. They have ended the paper

with a summary and acknowledgments. In Applying

computational intelligence for enhancing the dependability of

multi-cloud systems using Docker swarm [11], they have

introduced a Computer Intelligence based solution for

enhancing the dependability of a multi-cloud system using

Docker swarm. At the present Docker swarm makes use of

RAFT consensus algorithm which has few major design

problems. The proposed method in this paper, which is based

on a fuzzy interference system, provides a promising solution

to this. Section 2 of this paper discusses Docker Containers,

Docker Swarm, Docker Hub, fuzzy logic, and coding in R

software. Section 3 explains the architecture and theoretical

background of a multi-cloud system using Docker Swarm.

Section 4 of this paper includes a simulation of a multi-cloud

system using Docker Swarm.

Load Balancing using Docker and Kubernetes: A Comparative Study

785

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

Section 5 presents an experimental evaluation of

dependability. Section 6 talks about the proposed

Computational Intelligence based strategy for improving the

dependability of a multi-cloud system using Docker Swarm.

Lastly, the paper winds up with a brief summary and the future

scope of improvement.

 MPI is a widely used technology used in the field of the

high-performance computing environment. However, setting

up an MPI cluster can be challenging and time-consuming.

Distributed MPI cluster with Docker swarm mode [12]

provides a solution for this issue by using modern

containerization technology like Docker and Docker Swarm

to automate the MPI cluster setup and deployment. In Section

2 they have discussed the background technologies used in the

paper. Section 3 involves the project overview that includes

software specifications. In Section 4 and 5, they have

discussed the reason for system design and showed how to use

the proposed solution to develop the MPI program and to

deploy a fully connected MPI cluster as Docker containers

operating in Docker Swarm mode that runs on multiple

machines. Lastly, the paper winds up with a brief summary

and the future scope of improvement.

 In the Evaluation of Docker as an edge computing

platform [13], they have assessed Docker as a platform for

Edge Computing. They evaluated Docker based on four

parameters: deployment and termination, resource & service

management, fault tolerance, and caching. Based on the

results of their evaluation and experiment, it showed that

Docker provides rapid and efficient deployment, low

overhead and good performance, which makes it one of the

best technologies for edge computing platform.

 Load Balancing in cloud computing [14] introduces the

vast field of cloud computing and given a brief introduction

on the load balancing implementation in cloud platforms.

They discuss the concept of load balancing, its needs and

goals, types and comparison between traditional computing

environment and cloud computing environment. A list of

policies for implementation is given to help in the analysis

process. They list out the advantages and disadvantages of

various algorithms and give metrics for them. They have

concluded by mentioning the current status of load balancing

in cloud computing and future prospects. THE efficient

VM load balancing algorithm for a cloud computing

environment [15] introduces an efficient mechanism to

implement load balancing in cloud environments. They

concentrate on cloud computing as Iaas. They talk about how

load balancing is important to utilize full resources of parallel

and distributed systems. The first modeling of VM allocation

is done to provide and configure hardware resources. They

call it VM policy allocation and VM scheduling. Here they

use CloudSim to provision this. They go on mentioning

different algorithms and then introduce their own algorithms

Weighted Active Monitoring Load Balancer. They have used

this novel algorithm to get results and compared them with

traditional algorithms. The VM assigns a varying amount of

the available processing power to the individual application

services. They have optimized different parameters and

showed why this new method outperforms others.

 In the Dynamic load balancing strategy for grid

computing [16], they have introduced a load balancing

technique specifically for grid computing. They mention how

traditional algorithms, though, are widely used and efficient

enough. They are not suitable for grid computing

environments as they must address main new issues, namely:

heterogeneity, scalability and adaptability. They propose a

layered algorithm that achieves dynamic load balancing in

grid computing, which is totally independent of the

architecture of the grid. They compare static and dynamic

algorithms and show how suitable dynamic algorithms is

suitable for the current scenario. The proposed algorithms

follow a tree-based balancing model specific for grid

computing. The generic model is a non-cyclic connected

graph with four levels. They list out three policies for the new

proposed algorithm, and the results of the new algorithms are

measured. They conclude by saying that the proposed

algorithms perform well enough for the application of grid

computing. But this new model raises new challenges for

future researchers and admits that though results are good for

particular environments, it needs testing in different grid

environments. In Data storage and load balancing in cloud

computing using container clustering [17], they talk about the

importance of containers in real-world applications and how

their performance can be improved using load balancing

techniques. They aim to compare Docker swarm and

Kubernetes load balancing techniques and show how

Kubernetes can be used to overcome Docker limitations.

