
Differential Privacy without Sensitivity

Kentaro Minami
The University of Tokyo

kentaro minami@mist.i.u-tokyo.ac.jp

Hiromi Arai
The University of Tokyo

arai@dl.itc.u-tokyo.ac.jp

Issei Sato
The University of Tokyo
sato@k.u-tokyo.ac.jp

Hiroshi Nakagawa
The University of Tokyo

nakagawa@dl.itc.u-tokyo.ac.jp

Abstract

The exponential mechanism is a general method to construct a randomized estima-
tor that satisfies (ε, 0)-differential privacy. Recently, Wang et al. showed that the
Gibbs posterior, which is a data-dependent probability distribution that contains
the Bayesian posterior, is essentially equivalent to the exponential mechanism un-
der certain boundedness conditions on the loss function. While the exponential
mechanism provides a way to build an (ε, 0)-differential private algorithm, it re-
quires boundedness of the loss function, which is quite stringent for some learning
problems. In this paper, we focus on (ε, δ)-differential privacy of Gibbs posteriors
with convex and Lipschitz loss functions. Our result extends the classical expo-
nential mechanism, allowing the loss functions to have an unbounded sensitivity.

1 Introduction

Differential privacy is a notion of privacy that provides a statistical measure of privacy protection
for randomized statistics. In the field of privacy-preserving learning, constructing estimators that
satisfy (ε, δ)-differential privacy is a fundamental problem. In recent years, differentially private
algorithms for various statistical learning problems have been developed [8, 14, 3].

Usually, the estimator construction procedure in statistical learning contains the following mini-
mization problem of a data-dependent function. Given a dataset Dn = {x1, . . . , xn}, a statistician
chooses a parameter θ that minimizes a cost function L(θ,Dn). A typical example of cost function
is the empirical risk function, that is, a sum of loss function `(θ, xi) evaluated at each sample point
xi ∈ Dn. For example, the maximum likelihood estimator (MLE) is given by the minimizer of
empirical risk with loss function `(θ, x) = − log p(x | θ).

To achieve a differentially private estimator, one natural idea is to construct an algorithm based on a
posterior sampling, namely drawing a sample from a certain data-dependent probability distribution.
The exponential mechanism [16], which can be regarded as a posterior sampling, provides a general
method to construct a randomized estimator that satisfies (ε, 0)-differential privacy. The probabil-
ity density of the output of the exponential mechanism is proportional to exp(−βL(θ,Dn))π(θ),
where π(θ) is an arbitrary prior density function, and β > 0 is a parameter that controls the
degree of concentration. The resulting distribution is highly concentrated around the minimizer
θ∗ ∈ argminθ L(θ,Dn). Note that most differential private algorithms involve a procedure to add
some noise (e.g. the Laplace mechanism [12], objective perturbation [8, 14], and gradient perturba-
tion [3]), while the posterior sampling explicitly designs the density of the output distribution.
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Figure 1: An example of a logistic loss function `(θ, x) := log(1+exp(−yθ>z)). Considering two
points x± = (z,±1), the difference of the loss |`(θ, x+)− `(θ, x−)| increases proportionally to the
size of the parameter space (solid lines). In this case, the value of the β in the exponential mecha-
nism, which is inversely proportional to the maximum difference of the loss function, becomes very
small. On the other hand, the difference of the gradient |∇`(θ, x+) − ∇`(θ, x−)| does not exceed
twice of the Lipschitz constant (dashed lines). Hence, our analysis based on Lipschitz property does
not be influenced by the size of the parameter space.

Table 1: Regularity conditions for (ε, δ)-differential privacy of the Gibbs posterior. Instead of the
boundedness of the loss function, our analysis in Theorem 7 requires its Lipschitz property and
convexity. Unlike the classical exponential mechanism, our result explains “shrinkage effect” or
“contraction effect”, namely, the upper bound for β depends on the concavity of the prior π and the
size of the dataset n.

