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Most of the traditional cryptanalytic technologies often require a great amount of time, known plaintexts, andmemory.+is paper
proposes a generic cryptanalysis model based on deep learning (DL), where the model tries to find the key of block ciphers from
known plaintext-ciphertext pairs. We show the feasibility of the DL-based cryptanalysis by attacking on lightweight block ciphers
such as simplified DES, Simon, and Speck. +e results show that the DL-based cryptanalysis can successfully recover the key bits
when the keyspace is restricted to 64 ASCII characters. +e traditional cryptanalysis is generally performed without the keyspace
restriction, but only reduced-round variants of Simon and Speck are successfully attacked. Although a text-based key is applied,
the proposed DL-based cryptanalysis can successfully break the full rounds of Simon32/64 and Speck32/64. +e results indicate
that the DL technology can be a useful tool for the cryptanalysis of block ciphers when the keyspace is restricted.

1. Introduction

Cryptanalysis of block ciphers has persistently received great
attention. In particular, recently, many cryptanalytic tech-
niques have emerged. +e cryptanalysis based on the al-
gorithm of algebraic structures can be categorized as follows:
a differential cryptanalysis, a linear cryptanalysis, a differ-
ential-linear cryptanalysis, a meet-in-the-middle (MITM)
attack, and a related-key attack [1, 2]. Differential crypt-
analysis, which is the first general cryptanalytic technique,
analyses how differences evolve during encryption and how
differences of plaintext pairs evolve to differences of the
resultant ciphertext pairs [3]. +e differential cryptanalysis
has evolved to various types of differential cryptanalysis such
as an integral cryptanalysis, which is sometimes known as a
multiset attack, a boomerang attack, an impossible differ-
ential cryptanalysis, and an improbable differential crypt-
analysis [1, 2]. Linear cryptanalysis is also a general
cryptanalytic technique, where it analyses linear approxi-
mations between plaintexts bits, ciphertexts bits, and key
bits. It is a known plaintext attack. +e work in [4] showed
that the efficiency of the linear cryptanalysis can be im-
proved by use of chosen plaintexts. +e authors in [5]
proposed a zero-correlation linear cryptanalysis, which is a
key recovery technique. +e MITM attack, which employs a

space-time tradeoff, is a generic attack which weakens the
security benefits of using multiple encryptions [6]. +e
biclique attack, which is a variant of the MITM attack,
utilizes a biclique structure to extend the number of possibly
attacked rounds by the MITM attack [6]. In a related-key
attack, an attacker can observe the operation of a cipher
under several different keys whose values are initially un-
known, but where some mathematical relationship con-
necting the keys is known to the attacker [7].

However, the conventional cryptanalysis might be im-
practical or have limitations to be generalized. First, most of
conventional cryptanalytic technologies often require a great
amount of time, known plaintexts, and memory. Second,
although the traditional cryptanalysis is generally performed
without the keyspace restriction, only reduced-round vari-
ants are successfully attacked on recent block ciphers. For
example, no successful attack on the full-round Simon or the
full-round Speck, which is a family of lightweight block
ciphers, is known [8–10]. +ird, we need an automated and
generalized test tool for checking the safety of various
lightweight block ciphers for Internet of +ings [11]. +ere
are various automated techniques that can be used to build
distinguishers against block ciphers [12–14]. Because re-
sistance against differential cryptanalysis is an important
design criterion for modern block ciphers, most designs rely
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on finding some upper bound on probability of differential
characteristics [12].+e authors in [13] proposed a truncated
searching algorithm which identifies differential character-
istics as well as high probability differential paths. +e au-
thors in [14] applied a mixed integer linear programming
(MILP) to search for differential characteristics and linear
approximations in ARX ciphers. However, most automated
techniques have endeavoured to search for differential
characteristics and linear approximations. Hence, the ma-
chine learning- (ML-) based cryptanalysis can be a candidate
to solve the above problems.