They look to explain Kubernetes and how it can be

implemented for load balancing. They explain theoretically

without giving practical proof of various Kubernetes

techniques and compare results. They write on how

Kubernetes has the capability of improving load balancing

over Docker swarm. In A dynamic load balancing strategy

for cloud computing platforms based on exponential

smoothing forecast [18], they write about the importance of

why load balancing is essential. They say as cloud computing

increases, the need for load balancing techniques will

increase. They introduce a method to calculate the current

load. They propose an exponential smoothing forecast

method, which is a type of dynamic balancing method. They

choose a physical server for deployment for Paas and server

clusters for Iaas. They use graphical analysis to show how

their algorithm performs over time. Exponential Smoothing

Forecast-Based on Weighted Least-Connection (ESBWLC)

optimizes the number of connections to actual load service

capability and shows real-life applications. In the

improvement of container scheduling for Docker using ant

colony optimization [19], they propose a method to improve

Docker performability by introducing a new algorithm called

ant colony optimization. They look to bring a new algorithm

to the Docker swarm kit scheduler to improve performance.

The main contribution is an ACO-based algorithm that

distributes application containers over Docker hosts to offer

better balance in resource usages and leads to the performance

improvements of applications as compared to the current

greedy scheduler.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

786

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

They say that their proposed algorithms perform better than

the current greedy approach by 15%. They have initially

discussed the limitations of current schedulers and then shown

how their algorithm overcomes them. They explained the

architecture behind the proposed algorithm and proposed a

formula to compute resource utilization at each node. They

show how their algorithm performs better with an

improvement of nearly 15%.

 In research and implementation of Docker performance

service in distributed platform [20], they write about the

current status of Docker. They write about how Docker

cluster environment can be improved. They mention Docker

module design and architecture behind it. They conduct

experimental tests for cluster building and cluster

performance monitoring. They create a log file to maintain

their results and make different performance tests. They look

for improvement in Docker deployment.

 In An introduction to Docker and analysis of its

performance [21], they talk about the impact Docker has had

on the market. They review the technology and analyses its

performance. They analyze Docker client and servers, images

and registries. They undertake a comprehensive comparison

of Docker and KVM and explain why Docker is the future.

They then use different performance parameters for reviewing

like speed, portability, scalability, rapid delivery, density.

They talk about their disadvantages and their competitor.

They compare boot time, CPU calculation, time to compute 1

and 1000 SQL queries. Finally, they compare with VM and

mention how Docker is the future.

 In Resilience enhancement of container-based cloud

load balancing service [22], they talk about web traffic is

unpredictable and sometimes lead to high load on servers.

Load balancers play an important role in reducing this and

mitigating the effect of high web traffic. They chose Nginx to

show the effect load balancers have and look to make servers

and containers services more resilient to handle server load.

NGINX plus allows the user to configure dynamic

weight-based on certain metrics. They propose a flexible,

pluggable, cloud-agnostic, and metric-agnostic dynamic

algorithm for any cloud load balancer services. They model

the resources in a server as a multidimensional vector, based

on which they convert the relative resource availability of all

backend servers to the weights assigned to them dynamically.

They use an agent-based modeling service as its architecture

that can collect various types of metric data of the backend

servers. With CPU load-based load balancer policy, the

average RTT is 0.0072 seconds. Without any policy, the

average RTT is 0.0658 seconds. They conclude by saying

their algorithm can easily be integrated with Docker,

Kubernetes and AWS.

 In the Value-Based Allocation of Docker Containers

[23], the main objective was to figure out the main objective

of docker containers. A rapid increase in the number of public

cloud vendors has led to the addition of containers as a

Service (CaaS) to their portfolio. This is the reason, the

popularity of Docker, a software that allows Linux containers

to run independently on the host of an isolated environment.

Depending on the software, the orchestration and allocation

approaches must vary. The key objective of this paper was to

see how this execution varies with time. Here, two dynamic

allocation algorithms were deployed and compared with the

default docker algorithm. The efficiencies of these algorithms

are based on the weight of the workload and scales with the

growing number of nodes in the Cloud.

 According to a Portable Load Balancer for Kubernetes

Cluster [24], Linux containers have gained popularity due to

their lightweight and portable nature. Nowadays, many web

services are being deployed as clusters of containers. Here, in

this paper, the authors have concentrated on Kubernetes

Clusters. But Kubernetes relies on load balancing supplied by

cloud providers. The authors proposed a portable load

balancer that was usable in any environment, and hence

facilitated web services migration. This was implemented

using the Linux kernel's Internet Protocol Virtual Server

(IPVS). The product resulted in an improved portable web

service without compromising performance.