(ε, δ) Loss function ` Prior π Shrinkage
Exponential
mechanism [16]

δ = 0 Bounded sensitivity Arbitrary No

Theorem 7 δ > 0 Lipschitz and convex Log-concave Yes
Theorem 10 δ > 0 Bounded, Lipschitz

and strongly convex
Log-concave Yes

We define the density of the Gibbs posterior distribution as

Gβ(θ | Dn) :=
exp(−β∑n

i=1 `(θ, xi))π(θ)∫
exp(−β∑n

i=1 `(θ, xi))π(θ)dθ
. (1)

The Gibbs posterior plays important roles in several learning problems, especially in PAC-Bayesian
learning theory [6, 21]. In the context of differential privacy, Wang et al. [20] recently pointed out
that the Bayesian posterior, which is a special version of (1) with β = 1 and a specific loss function,
satisfies (ε, 0)-differential privacy because it is equivalent to the exponential mechanism under a
certain regularity condition. Bassily, et al. [3] studied an application of the exponential mechanism
to private convex optimization.

In this paper, we study the (ε, δ)-differential privacy of the posterior sampling with δ > 0. In
particular, we consider the following statement.

Claim 1. Under a suitable condition on loss function ` and prior π, there exists an upper bound
B(ε, δ) > 0, and the Gibbs posterior Gβ(θ | Dn) with β ≤ B(ε, δ) satisfies (ε, δ)-differential
privacy. The value of B(ε, δ) does not depend on the boundedness of the loss function.
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We point out here the analyses of (ε, 0)-differential privacy and (ε, δ)-differential privacy with δ > 0
are conceptually different in the regularity conditions they require. On one hand, the exponential
mechanism essentially requires the boundedness of the loss function to satisfy (ε, 0)-differential
privacy. On the other hand, the boundedness is not a necessary condition in (ε, δ)-differential pri-
vacy. In this paper, we give a new sufficient condition for (ε, δ)-differential privacy based on the
convexity and the Lipschitz property. Our analysis widens the application ranges of the exponential
mechanism in the following aspects (See also Table 1).

• (Removal of boundedness assumption) If the loss function is unbounded, which is usually
the case when the parameter space is unbounded, the Gibbs posterior does not satisfy (ε, 0)-
differential privacy in general. Still, in some cases, we can build an (ε, δ)-differential
private estimator.

• (Tighter evaluation of β) Even when the difference of the loss function is bounded, our
analysis can yield a better scheme in determining the appropriate value of β for a given
privacy level. Figure 1 shows an example of logistic loss.

• (Shrinkage and contraction effect) Intuitively speaking, the Gibbs posterior becomes robust
against a small change of the dataset, if the prior π has a strong shrinkage effect (e.g. a
Gaussian prior with a small variance), or if the size of the dataset n tends to infinity. In
our analysis, the upper bound of β depends on π and n, which explains such shrinkage and
contraction effects.

1.1 Related work

(ε, δ)-differential privacy of Gibbs posteriors has been studied by several authors. Mir ([18], Chapter
5) proved that a Gaussian posterior in a specific problem satisfies (ε, δ)-differential privacy. Dim-
itrakakis et al. [10] considered Lipschitz-type sufficient conditions, yet their result requires some
modification of the definition of the neighborhood on the database.

In general, the utility of sensitivity-based methods suffers from the size of the parameter space
Θ. Thus, getting around the dependency on the size of Θ is a fundamental problem in the study
of differential privacy. For discrete parameter spaces, a general range-independent algorithm for
(ε, δ)-differential private maximization was developed in [7].

1.2 Notations

The set of all probability measures on a measurable space (Θ, T ) is denoted byM1
+(Θ). A map

between two metric spaces f : (X, dX)→ (Y, dY ) is said to be L-Lipschitz, if dY (f(x1), f(x2)) ≤
LdX(x1, x2) holds for all x1, x2 ∈ X . Let f be a twice continuously differentiable function f
defined on a subset of Rd. f is said to be m(> 0)-strongly convex, if the eigenvalues of its Hessian
∇2f are bounded by m from below. f is said to be M -smooth,

2 Differential privacy with sensitivity

In this section, we review the definition of (ε, δ)-differential privacy and the exponential mechanism.

