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Abstract
This paper presents verification and implementation methods that have been developed for the design of the BrainScaleS-
2 65 nm ASICs. The 2nd generation BrainScaleS chips are mixed-signal devices with tight coupling between full-custom
analog neuromorphic circuits and two general purpose microprocessors (PPU) with SIMD extension for on-chip learning
and plasticity. Simulation methods for automated analysis and pre-tapeout calibration of the highly parameterizable analog
neuron and synapse circuits and for hardware-software co-development of the digital logic and software stack are presented.
Accelerated operation of neuromorphic circuits and highly-parallel digital data buses between the full-custom neuromorphic
part and the PPU require custom methodologies to close the digital signal timing at the interfaces. Novel extensions to
the standard digital physical implementation design flow are highlighted. We present early results from the first full-size
BrainScaleS-2 ASIC containing 512 neurons and 130K synapses, demonstrating the successful application of these methods.
An application example illustrates the full functionality of the BrainScaleS-2 hybrid plasticity architecture.
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1 Introduction

The design of neuromorphic hardware follows the goal to
model parts, or at least functional aspects, of the biologi-
cal nervous system. A main motivation is to reproduce its
computational functionality and especially its ability to effi-
ciently solve cognitive and perceptual tasks. Achieving this
requires modeling networks of a sufficient complexity in
terms of number of neurons and number of synaptic connec-
tions. The brain as a whole and especially its ability to learn
and adapt to specific problems is still subject to basic neuro-
scientific research. Consequently, flexible implementations
of learning and plasticity are desirable as well.
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Several neuromorphic hardware systems have been pro-
posed and developed that differentiate themselves in terms
of architecture, scaling and learning capabilities, and
whether they follow an analog/mixed-signal or purely dig-
ital approach. TrueNorth [33] is a neuromorphic chip that
integrates 4096 neurosynaptic cores to simulate 1M neu-
rons and 256M synaptic connections at biological real-
time. It is fully digital and the cores are operated asyn-
chronously. Learning algorithms need to be implemented
off-chip; multi-chip topologies have been proposed in [5].
The SpiNNaker system [24] is based on processor nodes
comprising 18 ARM cores which are interconnected using
an asynchronous networking infrastructure, optimized for
the high-fanout routing of neural events. It provides the
flexibility to change the underlying simulation models in
software and is designed to operate at biological real-
time, while simulation speed might decrease with increased
model complexity. It provides 1M cores in its current state.
Online learning can be implemented in software, which also
results in a performance penalty [16]. Intel’s Loihi chip [15]
contains 128 neuromorphic cores and is capable of simu-
lating 130 k neurons and 130M synapses in real-time. It
features on-chip learning capabilities that allow for different
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types of synaptic plasticity. There exists a multichip plat-
form containing 64 Loihi chips. While the aforementioned
systems are implemented using digital logic, analog neu-
romorphic designs make use of dedicated analog circuits
as computational elements, which is beneficial in terms of
energy and cost efficiency and their continuous-time opera-
tion reproduces the collective dynamics of neural networks
more faithfully. One recent example is the Dynap-SEL chip
[34] which comprises 1.1 k neurons and 78 k synapses,
which are partially capable of on-chip learning using spike-
timing-dependent plasticity (STDP). An in-depth review
of a selection of current analog neuromorphic hardware
systems can be found in [48], a general overview in [23].

In this paper we describe aspects of the familiy of
BrainScaleS systems which similarly aim at providing
a tool for neuroscientists to facilitate large-scale spiking
neural network emulations at a sufficiently high level of
biological detail. Instead of integrating model equations
numerically we implement a physical system using analog
circuits which can be described by the same equations. The
model variables evolve in continuous-time, determined by
the circuit parameters. Quantities like reversal potentials,
currents, or conductances can directly be translated to
our circuits. Membrane and synaptic time constants also
follow from the mapping of the equation dynamics. In the
BrainScaleS systems we selected the circuit elements in
a way that these characteristic times are shorter than in
biology. As a consequence, the physical model operates at
a speedup of 103 to 104 compared to biological time scales.
BrainScaleS-1 introduced wafer-scale integration to allow
for the emulation of networks of up to 200K neurons and
44M synapses on a single silicon wafer [40].

The second version BrainScaleS systems transition from
a 180 nm CMOS process to a 65 nm process node. While the
gain in available silicon area has mainly been used to add
features to the analog circuits and improve their debugging
capabilities and robustness [3], we could substantially
increase the complexity of the surrounding digital logic.
The most prominent addition is a hybrid plasticity scheme,
where learning algorithms can be freely programmed in
software and executed on an embedded microprocessor, in
contrast to the STDP-based fixed learning algorithms in
BrainScaleS-1 [42]. The processor is directly attached to
the analog neuromorphic circuits [22]. Together with the
sped-up operation of the analog circuits, this tight coupling
requires high throughput and thus high operating clock
frequency and wide data paths in the digital logic. This
results in complex mixed-signal interfaces with multiple
closed loops between analog and digital domains. A detailed
description of the BrainScaleS-2 architecture can be found
in [39].

Complex interfaces, highly integrated analog circuit
arrays combined with the difficulties and pitfalls of physical

standard-cell design can push standard tooling to its
limits. This might be a common denominator of most
neuromorphic hardware designs. The development of non-
standard design flows or custom tools is therefore an
integral part of the overall design process. For TrueNorth
and Loihi these strategies have been outlined in [5] and [15],
respectively. Such information is otherwise only sparsely
available.

To improve on this situation, this paper describes
selected aspects of the implementation and verification
strategies employed in the design of different versions of
the BrainScaleS-2 neuromorphic chips. Our verification
approach is described in Section 3. First measurement
results from the full-size BrainScaleS-2 chip containing
512 neuron and 130K synapse circuits demonstrate
their successful application. Non-standard implementation
methodologies, especially for the tight coupling of large
and dense analog arrays to comparably high-speed digital
logic, are explained in Section 4. To illustrate the viability
of the presented methodologies, Section 5 presents results
from the manufactured silicon by means of a reinforcement
learning experiment that is executed on a BrainScaleS-2
chip.