 Distributed computing gives clients close to moment

access to apparently boundless assets, and gives specialist

organizations the chance to send complex data innovation

framework, as an administration, to their clients. Suppliers'

profit by economies of scale and multiplexing increases

managed by sharing of assets through virtualization of the

basic physical foundation. In any case, the scale and

exceptionally dynamic nature of cloud stages force huge new

difficulties to cloud specialist co-ops. Specifically,

acknowledging refined cloud administrations requires a cloud

control structure that can coordinate cloud asset provisioning,

design, use and decommissioning over an appropriated set of

physical assets. In Cloud Resource Orchestration: A

Data-Centric Approach [25], they advocate an

information-driven way to deal with the cloud organization.

Following this methodology, cloud assets are demonstrated as

organized information that can be questioned by an

explanatory language and refreshed with well-characterized

value-based semantics. They look at the possibility,

advantages and difficulties of the methodology, furthermore,

present our plan and model execution of the

Information-Driven Management Framework (DMF) as an

answer, with information models, question dialects and

semantics that are explicitly intended for cloud asset

arrangement. In Cloud Computing Networking: Challenges

and Opportunities for Innovations [26], distributed

computing appears the vision of utility figuring. Inhabitants

can profit by on-request provisioning of processing,

stockpiling, and organizing assets as indicated by

compensation for each utilization plan of action. Inhabitants

have just constrained permeability and power over system

assets. The proprietors of distributed computing offices are

likewise confronting difficulties in different parts of giving

what's more, productively overseeing IaaS offices. In this

work, they present the systems administration issues in IaaS.

What's more, league difficulties that are as of now tended to

with existing innovations. They moreover present creative

programming characterized organizing proposition, which is

connected to a portion of the challenges and could be utilized

in future organizations as productive arrangements.

Load Balancing using Docker and Kubernetes: A Comparative Study

787

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

 Distributed cloud computing has conveyed uncommon

processability to NASA missions at moderate rates. Missions

like the Mars Investigation Rovers (MER) and Mars Science

Lab (MSL) are getting a charge out of the versatility that

empowers them to use hundreds, if not thousands, or

machines for brief spans without making any equipment

obtainments. In Polyphony: A Workflow Orchestration

Framework for Cloud Computing [27], they depict

Polyphony, a flexible, adaptable, and measured structure that

proficiently uses an enormous arrangement of processing

assets to perform parallel calculations. Polyphony can utilize

assets on the Cloud, overabundance limit on nearby machines,

just as extra assets on the supercomputing focus, and it

empowers these assets to work in show to achieve a shared

objective. Polyphony is flexible to hub disappointments,

regardless of whether they happen in an exchange. They will

close with an assessment of a generation prepared application

manufactured over Polyphony to perform picture handling

activities of pictures from around the nearby planetary group,

including Mars, Saturn, and Titan. SDN orchestration

architectures and their integration with Cloud Computing

application [28] explain that developing cloud-based

applications, running in geologically disseminated Data

Centers (DCs), produces new unique traffic designs that

guarantee for an increasingly effective administration of the

traffic streams. Topographically appropriated DCs

interconnection requires programmed and progressively

unique provisioning and cancellation of end to end (E2E)

network administrations, through heterogeneous system

areas. Each system space may utilize various information

transport innovation yet, in addition, an alternate control/the

board framework. The quick advancement of Software

Defined Networking (SDN) and the interworking with current

control plane innovations, for example, Generalized

Multi-convention Label Switching (GMPLS), request

coordination over the heterogeneous control examples to give

consistent E2E network administrations to outer applications

 In an in-depth analysis and study of Load balancing

techniques in the cloud computing environment [29],

distributed cloud computing worldview, load adjusting is one

of the difficulties, With Tremendous increment in the clients

and their request of various administrations on the distributed

computing stage, productive or proficient use of assets in the

cloud condition turned into a basic concern. Burden adjusting

is assuming a crucial job in keeping up the beat of Cloud

registering. The exhibition measurements of burden adjusting

calculations in the Cloud are reaction time and holding

uptime. In this paper, they fundamentally center around two

burden adjusting calculations in cloud, Min-Min and

Max-Min algorithm.