2.1 Differential privacy

Differential privacy is a notion of privacy that provides a degree of privacy protection in a statistical
sense. More precisely, differential privacy defines a closeness between any two output distributions
that correspond to adjacent datasets.

In this paper, we assume that a dataset D = Dn = (x1, . . . , xn) is a vector that consists of n points
in abstract attribute space X , where each entry xi ∈ X represents information contributed by one
individual. Two datasetsD,D′ are said to be adjacent if dH(D,D′) = 1, where dH is the Hamming
distance defined on the space of all possible datasets X d.

We describe the definition of differential privacy in terms of randomized estimators. A randomized
estimator is a map ρ : Xn → M1

+(Θ) from the space of datasets to the space of probability
measures.
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Definition 2 (Differential privacy). Let ε > 0 and δ ≥ 0 be given privacy parameters. We say that
a randomized estimator ρ : Xn → M1

+(Θ) satisfies (ε, δ)-differential privacy, if for any adjacent
datasets D,D′ ∈ Xn, an inequality

ρD(A) ≤ eερD′(A) + δ (2)

holds for every measurable set A ⊂ Θ.

2.2 The exponential mechanism

The exponential mechanism [16] is a general construction of (ε, 0)-differentially private distribu-
tions. For an arbitrary function L : Θ×Xn → R, we define the sensitivity by

∆L := sup
D,D′∈Xn:
dH(D,D′)=1

sup
θ∈Θ
|L(θ,D)− L(θ,D′)|, (3)

which is the largest possible difference of two adjacent functions f(·, D) and f(·, D′) with respect
to supremum norm.

Theorem 3 (McSherry and Talwar). Suppose that the sensitivity of the function L(θ,Dn) is finite.
Let π be an arbitrary base measure on Θ. Take a positive number β so that β ≤ ε/2∆L. Then a
probability distribution whose density with respect to π is proportional to exp(−βL(θ,Dn)) satisfies
(ε, 0)-differential privacy.

We consider the particular case that the cost function is given as sum form L(θ,Dn) =∑n
i=1 `(θ, xi). Recently, Wang et al. [20] examined two typical cases in which ∆L is finite. The

following statement slightly generalizes their result.

Theorem 4 (Wang, et al.). (a) Suppose that the loss function ` is bounded by A, namely |`(θ, x)| ≤
A holds for all x ∈ X and θ ∈ Θ. Then ∆L ≤ 2A, and the Gibbs posterior (1) satisfies (4βA, 0)-
differential privacy.

(b) Suppose that for any fixed θ ∈ Θ, the difference |`(θ, x1) − `(θ, x2)| is bounded by L for all
x1, x2 ∈ X . Then ∆L ≤ L, and the Gibbs posterior (1) satisfies (2βL, 0)-differential privacy.

The condition ∆L < ∞ is crucial for Theorem 3 and cannot be removed. However, in practice,
statistical models of interest do not necessarily satisfy such boundedness conditions. Here we have
two simple examples of Gaussian and Bernoulli mean estimation problems, in which the sensitivities
are unbounded.

• (Bernoulli mean) Let `(p, x) = −x log p−(1−x) log(1−p) (p ∈ (0, 1), x ∈ {0, 1}) be the
negative log-likelihood of the Bernoulli distribution. Then |`(p, 0)− `(p, 1)| is unbounded.

• (Gaussian mean) Let `(θ, x) = 1
2 (θ − x)2 (θ ∈ R, x ∈ R) be the negative log-likelihood

of the Gaussian distribution with a unit variance. Then |`(θ, x)− `(θ, x′)| is unbounded if
x 6= x′.

Thus, in the next section, we will consider an alternative proof technique for (ε, δ)-differential pri-
vacy so that it does not require such boundedness conditions.