2 BrainScaleS Architecture

The structure of the BrainScaleS-2 system is depicted in
Fig. 1. The mixed-signal BrainScaleS-2 ASIC contains
very-large-scale integration (VLSI) analog neuromorphic
circuits, digital control and communication infrastructure,
and one or more general-purpose microprocessors mainly
intended to be used as plasticity processing units (PPUs).
The ASIC is implemented using a digital top-level
description in a way that all analog signals are confined
within the ASIC and off-chip communication is carried
out utilizing digital high-speed serial communication
techniques. Real time experiment control is performed by an
FPGA which also manages host communication. Technical
details relevant for this publication will be described in the
following subsections. Further details on the architecture
can be found in [39].

2.1 Analog Neural Network Core

Synapse drivers The digital event handling logic injects
events into a custom CMOS-level bus to distribute the
spike events across an array of synapse drivers. This event
interface bus allows to target single or multiple synaptic
rows by means of a row select bus, which can be partially
masked by the receiver circuits. The signals on the event
interface, depicted in Fig. 8, allow the synapse drivers to
derive timing signals for the synapse circuits, which are
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Figure 1 Block-level diagram of a BrainScaleS-2 system, including
the ASIC itself as well as an FPGA managing the communication to
the host system.

then driven across the synaptic rows in terms of a 6 bit
synapse address label and an enable signal [22]. Synapse
drivers also implement short-term plasticity (STP) [49],
also following a pre-synaptic implementation approach as
in previous generations [41]. Virtual neurotransmitter levels
are represented as analog voltages on 64 storage capacitors
in each of the synapse driver circuits – one per 6 bit address.
Based on these voltage levels the length of the synaptic
current pulse transmitted to the neuron is modified, resulting
in a change of synaptic efficacy.

Synapse Array The main purpose of a synapse is to generate
an analog current pulse according to the STP-modulated
timing signals provided by the synapse drivers – and
naturally their pre-programmed weight value – by means of
a local digital-to-analog converter (DAC). The 6 bit weight
is stored in local static random-access memory (SRAM)
alongside a 6 bit address, which is matched against an
incoming event’s label. This scheme allows for up to 64
different pre-synaptic partners per row of synapes. Each
of the latter can be configured to be either excitatory or
inhibitory.

In order to allow for STDP-derived learning rules, the
synapse circuits also implement a local, analog circuit
for measuring the temporal correlation of pre- and post-
synaptic spikes. These correlation traces are stored on
capacitors to be digitized for hybrid plasticity [22], which is
described in Section 2.2.

Neuron Circuits In each column, the current pulses of
excitatory and inhibitory synapses are summed up and
low-pass-filtered by two corresponding inputs in the
neuron circuits [1]. In both BrainScaleS generations these
implement the adaptive exponential leaky integrate-and-fire
model [25]

C
dV

dt
= −gL(V − EL) + gL�T exp

V − VT

�T
− w + I ,

τw

dw

dt
= a(V − EL) − w ,

which adds an adaptation state variable w as well as an
exponential non-linearity to the underlying LIF equation
for the membrane potential V . The neuron’s operating
point is determined by its membrane capacitance C, leak
conductance gL, reversal potential EL, a soft threshold
VT, and an exponential slope �T; the strength of the
adaptation current is determined by conductance a and a
spike-triggered increment w ← w + b. All synaptic input is
represented by the total current I . Besides these differential
equations, the model includes a spiking condition where
a neuron emits an event as soon as its membrane voltage
crosses a threshold. In the neuromorphic implementation,
these spikes are latched by the neuron’s full-custom digital
backend circuit, where a priority-encoder is used to arbitrate
between and then digitize events from groups of neurons.
The events are then streamed out to the digital control logic.
Based on received events, the backend circuits also generate
refractory timing and other auxiliary signals for the analog
neuron implementation.

Each neuron instance is individually parameterizable
using a massively integrated analog parameter storage [28].
Besides 8 neuronal voltages and 16 currents, this capacitive
memory also also provides global parameters to other analog
circuits within the analog core.

2.2 Hybrid Plasticity

BrainScaleS-1, like its predecessor Spikey, already featured
an implementation of STDP [40, 42]. To allow for
the execution of a wider range of plasticity algorithms,
BrainScaleS-2 introduced a customly developed and freely
programmable processing element (PPU [20, 22]). The
custom general purpose core implements the Power ISA
[38]. It is accompanied by a single instruction, multiple data
(SIMD) vector unit which is tightly coupled to the columnar
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interfaces of the analog network core. This most notably
includes a full-custom SRAM controller to access the
synaptic memory. For the integration of correlation traces
or membrane voltages into plasticity algorithms, a column-
parallel single-slope analog-to-digital converter (CADC) is
used to digitize these analog observables. Additionally, the
PPU can access all other on-chip components via an on-
chip bus fabric, described in Section 2.3. This allows to
incorporate e.g. neuronal firing rates as observables for
plasticity algorithms and reconfigure on-chip components.

2.3 Digital Control

On-chip communication is facilitated by a custom-
developed bus architecture, which implements a subset of
the Open Core Protocol (OCP) [21, 36]; it is illustrated with
red arrows in Fig. 1. Both, the host the chip is attached
to and the PPUs can access the bus via its multi-master
capabilities. All configuration and control registers are con-
nected to the bus. It also interfaces with a number of SRAM
controllers for the analog core’s full-custom configuration
memory. The design is organized in a globally asynchronous
locally synchronous (GALS) fashion: the PPUs each run
in a separate clock domain with globally tunable clock
frequency to trade off optimal performance and energy effi-
ciency for a given task. Likewise runs the on-chip bus in
a dedicated clock domain together with all memory con-
trol and auxiliary logic. As an exception to the GALS
architecture, link and event handling are kept in a single
clock domain to avoid jitter in event transport when pass-
ing through asynchronous FIFOs. All clock domains are
decoupled using asynchronous FIFOs, denoted by strokes
across the arrows representing the on-chip bus in Fig. 1.
For BrainScaleS-2 systems, the clock signals are generated
by a phase-locked loop (PLL) developed by collaboration
partners at TU Dresden [29], which is not depicted in the
block-level schematic.