 In Dynamic Balance Strategy of High Concurrent Web

Cluster Based on Docker Container [30], they propose

improvements to the existing Round-Robin and Weighted

Round-Robin algorithms. They look to make load balancing a

dynamic technique depending on the traffic. They first

compare Docker and Kubernetes architecture and then

explain the drawbacks of the existing NIGEX strategy of load

balancing. It does not consider the dynamic change of server

performance during t system running processes and the

number of backend servers can't be adjusted according to the

requested amount. [31] The strategy defines performance

quotas of the quantized Pod service and the weight of relative

performance quotas. They then calculate real-time

performance weight ratios of the cluster by the weight sum

algorithm.

III. DESIGN AND IMPLEMENTATION OF LOAD

BALANCING

A. Load Balancing using Docker

1. Architecture and Design

Figure 1. Load balancing of the client and

service-to-service requests in a Swarm cluster without

NGINX or NGINX Plus

Figure 2. The Docker Swarm load balancer forwards

client requests to NGINX Plus for load balancing among

service instances

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

788

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

Nginx

Nginx, a web server used as a reverse proxy, HTTP cache

and load balancer. It is built to high concurrency and low

memory using an asynchronous approach in which requests

executed by single thread, rather than creation of a new

process for each web request. With Nginx, multiple worker

processes are controlled by one master process. The master

maintains worker processes, while workers do the actual

processing of the server. Nginx is asynchronous, meaning

each request received can be executed by the worker

concurrently without blocking all other requests. Two load

balancers are Open source NGINX and NGINX Plus that

provide application critical features that are missing from the

native Swarm load balancer. (Figure. 1. and Figure. 2.)

2. Experimental Setup
The configuration file for load balancing using Nginx is

as follows:
http {
 upstream myapp {
 server srv1.sample.com;
 server srv2.sample.com;
 server srv3.sample.com;
 }
 server {
 listen 80;
 location / {
 proxy_pass http://myapp1;
 }
 }
}
We created 3 instances of an application running on

server1- server 3. The default load balancing method used
here is round-robin. All requests are provided as proxy to
the server pool myapp1, and Nginx enforces HTTP load
balancing to decimates the requests.

Reverse proxy implementation in Nginx consists of
load balancing for HTTP, HTTPS, FastCGI, USWGI, SCGI
and GRPC.

Least connected load balancing
A least-connected load balancing algorithm is used

when some of the requests take too much time to
complete. In such situations, the least connected ensures
that the load on the application is controlled more fairly.

With the least-connected load balancing, Nginx will
avoid overloading an already occupied application server
with additional requests. Instead, it will distribute the new
requests to the server, which is less busy.

To activate Least-connected load balancing in Nginx
we have used least_conn directive as part of the server
group configuration:

 upstream myapp {
 least_conn;
 server srv1.sample.com;
 server srv2.sample.com;
 server srv3.sample.com;
 }
Session persistence
In round-robin or least-connected load balancing, all

clients' request is distributed to a different server. There is
no assurance that the same client will be directed to the
same server.

If a client needs to be tied to the same server, which

means that if we have to make a client's session persistent
in terms of always selecting the same server, we use the
IP-hash load balancing mechanism.

In the IP-hash algorithm, the client's IP address is used
as a hashing key to deciding which server in a server pool
should be selected for the client's requests. This algorithm
makes sure that the requests from the same client will
always be focused on an identical server except when this
server is inaccessible.

In the configuration file for IP-hash load balancing, we
add the IP-hash directive to the server group
configuration:

upstream myapp {
 ip_hash;
 server srv1.sample.com;
 server srv2.sample.com;
 server srv3.sample.com;
}
Weighted load balancing
We have another possibility to influence Nginx load

balancing algorithms even further by using server
weights. In the previous two methods for load balancing,
we have not configured the server weights. This means
that for a specific load balancing system, all specified
servers are treated as equally eligible. When the
server-weight parameter is defined for a specific server,
the weight is considered as part of the load-balancing
decision.

 upstream myapp {
 server srv1.sample.com weight=3;
 server srv2.sample.com;
 server srv3.sample.com;
 }
With this conformation, every five new requests will be

distributed across the application instances in the
following manner: Three requests will be directed to
server1, one request will go to server2, and the other
request will be directed to server 3.

In the recently updated versions of Nginx, it is also
possible to use weights with the least-connected and
IP-hash load balancing.

Health checks
In Nginx, the implementation of a reverse proxy

algorithm involves in-band health checks of the server.
Nginx will flag a server as being 'failed' if the response
that it received from that particular server fails with an
error.