3 Differential privacy without sensitivity

In this section, we state our main results for (ε, δ)-differential privacy in the form of Claim 1.

There is a well-known sufficient condition for the (ε, δ)-differential privacy:

Theorem 5 (See for example Lemma 2 of [13]). Let ε > 0 and δ > 0 be privacy parameters.
Suppose that a randomized estimator ρ : Xn → M1

+(Θ) satisfies a tail-bound inequality of log-
density ratio

ρD

{
log

dρD
dρD′

≥ ε
}
≤ δ (4)

for every adjacent pair of datasets D,D′. Then ρ satisfies (ε, δ)-differential privacy.
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To control the tail behavior (4) of the log-density ratio function log dρD
dρD′

, we consider the concen-
tration around its expectation. Roughly speaking, inequality (4) holds if there exists an increasing
function α(t) that satisfies an inequality

∀t > 0, ρD

{
log

dρD
dρD′

≥ DKL(ρD, ρD′) + t

}
≤ exp(−α(t)), (5)

where log
dGβ,D
dGβ,D′

is the log-density ratio function, and DKL(ρD, ρD′) := EρD log dρD
dρD′

is the
Kullback-Leibler (KL) divergence. Suppose that the Gibbs posterior Gβ,D, whose densityG(θ | D)
is defined by (1), satisfies an inequality (5) for a certain α(t) = α(t, β). Then Gβ,D satisfies (4) if
there exist β, t > 0 that satisfy the following two conditions.

1. KL-divergence bound: DKL(Gβ,D, Gβ,D′) + t ≤ ε
2. Tail-probability bound: exp(−α(t, β)) ≤ δ

3.1 Convex and Lipschitz loss

Here, we examine the case in which the loss function ` is Lipschitz and convex, and the parameter
space Θ is the entire Euclidean space Rd. Due to the unboundedness of the domain, the sensitivity
∆L can be infinite, in which case the exponential mechanism cannot be applied.
Assumption 6. (i) Θ = Rd.

(ii) For any x ∈ X , `(·, x) is non-negative, L-Lipschitz and convex.

(iii) − log π(·) is twice differentiable and mπ-strongly convex.

In Assumption 6, the loss function `(·, x) and the difference |`(·, x1)− `(·, x2)| can be unbounded.
Thus, the classical argument of the exponential mechanism in Section 2.2 cannot be applied. Nev-
ertheless, our analysis shows that the Gibbs posterior satisfies (ε, δ)-differential privacy.
Theorem 7. Let β ∈ (0, 1] be a fixed parameter, and D,D′ ∈ Xn be an adjacent pair of datasets.
Under Assumption 6, inequality

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ exp

(
− mπ

8L2β2

(
ε− 2L2β2

mπ

)2
)

(6)

holds for any ε > 2L2β2

mπ
.

Gibbs posterior Gβ,D satisfies (ε, δ)-differential privacy if β > 0 is taken so that the right-hand side
of (6) is bounded by δ. It is elementary to check the following statement:
Corollary 8. Let ε > 0 and 0 < δ < 1 be privacy parameters. Taking β so that it satisfies

β ≤ ε

2L

√
mπ

1 + 2 log(1/δ)
, (7)

Gibbs posterior Gβ,D satisfies (ε, δ)-differential privacy.

Note that the right-hand side of (6) depends on the strong concavity mπ . The strong concavity
parameter corresponds to the precision (i.e. inverse variance) of the Gaussian, and a distribution
with large mπ becomes spiky. Intuitively, if we use a prior that has a strong shrinkage effect, then
the posterior becomes robust against a small change of the dataset, and consequently the differential
privacy can be satisfied with a little effort. This observation is justified in the following sense: the
upper bound of β grows proportionally to

√
mπ . In contrast, the classical exponential mechanism

does not have that kind of prior-dependency.