+is paper proposes a generic deep learning- (DL-) based
cryptanalysis model that finds the key from known plain-
text-ciphertext pairs and shows the feasibility of the DL-
based cryptanalysis by applying it to lightweight block ci-
phers. Specifically, we try to utilize deep neural networks
(DNNs) to find the key from known plaintexts. +e con-
tribution of this paper is two-fold: first, we develop a generic
and automated cryptanalysis model based on the DL. +e
proposed DL-based cryptanalysis is a promising step to-
wards a more efficient and automated test for checking the
safety of emerging lightweight block ciphers. Second, we
perform the DL-based attacks on lightweight block ciphers,
such as S-DES, Simon, and Speck. In our knowledge, this is
the first attempt to successfully break the full rounds of
Simon32/64 and Speck32/64 although we apply the text-
based key for the block ciphers.

+e remainder of this paper is organized as follows:
Section 2 presents the related work; Section 3 describes the
attack model for cryptanalysis; Section 4 introduces the DL-
based approach for the cryptanalysis of lightweight block
ciphers and presents the structure of the DNN model;
Section 5 describes how to learn and evaluate the model; in
Section 6, we apply the DL-based cryptanalysis to light-
weight block ciphers and evaluate the performance of the
DL-based cryptanalysis; finally, Section 7 concludes this
paper.

Notations: we give some notations, which will be used in
the rest of this paper. A plaintext and ciphertext are, re-
spectively, denoted by p� (p0, p1, . . ., pn−1) and c� (c0, c1, . . .,
cn−1), where n is the block size, pi is the ith bit of the
plaintext, ci is the ith bit of the ciphertext, and pi, ci ∈ 0, 1{ }.
A key is denoted by k� (k0, k1, . . ., km−1), wherem is the key
length and ki is the ith bit of the key, ki ∈ 0, 1{ }. Let k|

j
i

denote the key bits from the ith bit to the jth bit of the key,
that is, k|

j
i ≜ (ki, ki+1, . . . , kj). A block cipher is specified by

an encryption function, E(p, k), that is, c� E(p, k).

2. Related Work

ML has been successfully applied in a wide range of areas
with significant performance improvement, including
computer vision, natural language processing, speech, and
game [15]. +e development of ML technologies provides a
new development direction for cryptanalysis [16]. +e idea
of the relationship between the fields of cryptography and
ML is introduced in [17] at 1991. After that, many re-
searchers have endeavoured to apply the ML technologies
for the cryptanalysis of block ciphers.

+e studies on the ML-based cryptanalysis can be
classified as follows: first, some studies focused on finding
the characteristics of block ciphers by using ML technolo-
gies. +e authors in [18] used a recurrent neural network to
find the differential characteristics of block ciphers, where
the recurrent neural network represents the substitution
functions of a block cipher. +e author in [19] applied an
artificial neural network to automate attacks on the classical
ciphers of a Caesar cipher, a Vigenère cipher, and a sub-
stitution cipher, by exploiting known statistical weakness.
+ey trained a neural network to recover the key by pro-
viding the relative frequencies of ciphertext letters. Recent
work [20] experimentally showed that a CipherGAN, which
is a tool based on a generative adversarial network (GAN),
can crack language data enciphered using shift and Vigenère
ciphers.

Second, some studies used ML technologies to classify
encrypted traffic or to identify the cryptographic algorithm
from ciphertexts. In [21], an ML-based traffic classification
was introduced to identify SSH and Skype encrypted traffic.
+e authors in [22] constructed three ML-based classifica-
tion protocols to classify encrypted data. +ey showed the
three protocols, hyperplane decision, Näıve Bayes, and
decision trees, efficiently perform a classification when
running on real medication data sets. +e authors in [23]
used a support vector machine (SVM) technique to identify
five block cryptographic algorithms, AES, Blowfish, 3DES,
RC5, and DES, from ciphertexts. +e authors in [24] pro-
posed an unsupervised learning cost function for a sequence
classifier without labelled data, and they showed how it can
be applied in order to break the Caesar cipher.

+ird, other researchers have endeavoured to find out
the mapping relationship between plaintexts, ciphertexts,
and the key, but there are few scientific publications. +e
work in [25] reported astonishing results for attacking the
DES and the Triple DES, where a neural network was used to
find the plaintexts from the ciphertexts. +e authors in [26]
used a neural network to find out the mapping relationship
between plaintexts, ciphertexts, and the key in simplified
DES (S-DES). +e author in [27] developed a feedforward
neural network that discovers the plaintext from the ci-
phertext without the key in the AES cipher. +e authors in
[28] attacked on the round-reduced Speck32/64 by using
deep residual neural networks, where they trained the neural
networks to distinguish the output of Speck with a given
input difference based on the chosen plaintext attack. +e
attack in [28] is similar to the classical differential crypt-
analysis. However, the previous work failed to attack the full
rounds of lightweight block ciphers, and moreover, they
failed to develop a generic deep learning- (DL-) based
cryptanalysis model.