The max_fails command sets the quantity of continuous

failed attempts to interact with the server that ought to occur

during fail_timeout. max_fails is set to 1 as a default value. At

the point when it is set to 0, health checks are deactivated for

this server. The fail_timeout parameter likewise characterizes

to what extent the server will be set apart as failed. After

fail_timeout interim after the server failure, Nginx will begin

to effortlessly test the server with the live customer's

solicitations. In the event that the tests have been fruitful, the

server is set apart as a live one.

Load Balancing using Docker and Kubernetes: A Comparative Study

789

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

3. Implementation

Steps to create a Simple Load Balancer using Nginx
1) Creating Our Node.js Application
First, we make a basic Node.js application, which will

fill in as a static HTML document. After making this
node.js document, we containerize it and run it twice.
Toward the end, we will arrange a dockerized NGINX
case to send requests to the two instances of our
application.

After this, we will have the option to arrive at
http://loacalhost:8080 on our machine, which will get the
outcomes from some occurrence. It will use the
round-robin approach to choose which instance will
recognize for every new request.

To make this node.js application, we initially make a
directory for this application, which incorporates an
index.js document that will react to HTTP demands.

2) Dockerizing Our Node.js Application
We will first make a file called 'Dockerfile' in our main

directory so as to dockerize our Node.js application.
The content of Dockerfile looks as follows:
 FROM node
 RUN mkdir -p /user/scr/app1
 COPY index.js /user/scr/app1
 EXPOSE 8080
 CMD [“node”, “/user/scr/app1/index”]

 After that, we have to make an image, from this Dockerfile,

which should be possible through the command given below:

 Docker build -t load-balanced-app1

Then we run both instances of the application with the
following instructions:

 Docker run -e “MESSAGE=Instance one” -p
8081:8080 -d load-balanced-app

 Docker run -e “MESSAGE=Instance two” -p
8081:8080 -d load-balanced-app

Subsequent to running the two commands, we will
have the option to open the two instances on the browser
by going to http://localhost:8081 and
http://localhost:8082. The main URL will show a message
saying, "First case," the subsequent URL will show a
message saying, "The second example."

3) Load Balancing using a Dockerized NGINX
Instance

The two instances of our application running on
various Docker containers and on different ports on our
host machine, we configure an instance of NGINX to load
balance demands between them. First, we will begin by
making another directory called Nginx-docker.

In this directory, we have created a configuration file
called nginx.conf with the following code:

 Upstream my-app1{
 server 172,17.0.1;8081 wieght=1;
 server 172.17.0.1:8082 weigth=2;
 }
 Server{
 Location/ {
 Proxy_pass http://my-app1 }
 }
This will be utilized to configure NGINX. On it we

create an upstream collection of servers containing the
two URLs that react for the instances of our application.

By not characterizing a specific algorithm to load balance
requests, we are utilizing round robin approach, which is
the default on NGINX.

From that point onward, we configure a server
property that allows NGINX to pass HTTP solicitations to
http://my-application, which is dealt with by the
upstream created previously.

After this, we will make the Dockerfile that will be
utilized to dockerize NGINX with this setup. This
document will contain the accompanying code:

 FROM nginx
 RUN rm/etc/nginx/conf.d/default.conf
 COPY nginx.conf/etc/nginx/conf.d/default.conf
After successfully creating both the files, we will now

build and then run NGINX container on Docker. To do
that we run the following command:

 docker build –t load-balance-nginx
 docker run –p 8080:80 –d load balance-nginx
After the above configurations, we can simply open our

web browser and access http://localhost:8080. In the case of

everything went well, we will see a website page with one of

the two messages: 'First instance' or 'Second instance.' In the

event that we hit reload on our internet browser a couple of

times, we will have understood that every now and then, the

message showed switches between 'First instance' and

'Second instance.' Here the round-robin algorithm is being

used in real-time.

B. Load Balancing using Kubernetes

1. Architecture and Design

Figure 3. Flow chart of load balancing implementations

using Kubernetes

Kubernetes permits two kinds of load balancing, i.e.,
Internal and External. Aside from these two, we have
another technique, Ingress; it sits before various
administrations and serves as a router into your cluster.
(Figure. 3.)

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

790

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

Internal – otherwise known as "service" is load
balancing crosswise over compartments of a similar kind
utilizing a label. These administrations, by and large,
reveal an internal cluster IP and port(s) that can be
referenced inside as an environment variable to each unit.
A service can load offset between these holders with a
solitary endpoint. It takes into account container failures
and even node failures inside the cluster while preserving
the availability of the application.

External – Services can likewise go about as outer load
balancers whenever wanted that is through a NodePort or
LoadBalancer or Ingress type.