3.2 Strongly convex loss

Let ˜̀ be a strongly convex function defined on the entire Euclidean space Rd. If ` is a restriction
of ˜̀ to a compact L2-ball, the Gibbs posterior can satisfy (ε, 0)-differential privacy with a certain
privacy level ε > 0 because of the boundedness of `. However, using the boundedness of ∇` rather
than that of ` itself, we can give another guarantee for (ε, δ)-differential privacy.
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Assumption 9. Suppose that a function ˜̀ : Rd × X → R is a twice differentiable and m`-strongly
convex with respect to its first argument. Let π̃ be a finite measure over Rd that − log π̃(·) is twice
differentiable and mπ-strongly convex. Let G̃β,D is a Gibbs posterior on Rd whose density with
respect to the Lebesgue measure is proportional to exp(−β∑i

˜̀(θ, xi))π̃(θ). Assume that the mean
of G̃β,D is contained in a L2-ball of radius κ:

∀D ∈ Xn,
∥∥∥EG̃β,D [θ]

∥∥∥
2
≤ κ. (8)

Define a positive number α > 1. Assume that (Θ, `, π) satisfies the following conditions.

(i) Θ is a compact L2-ball centered at the origin, and its radius RΘ satisfies RΘ ≤ κ+ α
√
d/mπ .

(ii) For any x ∈ X , `(·, x) is L-Lipschitz, and convex. In other words, L :=
supx∈X supθ∈Θ ‖∇θ`(θ, x)‖2 is bounded.

(iii) π is given by a restriction of π̃ to Θ.

The following statements are the counterparts of Theorem 7 and its corollary.
Theorem 10. Let β ∈ (0, 1] be a fixed parameter, and D,D′ ∈ Xn be an adjacent pair of datasets.
Under Assumption 9, inequality

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ exp

(
−nm`β +mπ

4C ′β2

(
ε− C ′β2

nm`β +mπ

)2
)

(9)

holds for any ε > C′β2

nm`β+mπ
. Here, we defined C ′ := 2CL2(1 + log(α2/(α2 − 1))), where C > 0

is a universal constant that does not depend on any other quantities.
Corollary 11. Under Assumption 9, there exists an upper boundB(ε, δ) = B(ε, δ, n,m`,mπ, α) >
0, and Gβ(θ | Dn) with β ≤ B(ε, δ) satisfies (ε, δ)-differential privacy.

Similar to Corollary 8, the upper bound on β depends on the prior. Moreover, the right-hand side of
(9) decreases to 0 as the size of dataset n increases, which implies that (ε, δ)-differential privacy is
satisfied almost for free if the size of the dataset is large.

3.3 Example: Logistic regression

In this section, we provide an application of Theorem 7 to the problem of linear binary classification.
Let Z := {z ∈ Rd, ‖z‖2 ≤ r} be a space of the input variables. The space of the observation is the
set of input variables equipped with binary label X := {x = (z, y) ∈ Z ×{−1,+1}}. The problem
is to determine a parameter θ = (a, b) of linear classifier fθ(z) = sgn(a>z + b).

Define a loss function `LR by

`LR(θ, x) := log(1 + exp(−y(a>z + b))). (10)

The `2-regularized logistic regression estimator is given by

θ̂LR = argmin
θ∈Rd+1

{
1

n

n∑
i=1

`LR(θ, xi) +
λ

2
‖θ‖22

}
, (11)

where λ > 0 is a regularization parameter. Corresponding Gibbs posterior has a density

Gβ(θ | D) ∝
n∏
i=1

σ(yi(a
>zi + b))βφd+1(θ | 0, (nλ)−1I), (12)

where σ(u) = (1 + exp(−u))−1 is a sigmoid function, and φd+1(θ | µ,Σ) is a density of (d+ 1)-
dimensional Gaussian distribution. It is easy to check that `LR(·,x) is r-Lipschitz and convex, and
− log φd+1(· | 0, (nλ−1)I) is (nλ)-strongly convex. Hence, by Corollary 8, the Gibbs posterior
satisfies (ε, δ)-differential privacy if

β ≤ ε

2r

√
nλ

1 + 2 log(1/δ)
. (13)
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4 Approximation Arguments