3. System Model

We consider (n,m) lightweight block ciphers such as S-DES,
Simon, and Speck, where n is the block size andm is the key
length. Our objective is to find the key, k, in which the
attacker has access to M pairs, [p(i), c(j)], of known
plaintexts, and their resultant ciphertexts encrypted with the

2 Security and Communication Networks



same key, that is, c(j) � E(p(j), k), j� 1, 2, . . ., M. Hence, the
cryptanalytic model is a known plaintext attackmodel. Because
the algorithms of block ciphers have been publicly released, we
assume that the algorithms of block ciphers are known.

4. Deep Learning-Based Approach

4.1. DNN Learning Framework. +e modern term “DL” is
considered as a better principle of learning multiple levels of
composition, which uses multiple layers to progressively
extract higher level features from the raw input [29]. In the
DL area, a DNN is considered as one of the most popular
generative models. As a multilayer processor, the DNN is
capable of dealing with many nonconvex and nonlinear
problems. +e feedforward neural network forms a chain,
and thus, the feedforward neural network can be expressed
as

f(x; θ) � f
(L+1)

f
(L)

· · · f
(1)

(x)􏼐 􏼑􏼐 􏼑, (1)

where x is the input, the parameter θ consists of the weights
W and the biases b, f(l) is called the lth layer of the network,
and L is the number of hidden layers. Each layer of the
network consists of multiple neurons, each of which has an
output that is a nonlinear function of a weighted sum of
neurons of its preceding layer. +e output of the jth neuron
at the lth layer can be expressed as

j
(l)

� f
(l)

􏽘
i

w
(l)
ij u

(l−1)
i + b

(l)
j

⎛⎝ ⎞⎠, (2)

where w
(l)
ij is the weight corresponding to the output of the

ith neuron at the preceding layer and b
(l)
j is the bias. We

apply a DNN to find the key of lightweight block ciphers.+e
multilayer perceptionmechanism and special training policy
promote the DNN to be a commendable tool to find affine
approximations to the action of a cipher algorithm.We train
the DNN by using Nr pairs of (p, c) randomly generated
with different keys in order that the system f finds affine
approximations to the action of a cipher, as shown in
Figure 1. In Figure 1, the loss function can be the mean
square error (MSE) between the encryption key, k, and the
output of the DNN, 􏽢k. +e performance of the trained DNN
is evaluated by using Nt pairs randomly generated with
different keys. Finally, givenM known plaintexts, we find the
key by using the trained DNN and the majority decision.

4.2. DNN Structure for the Cryptanalysis. +e structure of a
DNN model for the cryptanalysis is shown in Figure 2. We
consider a ReLU function, fReLU(x) � max(0, x), as the
nonlinear function. +e DNN has ηl neurons at the lth
hidden layer, where l� 1, . . ., L. Each neuron at the input
layer associates each bit of the plaintext and ciphertext; that
is, the ith neuron represents pi, and the (j+ n− 1)th neuron
represents cj, where i, j� 0, 1, . . ., n− 1. +e number of
neurons at the input layer is 2n. Each neuron at the output
layer associates each bit of the key; that is, the output of the
ith neuron corresponds to ki, where i� 0, 1, . . ., m− 1.
Hence, the number of neurons at the output layer is m. +e

output of the DNN, 􏽢k, is a cascade of nonlinear transfor-
mation of the input data, [p, c], mathematically expressed as

􏽢k � f([p, c]; θ) � f
(L+1)

f
(L)

· · · f
(1)

([p, c])􏼐 􏼑􏼐 􏼑, (3)

where L is the number of hidden layers and θ is the weights
of the DNN.