NodePort
NodePort opens a significant level port remotely on

each node in the cluster. Naturally, somewhere close to
30000-32767. When scaling this up to at least 100 hubs, it
turns out to be a little faulty. (Figure 4.)

There are numerous drawbacks to this strategy:
1. Has just one service for each port.
2. Only 30000–32767 can be utilized.
3. If your Node/VM IP addresses changes, appropriate

changes will have to be made.

Figure 4. Traffic Control of NodePort

 LoadBalancer
 LoadBalancer helps by creating an external load
balancer for you if your running Kubernetes in GCE,
AWS, or another supported cloud provider. The pods get
exposed to a high range external port and the load
balancer routes directly to the pods. This bypasses the
concept of service in Kubernetes, still requires high range
ports to be exposed, allows for no-no segregation of
duties, mandates all nodes in the cluster to be externally
routable (at minimum) and will result in triggering real
issues if you have more than X number of applications to
expose where X is the range created for this task. The
downside is that each service that is exposed to the
LoadBalancer will get its own IP address, and one will
have to pay for a LoadBalancer per exposed service.
(Figure 5.)

Figure 5. Traffic control of LoadBalancer

Ingress
Ingress serves as a kind of a smart router for your

cluster that sits in front of multiple services. The inbuilt
GKE ingress controller will spin up an HTTP(S) Load
Balancer for the user. Ingress is perhaps the most powerful
way to expose services, but can also be rather complicated.
There are different types of Ingress controllers, which
include Google Cloud Load Balancer (GCLB), Nginx,
Contour, etc. (Figure 6.).

Figure 6. Traffic control of Ingress

2. Experimental Setup

1) Setting up the Dockerfile for worker node
 FROM node:alpine

 WORKDIR "/app"

 COPY ./package.json ./

 RUN npm install

 COPY . .

 CMD ["npm", "run", "start"]

 2) Dockerfile for server node

 FROM node:alpine

 WORKDIR "/app"

 COPY ./package.json ./

 RUN npm install

 COPY . .

 CMD ["npm", "run", "start"]

Load Balancing using Docker and Kubernetes: A Comparative Study

791

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

 3) Dockerfile for client node

 FROM node:alpine as builder

 WORKDIR '/app'

 COPY ./package.json ./

 RUN npm install

 COPY . .

 RUN npm run build

 FROM nginx

 EXPOSE 3000

 COPY./nginx/default.conf/etc/nginx/conf.d/default.conf

 COPY--from=builder/app/build /usr/share/nginx/html

 4) Configuration file for Ingress

 server {

 listen 3000;

 location / {

 root /usr/share/ingress/html;

 index index.html index.htm;

 }

 }

3. Implementation

1) client-cluster-ip-service.yaml file

apiVersion: v1

kind: Service

metadata:

 name: client-cluster-ip-service

spec:

 type: ClusterIP

 selector:

 component: web

ports:

 -port: 3000

 targetPort: 3000

2) client-deployment.yaml file

apiVersion : apps/v1

kind: Deployment

metadata:

 name: client-deployment

spec:

 replicas: 3

selector:

 matchLabels:

 component: web

template:

 metadata:

label:

 component: web

 spec:

 containers:

 -name: client

 Image: Virtualization/multi-client

 ports:

 -containerPort: 3000

IV. CONCLUSION

 Before container technologies, deploying an application

normally took a long time. Deployment was done manually,

which cost the company time and resources. When container

technologies became popular with Docker and Kubernetes, the

entire process became more streamlined and standardized.

Currently, in the field, load balancing for containerized

applications exists in multiple forms for different use cases, but

they remain unexplored with each having their own advantages

and disadvantages

 The capacity to scale and finds benefits in Docker is currently

simpler than at any other time. With the administration

revelation and burden adjusting highlights incorporated with

Docker, designers can invest less energy making these sorts of

supporting capacities all alone and additional time concentrating

on their applications. Rather than making API calls to set DNS

for administration disclosure, Docker consequently handles it

for you. In the event that an application should be scaled, Docker

deals with adding it to the heap balancer pool. By utilizing these

highlights, associations can convey exceptionally accessible and

flexible applications in a shorter measure of time.

 The problems with existing methods are that they are not

efficient enough, and the new algorithms being designed are not

scalable to be widely used. With the increasing use of containers,

load balancing will become a necessity, and further research is

needed on efficient implementations.

 Research Challenges

 One observation we can see through this research on the

different load balancing techniques is that there is no clear

understanding of why specific algorithms are better and how

each can be improved. Researchers have tried implementing

their own algorithms or enhance the current algorithms but have

not been able to completely change load balancing in container

environments. Containers are still a developing field, and much

research remains to be done, and as we move forward, load

balancing becomes increasingly essential. Load balancing will

improve system performance and reduce carbon emissions. We

look to show which algorithms can be used for different

purposes and seek to implement the techniques comparing their

performance.