To achieve coherency with the continuously evolving
accelerated neuromorphic core, the BrainScaleS-2 chips are
connected to an FPGA via a low-jitter high-speed serial link.
The link is accessed on the FPGA via the playback executor
that consumes playback programs which it fetches from
local memory. The playback programs contain instructions
from a custom instruction set that facilitate the timed release
of actions like the injection of events or OCP commands
into the chip. Simultaneously, data coming from the chip is
tagged with timing information by the executor and stored
in memory as an experiment trace for analysis. Playback
programs can be either compiled locally on the FPGA by
an on-board processor or transferred into local memory via
Ethernet.

3 VerificationMethods

In the following paragraphs we present methods and tool
flows developed for the verification of the BrainScaleS-2
mixed-signal ASIC.

3.1 RTL Verification

The two important verification milestones are unit tests
and integration tests. Any design of sufficient complexity
must employ both methods, as without unit tests it is
unfeasible to localize bugs, while integration tests make
sure that all interfaces are implemented correctly and
there are no throughput mismatches [4]. The testbench
for integration testing needs to encompass as much of the
system as possible, ideally also including the majority of
the user software stack. Since the BrainScaleS System is
controlled by an FPGA via playback programs which are
generated by user software, it is convenient to use this
interface for software-RTL co-simulation. In the physical
system, compiled playback programs are transported to
the FPGA via Ethernet into local memory, from where
they can be fetched and passed to the FPGA executor
(cf. Section 2.3). In the simulation setup, we instantiate the
BrainScaleS design together with the FPGA executor and
their connecting link (cf. Fig. 2). The instances of analog

Figure 2 Integration testbench for the BrainScaleS-2 system. The
DUT are the BrainScaleS-2 design as well as parts of the FPGA
responsible for playback program execution.
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macros like the PLL or SRAM are replaced by behavioral
models. We then pass the compiled playback program via
the SystemVerilog direct programming interface (DPI) [45]
into a blocking FIFO connecting to the FPGA executor
which ensures the same execution pattern as in the physical
system. Errors are detected via software unit tests, as well
as RTL assertions monitored by the simulator. This setup is
not only used for RTL verification, but also as a convenient
reference for in-silico testing, since it is now possible to
transparently execute a playback program in simulation or
on the physical system and compare the results.

3.2 Full-Custom Verification

Mixed-signal neuromorphic circuits as implemented in the
BrainScaleS systems are designed to emulate complex
biological mechanisms. To allow for a flexible and
faithful replication of the underlying models, the circuits
must be tunable, which sometimes requires a large
number of analog and digital parameters. Both, the
biological prototype as well as the neuromorphic replica
can possess high-dimensional parameter spaces and a wide
range of operating points. Analog circuits are prone to
parameter deviations due to mismatch effects and thus
require additional calibration to reach a target operating
point. While individual components can often be unit-
tested with conventional simulation strategies, assessability
of a complete circuit’s functionality is limited due to
error propagation and inter-dependencies of parameters.
Verifying such complex circuits is hence a challenge.

Software-driven simulation of such designs can aid the
developer to increase pre-tape-out verification coverage,
by allowing to programmatically generate stimuli and
perform advanced analyses on recorded data. Although
inherently scriptable, the Cadence Virtuoso Analog Design
Environment does not feature an ecosystem as rich as of
more widely used programming languages [10, 11].

3.2.1 Interfacing Analog Simulations from Python

We implemented the Python module teststand to provide
tight integration of analog simulations into the language’s
ecosystem. Teststand does not implement a new simulator
but rather represents a thin layer to interface with the
Cadence Spectre simulator and other tools from the Cadence
Design Suite (cf. Fig 3).

Netlists are directly extracted from the target cell
view as available in the design library. The data is
accessed by querying the database via a script executed
as a child process, using Cadence’s scripting language
OCEAN [10]. Teststand then reads the netlist and modifies
it according to the user’s specification. In addition to
the schematic description, Spectre netlists also contain

Figure 3 Structure of a teststand-based simulation including the
interaction with the Cadence Design Suite.

simulator instructions. Teststand generates these statements
and hence potentially supports all features provided by the
backend. Specifically, the user can define analyses to be
performed by the simulator, such as DC, AC, and transient
simulations. Monte Carlo (MC) analyses are supported as
well and play an important role in the verification strategies
presented below.

The user specifies the simulation including e.g. stimuli,
parameters, and nodes to be recorded using an object-orien-
ted interface that resembles Spectre simulation instructions.

The simulate()-call executes Spectre as a child
process. Basic parallelization features are natively provided
via the multiprocessing library. Scheduling can be trivially
extended to support custom compute environments. The
simulation log is parsed and potential error messages are
presented to the user as Python exceptions.

Results are read and provided to the user as structured
NumPy arrays. This allows to resort to the vast amount of
data processing libraries available in the Python ecosystem
to process and evaluate recorded data. Most notably, this
includes NumPy [37], SciPy [31], and Matplotlib [30]. As
a side effect, the latter allows to directly generate rich
publication-ready figures from analog circuit simulations.

3.2.2 Monte Carlo Calibration

Teststand’s benefits become most clearly visible in con-
junction with MC simulations, which allow to asses the
performance of a circuit under the influence of random vari-
ations in the production process. Traditionally, developers
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analyze a circuit’s performance under statistical parameter
variations that mimic in-silicon imperfections to allow them
to anticipate post-tape-out functionality and yield. More-
over, by fixing the MC seed a set of virtual instances can be
obtained, which can be individually parameterized and ana-
lyzed, similar to an array of actual in-silicon instances of the
design.

Such simulations can be iteratively and algorithmically
modified. This concept can be used to optimize bias and
reference parameters θhw of a design to reach a desired
operating point determined by a set of model parameters
θmodel. In the case of a neuromorphic circuit these can for
example be given by a set of potentials, conductances, and
time constants. Such a MC calibration can be performed
on each sample individually to also equilibrate mismatch-
induced effects.

The approach to find a suitable parameter set generally
depends on both model and circuit. One possible strategy is
based on iteratively reconfiguring and probing the design’s
behavior. An effective implementation will likely be based
on a binary search. This method is particularly useful for
parameters that are intended to be kept constant during
operation, e.g. to compensate for a fixed offset. In other
scenarios it might be desirable to find and measure a
transformation between the model’s and circuit’s parameter
spaces θhw(θmodel) and make it persistent. These data
can then later be reused to perform one or multiple
benchmarks on the calibrated instance, incorporating
potentially different operating points.