In practice, exact samplers of Gibbs posteriors (1) are rarely available. Actual implementations
involve some approximation processes. Markov Chain Monte Carlo (MCMC) methods and Varia-
tional Bayes (VB) [1] are commonly used to obtain approximate samplers of Gibbs posteriors. The
next proposition, which is easily obtained as a variant of Proposition 3 of [20], gives a differential
privacy guarantee under approximation.
Proposition 12. Let ρ : Xn →M1

+(Θ) be a randomized estimator that satisfies (ε, δ)-differential
privacy. If for all D, there exist approximate sampling procedure ρ′D such that dTV(ρD, ρ

′
D) ≤ γ,

then the randomized mechanism D 7→ ρ′D satisfies (εδ + (1 + eε)γ)-differential privacy. Here,
dTV(µ, ν) = supA∈T |µ(A)− ν(A)| is the total variation distance.

We now describe a concrete example of MCMC, the Langevin Monte Carlo (LMC). Let θ(0) ∈ Rd
be an initial point of the Markov chain. The LMC algorithm for Gibbs posterior Gβ,D contains the
following iterations:

θ(t+1) = θ(t) − h∇U(θ(t)) +
√

2hη(t+1) (14)

U(θ) = β
n∑
i=1

`(θ, xi)− log π(θ). (15)

Here η(1), η(2), . . . ∈ Rd are noise vectors independently drawn from a centered Gaussian N(0, I).
This algorithm can be regarded as a discretization of a stochastic differential equation that has a
stationary distribution Gβ,D, and its convergence property has been studied in finite-time sense
[9, 5, 11]. Let us denote by ρ(t) the law of θ(t). If dTV(ρ(t), Gβ,D) ≤ γ holds for all t ≥ T , then
the privacy of the LMC sampler is obtained from Proposition 12. In fact, we can prove by Corollary
1 of [9] the following proposition.
Proposition 13. Assume that Assumption 6 holds. Let `(θ, x) be M`-smooth for all x ∈ X , and
− log π(θ) be Mπ-smooth. Let d ≥ 2 and γ ∈ (0, 1/2). We can choose β > 0, by Corollary 8, so
that Gβ,D satisfies (ε, δ)-differential privacy. Let us set step size h of the LMC algorithm (14) as

h =
2mπγ

2

d(nβM` +Mπ)2
[
4 log

(
1
γ

)
+ d log

(
nβM`+Mπ

mπ

)] , (16)

and set T as

T =
d(nβM` +Mπ)2

4mπγ2

[
4 log

(
1

γ

)
+ d log

(
nβM` +Mπ

mπ

)]2

. (17)

Then, after T iterations of (14), θ(T ) satisfies (ε, δ + (1 + eε)γ)-differential privacy.

The algorithm suggested in Proposition 13 is closely related to the differentially private stochastic
gradient Langevin dynamics (DP-SGLD) proposed by Wang, et al. [20]. Ignoring the computational
cost, we can take the approximation error level γ > 0 arbitrarily small, while the convergence
property to the target posterior distribution is not necessarily ensured about DP-SGLD.

5 Proofs

In this section, we give a formal proof of Theorem 7 and a proof sketch of 10.

There is a vast literature on techniques to obtain a concentration inequality in (5) (see, for example,
[4]). Logarithmic Sobolev inequality (LSI) is a useful tool for this purpose. We say that a probability
measure µ over Θ ⊂ Rd satisfies LSI with constant DLS if inequality

Eµ[f2 log f2]− Eµ[f2] logEµ[f2] ≤ 2DLSEµ ‖∇f‖22 (18)

holds for any integrable function f , provided the expectations in the expression are defined. It is
known that [15, 4], if µ satisfies LSI, then every real-valued L-Lipschitz function F behaves in a
sub-Gaussian manner:

µ{F ≥ Eµ[F ] + t} ≤ exp

(
− t2

2L2DLS

)
. (19)
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In our analysis, we utilize the LSI technique for the following two reasons: (a) a sub-Gaussian tail
bound of the log-density ratio is obtained from (19), and (b) an upper bound on the KL-divergence
is directly obtained from LSI, which appears to be difficult to prove by any other argument.