 Currently, there is a universal acceptance that with respect to

container orchestration, Kubernetes performs much better than

Docker Swarm. One of the reasons Kubernetes is widely used

instead of the native Docker cluster, Docker Swarm, is its

scalability, portability and self-healing attributes. Kubernetes

has been around longer than Docker Swarm and therefore has

much more documentation. We look to study why Kubernetes is

more famous for implementing load balancing.

REFERENCES

1. Netto, Hylson V., et al. "State machine replication in containers

managed by Kubernetes." Journal of Systems Architecture 73 (2017):

53-59.

2. Rusek, Marian, Grzegorz Dwornicki, and Arkadiusz Orłowski. "A

decentralized system for load balancing of containerized microservices

in the cloud." International Conference on Systems Science. Springer,

Cham, 2016.

3. Sajjan, Rajani. (2017). Load Balancing and its Algorithms in Cloud

Computing: A Survey.

4. Cito, Jürgen & Ferme, Vincenzo & C. Gall, Harald. (2016). Using

Docker Containers to Improve Reproducibility in Software and Web

Engineering Research. 609-612. 10.1007/978-3-319-38791-8_58.

5. C. Cérin, T. Menouer, W. Saad and W. B. Abdallah, "A New Docker

Swarm Scheduling Strategy," 2017 IEEE 7th International Symposium

on Cloud and Service Computing (SC2), Kanazawa, 2017, pp.

112-117. doi: 10.1109/SC2.2017.24

6. A Scheduling Strategy on Load Balancing of Virtual Machine

Resources in Cloud Computing Environment.

7. Wei-guo, Zhang & Xi-lin, Ma & Jin-zhong, Zhang. (2018). Research

on Kubernetes' Resource Scheduling Scheme. 144-148.

10.1145/3290480.3290507.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

792

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP

DOI:10.35940/ijrte.B3938.079220

8. Bui, Thanh. "Analysis of Docker security." arXiv preprint

arXiv:1501.02967 (2015).

9. Di Tommaso, Paolo, et al. "The impact of Docker containers on the

performance of genomic pipelines." PeerJ 3 (2015): e1273.

10. Harter, Tyler, et al. "Slacker: Fast distribution with lazy Docker

containers." 14th {USENIX} Conference on File and Storage

Technologies ({FAST} 16). 2016.

11. Naik, Nitin. "Applying computational intelligence for enhancing the

dependability of multi-cloud systems using Docker swarm." 2016

IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,

2016.

12. Nguyen, Nikyle, and Doina Bein. "Distributed mpi cluster with Docker

swarm mode." 2017 ieee 7th annual computing and communication

workshop and conference (ccwc). IEEE, 2017

13. Ismail, Bukhary Ikhwan, et al. "Evaluation of Docker as edge

computing platform." 2015 IEEE Conference on Open Systems

(ICOS). IEEE, 2015.

14. Kherani, Foram F. "Prof. Jignesh Vania, "Load Balancing in cloud

computing"." International Journal of Engineering Development and

Research 2.1 (2014).

15. James, Jasmin, and Bhupendra Verma. "Efficient VM load balancing

algorithm for a cloud computing environment." International Journal

on Computer Science and Engineering 4.9 (2012): 1658.

16. Yagoubi, Belabbas, and Yahya Slimani. "Dynamic load balancing

strategy for grid computing." Transactions on Engineering, Computing

and Technology 13.2006 (2006): 260-265.

17. Data storage and load Balancing in cloud computing using container

18. clustering Trapti Gupta & Abhishek Dwivedi

19. Ren, Xiaona, Rongheng Lin, and Hua Zou. "A dynamic load balancing

strategy for cloud computing platform based on exponential smoothing

forecast." 2011 IEEE International Conference on Cloud Computing

and Intelligence Systems. IEEE, 2011.

20. Kaewkasi, Chanwit, and Kornrathak Chuenmuneewong.

"Improvement of container scheduling for Docker using ant colony

optimization." 2017 9th international conference on knowledge and

smart technology (KST). IEEE, 2017.

21. Research and implementation of Docker performance service in

distributed platform Liu Lijuan

22. Rad, Babak Bashari, Harrison John Bhatti, and Mohammad Ahmadi.

"An introduction to Docker and analysis of its performance."