These calibration algorithms are – when required – often
implemented only after tape-out. Already implementing
them for simulated instances, however, brings several
major advantages. It allows the designer to determine a
suitable calibration range and resolution and estimate the
post-calibration yield. The co-development of circuits and
algorithms leads to better hardware but also improved
software, and might reveal details in their interplay
otherwise potentially overlooked. Especially for complex
circuits with high-dimensional parameter spaces there might
occur multidimensional dependencies which can be hard
to resolve. Actually calibrating such a circuit as a whole
might reveal insufficient parametrization that would not
have been found in tests of individual sub-components. In
order to uncover potential regressions due to modifications
to a circuit, simulations based on teststand can easily be
automated and allow continuous integration testing for full-
custom designs.

For the BrainScaleS systems, the use of teststand has
lead to large increase of in-silicon usability. It was used
throughout the verification of various components of the
BrainScaleS-2 ASICs, including the current neuron imple-
mentation [2, 35]. As a more compact example of teststand
usage, we want to present a verification strategy for the

BrainScaleS-2 synapse driver circuit, focussing on the ana-
log implementation of short-term plasticity (STP). The
testbench shown in Fig. 4 is centered around the synapse
driver as the design under testing. The latter is accompa-
nied by an instance of the synapse circuit. To mock parasitic
effects due to the synapse array’s spatial extents, an RC
wire model based on post-layout extractions is inserted in
between the two instances. Finally, a simple neuron circuit
based on ideal components is included in the testbench, inte-
grating the post-synaptic currents to form the characteristic
post-synaptic potentials.

The testbench is controlled from Python code using test-
stand. Both input interfaces, the SRAM controller as well as
the event interface receiver, are mocked in Python, allow-
ing for the verification of the entire design in a realistic
scenario, beginning with accessing the configuration mem-
ory and then moving to processing of synaptic events. The
synapse driver is exposed to predefined input spike trains
consisting of a series of equidistant events. The design’s
response is recorded and then processed using tools from
the Python ecosystem in order to extract parameters from
the biological model [49]. Thus, quantities as the cir-
cuit’s synaptic utilization and the recovery time constant,
describing the decay and re-uptake of synaptic resources,
can be benchmarked against specification and constraints.
More importantly, a mismatch-induced offset in synaptic
efficacy can be extracted and compared across multiple
virtual synapse drivers. Following a binary search based
on their deviation from a target value, a 4 bit offset cali-
bration parameter in the DUT’s configuration memory is
iteratively reprogrammed, minimizing the offset. Imple-
menting this calibration routine before tape-out allowed to
fully judge the circuits usability. Fig. 4 includes histograms
of the extracted offsets for 128 synapse driver instances,
prior to and after calibration. Applying the same calibra-
tion methodology to the taped-out circuits resulted in very
similar distributions. While certainly relying on the quality
of the models provided with the process design kit, these
results show that the advanced verification methods facili-
tated by teststand allow to successfully pre-asses the behav-
ior of even complex full-custom circuit designs that require
calibration.

4 Physical Implementation

Physical implementation describes the process of generating
an ASIC layout from a netlist description. It is part of a
usually customized design flow which is applied during the
overall design process. For BrainScaleS-2 we apply separate
flows for analog and digital design as illustrated in Fig. 5.
Analog layout is carried out using Cadence Virtuoso and
shall not be covered in this paper.
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a b

Figure 4 Examplary MC calibration workflow using teststand for an
STP circuit. a Testbench and corresponding program flow. b Offset
distribution prior to (black) and after (red) calibration for a virtual as

well as an in-silicon circuit array. In both cases the calibration was
performed on 128 samples/instances.

We are using a digital top-level description for all
BrainScaleS chips (cf. Section 2.3), thus top-level chip
assembly is carried out in the digital design flow, using
Cadence Innovus. Depending on the complexity of the
specific design, we follow a hierarchical implementation
approach using separate design partitions which might be
instantiated multiple times in the design. Besides this re-
usability, partitioning the design has the main advantage
of a dedicated implementation approach per partition, for
example optimized for a purely digital partition, or a
partition having or containing a mixed-signal interface.

Our digital logic is written in SystemVerilog, and
partially in VHDL. The gate-level netlist which is the
basis for physical implementation is generated during logic
synthesis, where the RTL description of the logic is mapped
to a standard cell library [47]. Blocks with more complex
functionality (such as large SRAM blocks, PLLs) need to
be provided as pin-level macros and are directly instantiated
already in the RTL description. Both, logic synthesis and

physical implementation require a pin-level characterization
of the signal timing of the blocks in order to correctly
analyze static timing of the whole design. Characterization
is also required for our analog neuromorphic circuits, which
are directly instantiated in the SystemVerilog source. The
following section covers methods that we have developed
for this purpose.

4.1 Timing Analysis at Mixed-Signal Interfaces

The PPU has local memory for program data and vector
operations, but also accesses the memory that has been
implemented into the synapse array for digital synaptic
weight storage. Thus, the synapse array can be accessed
row-wise by the PPU, with every column of the array being
directly connected to the synapse memory access controller.
The resulting data bus has a width of8 bit times number of
synapses per row.
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Figure 5 Simplified mixed-signal design flow. Shaded elements are
explained in more detail in the main text. In digital physical design
(large grey block), only non-standard or noteworthy steps are explcitly

mentioned. The implement partition(s) and implement TOP design
steps each comprise a complete place-and-route implementation flow,
including in-place timing optimizations, clock tree synthesis, and STA.
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It is desirable to minimize the access time to the synapse
weight storage in order to maximize the weight update
rate during plasticity operation [19]. To facilitate this and
reduce access latencies, a full-custom SRAM controller
has been implemented in the synapse array [27]. It has a
fully synchronous digital interface towards the PPU that is
designed to operate at the maximum targeted PPU operating
frequency of 500MHz. All circuits behind the registers of
this interface are covered by the verification steps in the
analog design flow and do not have to be taken into account
for timing analysis at the interface. As a consequence, only
the communication with the interface registers needs to
be verified in order to ensure correct functionality at this
mixed-signal interface.