Roughly speaking, LSI holds if the logarithm of the density is strongly concave. In particular, for a
Gibbs measure on Rd, the following fact is known.
Lemma 14 ([15]). Let U : Rd → R be a twice differential, m-strongly convex and integrable
function. Let µ be a probability measure on Rd whose density is proportional to exp(−U). Then µ
satisfies LSI (18) with constant DLS = m−1.

In this context, the strong convexity ofU is related to the curvature-dimension condition CD(m,∞),
which can be used to prove LSI on general Riemannian manifolds [19, 2].

Proof of Theorem 7. For simplicity, we assume that `(·, x) (∀x ∈ X ) is twice differentiable. For
general Lipschitz and convex loss functions (e.g. hinge loss), the theorem can be proved using a
mollifier argument. Since U(·) = β

∑
i `(·, xi) − log π(·) is mπ-strongly convex, Gibbs posterior

Gβ,D satisfies LSI with constant m−1
π .

LetD,D′ ∈ Xn be a pair of adjacent datasets. Considering appropriate permutation of the elements,
we can assume that D = (x1, . . . , xn) and D′ = (x′1, . . . , x

′
n) differ in the first element, namely,

x1 6= x′1 and xi = x′i (i = 2, . . . , n). By the assumption that `(·, x) is L-Lipschitz, we have∥∥∥∥∇ log
dGβ,D
dGβ,D′

∥∥∥∥
2

= β‖∇(`(θ, x1)− `(θ, x′1))‖2 ≤ 2βL, (20)

and log-density ratio log
dGβ,D
dGβ,D′

is 2βL-Lipschitz. Then, by concentration inequality for Lipschitz
function (19), we have

∀t > 0, Gβ,D

{
log

dGβ,D
dGβ,D′

≥ DKL(Gβ,D, Gβ,D′) + t

}
≤ exp

(
− mπt

2

8L2β2

)
(21)

We will show an upper bound of the KL-divergence. To simplify the notation, we will write F :=
dGβ,D
dGβ,D′

. Noting that

‖∇
√
F‖22 = ‖∇ exp(2−1 logF )‖22 = ‖

√
F

2
∇ logF‖22 ≤

F

4
· (2βL)2 (22)

and that
DKL(Gβ,D, Gβ,D′) = EGβ,D [logF ]

= EGβ,D′ [F logF ]− EGβ,D′ [F ]EGβ,D′ [logF ], (23)

we have, from LSI (18) with f =
√
F ,

DKL(Gβ,D, Gβ,D′) ≤ 2

mπ
EGβ,D′‖∇

√
F‖22 ≤

2L2β2

mπ
EGβ,D′ [F ] =

2L2β2

mπ
. (24)

Combining (21) and (24), we have

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε+DKL(Gβ,D, Gβ,D′)− 2L2β2

mπ

}
≤ exp

(
− mπ

8L2β2

(
ε− 2L2β2

mπ

)2
)

(25)

for any ε > 2L2β2

mπ
.

Proof sketch for Theorem 10. The proof is almost the same as that of Theorem 7. It is sufficient to
show that the set of Gibbs posteriors {Gβ,D, D ∈ Xn} simultaneously satisfies LSI with the same
constant. Since the logarithm of the density is m := (nm`β + mπ)-strongly convex, a probability
measure G̃β,D satisfies LSI with constant m−1. By the Poincaré inequality for G̃β,D, the variance
of ‖θ‖2 is bounded by d/m ≤ d/mπ . By the Chebyshev inequality, we can check that the mass
of parameter space is lower-bounded as G̃β,D(Θ) ≥ p := 1 − α−2. Then, by Corollary 3.9 of
[17], Gβ,D := G̃β,D|Θ satisfies LSI with constant C(1 + log p−1)m−1, where C > 0 is a universal
numeric constant.
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