International Journal of Computer Science and Network Security

(IJCSNS) 17.3 (2017): 228.

23. Zhang, Dongsheng. Resilience enhancement of container-based cloud

load balancing service. No. e26875v1. PeerJ Preprints, 2018

24. Value-Based Allocation of Docker Containers by Piotr Dziurzanski,

and Leandro Soares Indrusiak

25. Takahashi, K., Aida, K., Tanjo, T., & Sun, J. (2018). A Portable Load

Balancer for Kubernetes Cluster. Proceedings of the International

Conference on High Performance Computing in Asia-Pacific Region -

HPC Asia 2018. doi:10.1145/3149457.3149473

26. Cloud Resource Orchestration: A Data-Centric Approach By

Changbin Liu, Yun Mao, Jacobus E. Van der Merwe, Mary F.

Fernández

27. Prajval Mohan, Adiksha Sood, Lakshya Sharma, Simran Koul, Simriti

Koul. ‘PC-SWT: A Hybrid Image Fusion Algorithm of Stationary

Wavelet Transform and Principal Component Analysis.’ International

Journal of Engineering and Advanced Technology (IJEAT). ISSN:

2249-8958 (Online), Volume-9 Issue-5, June 2020, Page No.700-705.

28. Polyphony: A Workflow Orchestration Framework for Cloud

Computing Khawaja S Shams, Dr. Mark W. Powell., Tom M.

Crockett, Dr. Jeffrey S. Norris, Ryan Rossi, Tom Soderstrom

29. SDN orchestration architectures and their integration with Cloud

Computing applications By Arturo Mayoral, Ricard Vilalta, Raul

Muñoz, Ramon Casellas, Ricardo Martínez

30. An in-depth analysis and study of Load balancing techniques in the

cloud computing environment. By Geethu Gopinath P P, Shriram K

Vasudevan

31. Dynamic Balance Strategy of High Concurrent Web Cluster Based on

Docker Container. Weizheng Ren et al 2018 IOP Conf. Ser.: Mater.

Sci. Eng. 466 012011

32. Prajval Mohan, Pranav Narayan, Lakshya Sharma, Tejas Jambhale,

Simran Koul, "Iterative SARSA: The Modified SARSA Algorithm for

Finding the Optimal Path". International Journal of Recent Technology

and Engineering (IJRTE). ISSN: 2277-3878, Volume-8 Issue-6, March

2020

AUTHORS PROFILE

Prajval Mohan was born in Hyderabad, India on

23rd October, 1998. He completed his Senior High

School from FIITJEE Junior College, Hyderabad,

graduated with 96.1 percent and received the

Honorary Certificate of Merit in the year 2016.

Prajval is currently pursuing his B. Tech in

Computer Science and Engineering from Vellore

Institute of Technology, Vellore, India. His areas of interest include

Robotics, Machine Learning, Artificial Intelligence and Cloud Computing.

He has advanced working knowledge of Robotics and Database handling

which were strengthened by completing various projects and internships in

the respective fields. He also has ongoing research in the field of Deep

Learning and Parallel Distributed Computing.

Tejas Jambhale was born in Maharashtra, India

on 17th November, 1998. He is a student of Vellore

Institute Technology, Vellore currently pursuing

Computer Science Engineering. He has skills in

domains including machine learning, web

development and deep learning. He has completed

research in cyber security and deep learning and likes

building different projects to explore his skills.

Lakshya Sharma was born in Jaipur, India on 25th

January, 1999. He was raised in Delhi, India and

completed his Senior high school from D.A.V Public

School. He is currently pursuing B. Tech in Computer

Science Engineering from Vellore Institute of

Technology, Vellore. His research interests include

Deep learning, artificial intelligence, autonomous

object avoiding and path planning robots. He has worked on several machine

learning, deep learning projects and has an ongoing research in offline

signature recognition using Siamese networks.

Simran Koul was born in Jammu, India on 10th

November, 1998. She completed her senior high

school in Indian School Ahmadi, Kuwait. She is

currently pursuing her Bachelor's Degree in

Computer Science Engineering in VIT, Vellore,

India. She is currently working on projects which

involve concepts of Robotics and Artificial

intelligence and Natural Language Processing.

Simriti Koul was born in Jammu, India, on 10th

November 1998. She completed her senior high

school in FAIPS DPS, Ahmadi, Kuwait. She is

currently pursuing her Bachelor's Degree in

Computer Science Engineering at Vellore Institute

of Technology, Vellore, India. She is currently

working on projects which involve concepts of

Artificial intelligence, Data Analytics and Natural Language Processing.