4.1.1 Timing Characterization of Anncore

Synchronous digital circuits are commonly implemented
using a set of standard cells that implement logic gates
and memory elements (e.g. flip-flops). In contrast to analog
circuits, performance of digital circuits is not evaluated by
transistor-level simulations, but by STA [8] which verifies
whether setup and hold timing constraints are met for all
flip-flops in the design, thus, whether the design is able to
operate at a given clock period. STA requires information
about setup, hold, and clock-to-output time of flip-flops,
delays through logic gates, as well es external capacitive
load on cells and the propagation delay on signal wires.
Among those, all cell-related delays are dependent on the
actual wiring of the cell, operating conditions and process
corner. Therefore, not a single value can be given for e.g.
a gate propagation delay, but the cells rather have to be
characterized for several sets of conditions, usually covering
typical values that arise during operation. Results are stored
in a timing library file containing either look-up table data or
a current source model [8]. For each combination of process
corner and operating conditions that should be analyzed one
such library is provided by the standard cell vendor. When
calculating STA, the tools are allowed to extrapolate from
and interpolate in between the given values.

Commercial tools exist for characterizing custom
designed standard cell libraries, as for example Cadence
Liberate. These tools can automatically determine the rele-
vant signal paths through circuits representing logic gates or
flip-flops and then carry out a series of analog simulations
in order to determine the aforementioned delay values under
a certain set of conditions. However, these tools are scarcely
configurable for automatically analyzing complex VLSI cir-
cuits, like the described synapse memory interface of the
anncore. For this reason, a Python-based characterization
framework has been developed in [26].

Sequential input pins with a timing relation to a clock
input are characterized for capacitance, setup and hold time.

Output pins associated to a clock input are characterized for
clock-to-output delay and load-dependent output transition
time. For example all data pins of the synapse memory
interface belong to this category. Non-sequential input pins
are solely characterized for their capacitance and output pins
for their transition time. Potential timing requirements on
these pins need to be defined externally. This includes for
example pins of custom SRAM arrays, static control pins,
and the event interface.

The clock signal of the synapse array memory interface’s
registers is distributed in a fly-by manner (see Fig. 9),
along the edge of the synapse array. This edge has a
length of 1.5mm in the current BrainScaleS-2 chip. Since
no balanced clock tree exists for these registers, a correct
characterization of the resulting spread in timing constraints
is one of the most crucial results of this characterization.

The digital timing of the anncore is characterized after
completion of the analog design process and the resulting
data is stored in a timing library file [8]. It can then directly
be instantiated in the RTL code and is treated as a macro
block throughout the digital design flow. For the layout of
the current anncore (see Section 4.2), a spread in setup and
hold times of approximately 150 ps has been determined.
Most notably, the setup-and-hold window of the data pins
which usually lies around the clock edge of a flip-flop lies
up to 600 ps after the related edge at the clock pin, due to
the internal delay on the clock signal.

For the digital design implementation of the current
BrainScaleS-2 ASIC, we have used a standard bottom-up
hierarchical synthesis flow with Synopsys DesignCompiler
to obtain a single shared implementation for the two
PPU instances. As a first step during subsequent physical
implementation the floorplan needs to be laid out. The
illustrated floorplan of the current BrainScaleS-2 full-size
ASIC is depicted in Fig. 7. Non-standard floorplanning and
further physical implementation steps will be described in
the following subsections.

4.2 Anncore Abstract View

All analog circuits of the BrainScaleS architecture are
arranged such that they are combined into one large analog
macro block (anncore). When implementing full-sized
ASICs with up to 512 neurons and 256 synapse circuits
per neuron, we split the resulting VLSI synapse array
into several subunits because resistance and capacitance
of the long wires would lead to undesirably high energy
consumption and internal signal delay. The drawback is
an increased number of pins that result at the split edges
and require additional routing when connecting with the
digital logic. In case of the current BrainScaleS-2 chip
we considered a 4 quadrant layout as a good compromise
between energy consumption and routability. It is illustrated
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in Fig. 7, where the top right quadrant is illustrated. Two
halves of the array are arranged such that the neuron circuits
are located at the horizontal symmetry axis in order to
minimize vertical wire capacitances. To balance horizontal
wire capacitances and routability we choose to introduce
a vertical split which adds additional row drivers and
according pins at the split edges. The quadrants have been
arranged in a way that all control pins are facing towards
a cut-out in the center of anncore (see zoom-out in Fig. 6).
The strategies we developed to connect to the pins in this
center cut-out will be described in the following.

During physical implementation, abstracted layout data
are required to floorplan the design and connect the block
using the auto-router. We generate these using Cadence
Abstract Generator, with a few non-standard tweaks to
obtain a routable block, since physical size, shape, and
number of pins pose several challenges to the standard
abstract generation.

The anncore abstract is illustrated in Fig. 6. Approxi-
mately 85% of the pins are made up by the interfaces for
synapse memory access and column ADC readout. These
pins are placed at the top and bottom edges of the anncore
to facilitate direct access by the adjacent PPUs. The other
15% of the pins consist of SRAM and auxiliary control pins
for the neuron configuration, the capacitive memory and the
event communication. They are placed at the row-ends of
their connected circuits for neurons and capacitive memory,
and at the bottom edge of the event interface columns, all
facing towards the cut-out in the center (zoom-out in Fig. 6).

All control logic, including power supply, the according
clock tree and the interface to the top-level control need to

Figure 6 Abstract view of the anncore. Zoom-out: center cut-out with
digital configuration pins of neuron circuits, capacitive memory and
PADI bus.

Figure 7 Layout of the current BrainScaleS-2 full-size ASIC. It
contains 512 neuron circuits and 131072 synapse circuits which are
arranged in 4 quadrants. Data lines of the synapse arrays and the
column ADCs are directly connected to the PPUs at the top and bottom
edges. Each PPU contains 8 vector units with dedicated memory
blocks in addition to the general-purpose processor part. Analog
quantities like membrane voltages or outputs of the analog parameter
storage can be digitized on-chip by the ADC in the top left edge. Its
data is merged with control and neural event data in the digital control
part (left edge). Data transmission is secured by a custom developed
transport layer, the physical interface consists of 8 SerDes blocks [44]
with a data rate of up to 2Gbit s−1 per block.

be placed in this cut-out area. It has a size of approximately
1440× 225μm2 with an area of approximately 2× 105μm2

being available for standard cell placement due to the
dumbbell-shaped outline. This would allow for roughly 30 k
flip-flops of minimum size at 100% placement density. All
but the two topmost metal layers are available for routing;
the two topmost layers are exclusively used for power
distribution. Pins to the analog circuits are spread over the
complete boundary, while care has been taken to optimize
accessibility by the auto-router: they have been placed on
layers with horizontal/vertical preferred routing direction
depending on the edge, and blockage generation around the
pins has been optimized for routability, per layer.

Access to this area has been enabled by means of two
routing channels that have been left open during analog
layout. Three horizontal routing layers are available inside
these channels and they have been sized in a way to
accommodate routing of all required interface signals. The
generation of placement blockage in the generated abstract
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view has carefully been tuned to represent the actual outline
of only the layout of metal layers defining the cut-out and
channels, and not the covering power distribution layers (cf.
Fig. 6).

Standard cells can therefore be placed inside the cut-
out and the channels but the tool is restricted to only place
buffers within the channels that are required to meet the
timing constraints. This allows keeping the routing channels
as small as possible while still being able to achieve timing
closure. Bus guides have been used to guide the auto-
router and use one channel for inbound and one channel
for outbound signals, only. All corresponding interface logic
has been constrained to be placed in the proximity of the
channel entry areas.

4.3 Mixed-Signal Event Input

Neural events are injected into the synapse drivers using
four event interface buses in each half of anncore. Each bus
consists of four signals address[5:0], select[4:0],
pulse, and stable. These signals are generated by
flip-flops in the event handling logic and are required to
keep below a maximum skew of 200 ps at the according
anncore pins (see undefined regions in Fig. 8 a). Since the
inputs to the anncore have no synchronous relation to a
clock signal, the timing to these pins cannot be constrained
by a sequential relation, like the standard setup and hold
conditions between two flip-flops. The signals rather have to
be treated like a source-synchronous bus with a strobe signal
as a reference signal and all bus signals must be constrained
to stay within a maximum skew compared to the strobe
signal. From a functional point of view, the pulse signal
acts as this strobe signal (cf. Section 2.1 and Fig. 8 a). While
allowing for a clock skew of 50 ps to the registers generating

these signals, they have been constrained for a maximum
skew of 150 ps w.r.t. the pulse signal using the following
constraints:

The mutual definition of a negative setup time between
the signals results in a temporal window within which
the signals must arrive at the anncore pins. The above
statements are part of the timing constraints which
are used as an input already for synthesis. They are
interpreted equally to a regular setup constraint and the tool
fixes violations during setup-time optimization steps. The
resulting delay distribution of all affected signals is shown
in Fig. 8 b. In the typical and fast corner the delay values
cover a range of 125 ps and 75 ps, respectively. In the slow
corner, the spread is about 190 ps which is perfectly within
specification.

4.4 Partition Interface Timing

In Fig. 7 the floorplan of the most recent version Brain-
ScaleS-2 chip is shown. The two PPUs are placed at the
top and bottom edges as a copy of one implemented design
partition. Each PPU has a purely digital interface to the
digital control logic at its left edge and an interface to the
anncore which is connected to anncore pins (see also Fig. 9).
Registers inside the PPU partition are connected to registers
in the anncore while both receive the same clock. This
clock can be switched off towards the synapse array by a

a b

Figure 8 a The event interface consists of the row select and event addresses as well as three timing signals for the synapse driver. b Slack
distribution w.r.t. pulse pins at the event interface.
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clock gate, controlled by the PPU, to save dynamic power.
The main problem that comes with this configuration is the
fact that this gated clock is yet to be implemented inside
the PPU partition, thus has an initially unknown clock tree
propagation delay. Therefore the standard methods to derive
the interface timing for the partition implementation are not
applicable here. We use the following approach to solve
this, which could be considered a generic solution to such
configurations:

In general, timing budgeting using virtual in-place
optimization (IPO) provided by the Innovus tool is used
to derive the partition interface timing before splitting off
the PPU design for separate implementation. A preliminary
place-and-route step and a provisional timing optimization
is automatically run in this step to estimate the signal timing
at partition boundaries. During budgeting, a certain amount
of available time on signal paths between two flip-flops
before and after a partition boundary (slack) is distributed
between both sides, depending on provisional optimization
results. The changes made during optimization are then
reverted and actual timing optimization has to be carried
out during partition and top-level implementation, using the
slack values that have been distributed to the respective
signal pins. However, since the involved algorithms assume
that during later implementation steps the optimization
engine will operate on both sides of the partition boundary,
this cannot be applied to the signals directly connecting
to the anncore since no buffers can be added outside the
partition. This affects all grey interconnect lines and routing
inside the anncore (cf. Fig. 9).

To solve this problem the following method is applied
for budgeting of the partitions’ timing constraints before
partitioning the design: Pin locations at the partition
boundary are fixed, adjacent to their anncore counterparts,
in order to have predictable routing lengths between
PPU partition and anncore. Sufficiently sized buffers are
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Figure 9 Data path and alock distribution network between the
synchronous synapse memory interface and the corresponding logic in
the plasticity processing unit. Grey wires illustrate direct connections
between partition and anncore pins. Dashed buffer symbols denote
signal and clock paths that can be timing optimized. All other routing
and the placement of the solid buffers is fixed.

constrained to be placed close to those pins inside the PPU
partition, in order to fix the capacitive load on input pins and
the drive strength at output pins, respectively (solidly drawn
buffers in Fig. 9). These buffer cells are already instantiated
in the RTL description; they are merely up- or downsized in
this step, according to their actual load. After completion of
these steps, a preliminary routing and STA is run in order to
determine the signal delays between partition boundary and
anncore (grey interconnect lines and in-anncore routing are
fixed at this step). The result is then used as a fixed slack
outside the partition, while the remaining slack is available
for the timing paths inside the partition.

The delay between partition and anncore pins is
determined in a similar fashion for the according clock
signals. In order to get the delay reported correctly, a clock
buffer is placed and fixed close to the partition boundary,
serving as a start point for the path segment between PPU
partition and anncore. The determined delay is then given
to the clock tree synthesizer and is accounted as an external
additional delay during clock tree synthesis. Toghether
with the strategy for fixing external signal delay, the setup
condition for the anncore registers can be written as

(tcp + �tcp) + tdp + tdt + tco + tsut
︸ ︷︷ ︸

delay fixed

≤ tcp + tct + tper
︸ ︷︷ ︸

delay fixed

, (1)

with tcp being the clock tree delay inside the PPU and Δtcp
the skew after clock tree synthesis, tdp the signal path delay
inside the PPU (logic and wires), tdt the external signal
delay between PPU and anncore, tco the clock-to-output
time of the flip-flops inside the PPU, tsut the setup time of
the anncore register, tct the portion of the clock tree delay
between PPU and anncore, and tper the clock period. This
condition must be met by the tool during optimizations
in the PPU partition. To achieve this, the clock port to
the synapse array and the related registers inside the PPU
partition are constrained into a separate skew group which
can subsequently be optimized separately by the clock tree
synthesizer. The maximum allowed skew within this group
is set to 0 ps to force the clock tree synthesizer to achieve as
identical as possible tcp at all those endpoints. It is allowed
to skew all other registers, if useful for timing optimization.

Ideally, the described setup condition could then be met
by timing optimization steps during partition implementa-
tion. However, zero skew cannot be realized by the clock
tree synthesizer, especially over large spatial distances, as
is the case along the anncore edges. As a consequence, the
resulting clock skew �tcp at the constrained registers has to
be checked after clock tree synthesis is finished. This max-
imum skew value is a timing uncertainty that could not be
taken into account during calculation of the partition timing
budgets. Therefore, it has to be accounted for in the sig-
nal paths between PPU partition and anncore by adding the
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skew value as a slack adjustment to these paths in the scripts
that are used for partition implementation. This way, setup
timing gets slightly overconstrained for most paths, yet we
found no other way to safely account for the inevitable clock
skew. At least one iteration of the partition implementation
design flow is necessary to obtain the skew values and add
them to the scripts, ideally already before initial placement,
to have consistent constraints throughout the design flow.

4.5 Partition and Top-Level Implementation

In the PPU partition, each slice of the vector unit is
connected to 32 synapse columns each and operates only
on data local to the slice. This spatial correlation results
in a predictable implementation quality of the vector units
themselves in terms of area and timing. However, the
vector control unit requires access to all synapse data, and
the state values of the vector units. Therefore, the critical
path inside the PPU partition runs between registers in
the outermost vector units through the vector control unit
which is located in the partition’s geometrical center to the
outermost synapse array data pins. Since the responsible
RTL designer left the group prior to tapeout we could not
improve this path by e.g. adding pipeline registers, for this
chip revision. PPU partition implementation is carried out
using a standard physical design flow, including pre- and
post-route in-place timing optimizations and the previously
discussed modifications to clock tree synthesis and the
slack adjustment. Maximum expected clock frequency of
the PPU in the worst process corner is 245MHz, due to the
aforementioned critical path. Initial measurements, running
a memory test on the full synapse array which was executed
on the PPU using the access path through the vector units
yielded a maximum clock frequency of 400MHz.

The top-level implementation essentially follows a
standard physical design flow as well, with two exceptions:
First, drivers to full-custom SRAM bitlines of the various
configuration memories in the anncore center are placed
close to their corresponding pins, to obtain equal parasitic
load on those lines. This is done automatically by means of
a script that determines pin location and the connected cell,
and places the cell at the closest legal location to the pin.
Second, the clock tree generation to the center cut-out in
the anncore is constrained in a way to optimize balancing
between flip-flops that are located outside and inside the
cut-out area. This is beneficial in terms of overall clock tree
depth, thus power consumption on the clock tree, because
balancing the tree globally would require an adaption of
all clock sinks to the additional delay introduced by the
routing channels into the anncore center. A similar approach
to the technique described in Section 4.4 is taken to achieve
good balancing: all registers that are to be placed inside
the anncore center are constrained into a dedicated skew

group which is disjunct from the remainder logic, with no
skew constraint set. This way, the clock tree synthesizer can
optimally balance inside and outside skew with respect to
the anncore center.

As an implementation result, a total of 33003 standard
cells have been placed in the anncore center, at an average
placement density of roughly 75% in the 2 × 105μm2

area and no issues in routability (see Section 4.2 for an
area calculation). All control and event handling logic
that connects to the mixed-signal interfaces of the analog
neuromorphic circuits is thus either contained inside the
square area of the anncore, or in the PPUs which are
connected by abutment. Timing could be closed in all
process corners, the target clock frequencies of 250MHz
and 125MHz for link/event handling clock and on-chip bus
clock, respectively have been met and proven in silicon (cf.
Section 3.2).

5 Applications

The BrainScaleS systems have been used for a wide range
of experiments. We have demonstrated porting of deep
artificial neural networks to the wafer-scale BrainScaleS-1
system with in-the-loop training [43]. The platform was also
used for LIF sampling [32], a spike-based implementation
of Bayesian computing. The hybrid plasticity scheme of
BrainScaleS-2 has been succesfully applied in a maze
runner task, where the neuromorphic agent has been trained
in the learning-to-learn framework [6, 9]. Also using the
plasticity processor, we have optimized spiking networks to
task complexity by tuning the distance to a critical point
[13]. As a first implementation of reinforcement learning
on BrainScaleS-2, a virtual player was trained in the game
of Pong [50]. This selection of experiments emphasizes
the flexibility of the BrainScaleS architecture which is
promising for further efficient implementations of spike-
based models like SuperSpike [12, 51], E-prop [7], or
bayesian confidence propagation neural network (BCPNN)
like in [17].

Here, we also want to consider a reinforcement learning
task [46], making use of a wide range of the system’s
functionality, demonstrating the successful application of
the design methods presented in this paper. In reinforcement
learning, an agent interacts with its environment and tries
to maximize its expected future reward, obtained by the
environment. Especially, we consider a reward-modulated
spike-timing-dependent plasticity (R-STDP) learning rule
in a pattern detection experiment. R-STDP is a three factor
learning rule, combining reward information provided by
the environment with STDP-type correlation data. The latter
are used as eligibility traces to solve the credit assignment
problem [18].
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The agent i accumulates the instantaneous reward Ri

given by the environment to obtain an expected reward

〈Ri〉 ← 〈Ri〉 + γ (Ri − 〈Ri〉) , (2)

where γ scales the impact of previous trials. Reward, mean
reward, as well as the causal STDP traces eij enter the
weight update equation

�wij = η · (Ri − 〈Ri〉) · eij + ξij , (3)

with a learning rate η and a random walk ξij , and j denoting
the pre-synaptic neuron.

In the following we consider a task, where we stimulate
a population of neurons via 16 input channels. Each input
emits Poisson distributed background spikes with a rate ν.
Two patterns, termed A and B, are embedded into this noise
floor (Fig. 10). Each pattern consists of temporarily corre-
lated spikes on five fixed input channels. The two patterns
can be configured to incorporate overlapping channels to
increase task complexity. In the course of the experiment,
the network is trained such that all even neurons emit a
spike when pattern A is applied, whereas all odd neurons
fire when stimulated with pattern B. In the case where no
pattern is shown, all output neurons should remain silent.

Figure 10 Schematic illustration of the R-STDP experiment. The
input consists of Poissonian background spikes in which two input
patterns are embedded. The spikes of each source are sent to a single
synapse driver (green triangles) to enter the synapse array. Even
neurons (red) are trained to fire if the network is stimulated with
pattern A, whereas the odd ones (blue) should fire if pattern B is
applied.

An instantaneous binary reward Ri is assigned to each
neuron i: In case a neuron fires succesfully according to the
applied pattern – or remains silent in absence of its specific
pattern – it obtains a reward Ri = 1. If it, however, emits a
spike when it is exposed to the opposite stimulus – or only
background noise –, it receives no reward, i.e. Ri = 0.

The update rule is implemented on the PPU. It reads
out the neuronal rate counters in short intervals to
determine the instantaneous success and assign reward
signals. Based on the latter, the expected reward is
continuously updated in memory as a running average of
the previously collected reward. The processor furthermore
reads synaptic correlation measured by the analog sensors
in the synaptic circuits. Joining reward and these eligibility
traces, the weight update is calculated in a parallel fashion
using the vector unit. In addition, the PPU simulates
the “environment”. This includes the generation of input
patterns as well as background spikes.

In the model, synaptic weights wij are not restricted
to have either a positive or negative sign. As the synapse
drivers on the neuromorphic platform are implemented
according to Dale’s law [14] and hence are exclusively
configurable to be excitatory or inhibitory, we join two
synaptic rows with opposite sign to represent a single
input. The PPU can transition between positive and negative
weights by exclusively writing the absolute value of the
weight to only the synapse carrying the appropriate sign.

a

b

Figure 11 The mean expected reward converges to approximately one
for all neurons during training. aWeight evolution of all 256 synapses.
b Median mean reward reached by neurons in each population. The
different colors correspond to the median mean expected reward
inherent in neurons trained on pattern A (red) and pattern B (blue).
Errors correspond to the 15 and 85% percentiles of the mean expected
reward of the neurons in the respective population. All neurons reach
a sufficiently high reward despite of pattern overlap.
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The experiment was executed for 16 neurons on a
BrainScaleS-2 prototype [22]. For the results shown in
Fig. 11, the input patterns were overlapping by 40%. During
training, the mean expected reward

∑

i〈Ri〉 converges to
approximately one for all neurons, indicating a state, where
the neurons can discriminate between the two patterns.
The runtime of the experiment is heavily dominated by
the transfer of firing rates and weight data to the host
computer. Reading out the experiment’s state only at the
end of training reduces the runtime per training step to
290ms. This demonstrates the advantages of a hybrid
system combining an accelerated neuromorphic core with a
flexible plasticity processor.

6 Discussion

We presented implementation and verification methods
that we have developed and applied while designing the
65 nm BrainScaleS-2 ASICs. Digital logic is rigorously
verified using the framework presented in Section 3.1.
Besides unit testing, we apply a DPI-based testbench for
full-chip integration testing. It is directly interfaced to the
BrainScaleS software stack, which allows for an efficient
co-design and -verification of hardware and software. This
way, our chips can be utilized directly after commissioning
of the hardware systems.

In section Section 3.2 we presented a framework for
Python-based control and evaluation of analog circuit sim-
ulations. Teststand allows for the efficient implementation
of pre-tapeout calibration algorithms, especially of interest
in conjunction with MC simulations. This verification strat-
egy has shown to dramatically increase in-silicon usabil-
ity. Leveraging the rich ecosystem of Python, the method
is applicable to complex optimization tasks. Circuits can
easily be benchmarked against arbitrary datasets or even
numerical simulations of a reference design. It furthermore
allows for the optimization of circuit designs themselves,
e.g. by applying evolutionary algorithms to optimize tran-
sistor sizing.

Physical implementation of our ASICs is carried out
using methodologies described in Section 4. A novel
strategy for timing constraint derivation at design partition
boundaries has been presented and applied to signals
between PPU partition and anncore. Successful timing
closure on this interface has been proven in silicon, albeit
the overall target clock frequency of 500MHz in the
PPU partition could not be reached due to a critical
path that should be eliminated in a future chip revision.
Furthermore, a constraint strategy for the skew-minimized
implementation of source synchronous signals to the event
interface has been presented and verified in all process
corners. First measurement results, presented in Section 3.2,

of the STP circuits utilizing these event interfaces also prove
a successful implementation.

Although the described methods for timing character-
ization and abstract generation, as well as the presented
physical design methods should be applicable to simi-
lar problems, also outside the neuromorphic domain, the
overall methodology is currently targeted at chips contain-
ing one anncore and up to two PPUs. When scaling the
BrainScaleS-2 system up, it is conceivable to place several
blocks combining anncore, including its control logic in the
center area and two PPUs, on one full-sized reticle. First,
the methodology would have to be extended with an addi-
tional partitioning step for this block, accounting for the
interface timing at the entry points of the routing channels in
the anncore abstract. Second, we are currently not applying
dedicated techniques to reduce dynamic power in the digi-
tal logic, besides automated clock gating and the manually
added clock gates. To improve on this, more fine-grained
automatic clock gating, and the frequency scaling features
provided by the PLL [29], should be used for the design of
larger systems.

To summarize the successful application of the methods
described in this paper, we presented an experiment
involving major parts of the BrainScaleS-2 hybrid plasticity
architecture in Section 5. With this example we hope
to illustrate that a successful ASIC implementation of
an accelerated analog neuromorphic system including a
flexible and programmable plasticity scheme does not only
rely on the circuit architecture but is facilitated by powerful
implementation methodologies as well as simulation and
verification strategies.
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