5. Model Training and Testing

5.1. Data Generation. +e ML algorithm learns from data.
Hence, we need to generate data set for training and testing
the DNN. Because the algorithms of modern block ciphers
are publicly released, we can generate N plaintext-ciphertext
pairs with different keys, where N�Nr+Ns, Nr is used for
training the DNN, and Ns is used for testing the DNN. Let
the jth sample represent [p(j), c(j); k(j)], j � 1, 2, . . . , N,
as shown in Figure 3, where c(j) � E(p(j), k(j)) for i≠ j,
p(i) ≠p(j), and k(i) ≠ k(j).

5.2.TrainingPhase. +e goal of our model is to minimize the
difference between the output of the DNN and the key. LetX
represent the training plaintext-ciphertext pairs [p(j), c(j)],
and let K represent the training keys k(j) corresponding to
the jth pair [p(j), c(j)], where 1≤ j≤Nr.

+e DNN learns the value of the parameter θ that min-
imizes the loss function, from the training samples, as follows:

θ∗ � argmin
θ

L(f(X; θ),K), (4)

where because the samples are i.i.d., the MSE loss function
can be expressed as follows:

MSE �
1

Nr · m
􏽘

Nr

j�1
􏽘

m−1

i�0
k(j)

i − 􏽢k
(j)

i􏼒 􏼓
2
, (5)

whereNr is noted as the number of training samples, k(j)
i is the

ith bit of the key corresponding to the jth sample, and 􏽢k
(j)

i is the
ith output of the DNN corresponding to the jth sample.

5.3. Test Phase. After training, the performance of the DNN
is evaluated in terms of the bit accuracy probability (BAP) of
each key bit. Here, the BAP of the ith key bit is the number of
the DNN finding the correct ith key bit, divided by the total
number of test samples.

Because the output of the DNN is a real number, 􏽢ki ∈ R,
we quantize the output of the DNN into {0, 1}.+e quantized
output of the DNN can then be expressed as

􏽥ki �
0, if 􏽢ki < 0.5,

1, otherwise.

⎧⎨

⎩ (6)

+en, the BAP of the ith key bit is given as

ρi �
1

Ns

􏽘

Ns

j�1
XNOR k(j)

i , 􏽥k(j)

i􏼒 􏼓, (7)

where Ns is the number of test samples. XNOR(a, b) has one
if two input values, a and b, are identical, and otherwise, it
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has zero. k(j)
i is the ith key bit corresponding to the jth test

sample, and 􏽥k(j)

i is the quantized output of the DNN with
the input of the jth test sample.

5.4. Majority Decision When M Plaintexts Are Known.
Assume that we haveM plaintext-ciphertext pairs encrypted
with the same key. If we have a probability of finding the ith
key bit, ρi, then the attack success probability of finding the
ith key bit, which is the probability of a correct majority
decision, is given as

αi(M) � Pr X≥
M

2
+ 1􏼒 􏼓 � 1 − Pr X≤

M

2
􏼒 􏼓

� 1 − 􏽘
M/2

j�0

M

j

⎛⎝ ⎞⎠ρj

i 1 − ρi( 􏼁
M−j

.

(8)

By using the de Moivre–Laplace theorem, as M grows
large, the normal distribution can be used as an approxi-
mation to the binomial distribution, as follows:

αi(M) � 1 −Φ
(M/2) − Mρi����������

Mρi 1 − ρi( 􏼁

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (9)

where Φ(z) � 􏽒
z

−∞ 1/
���
2π

√
e− x2/2dz. Hence, in order to find

the ith key bit with a success probability greater than or equal
to τ, the number of required known plaintexts is

M
∗
i � min M αi(M)≥ τ

􏼌􏼌􏼌􏼌􏽮 􏽯. (10)

6. Performance Evaluation

6.1. Data Set and Performance Metric. For the data set, we
generate the plaintext as any combination of a random
binary digit, that is, pi ∈ rand 0, 1{ }. However, for the en-
cryption key, we consider two methods.+e first method is a
“random key,” where the key has any combination of a
random binary digit, that is, ki ∈ rand 0, 1{ },
i � 0, 1, . . . , m − 1. Hence, the probability that the ith key bit
is one is 0.5 for all i. +e other method is a “text key,” where
the key has any combination of characters. For the sim-
plicity, as shown in Figure 4, the character is one out of 64
ASCII characters, which consists of lowercase and uppercase
alphabet characters, 10 digits, and two special characters:
T � a, b, . . . , z, A, B, . . . , Z, 0, 1, . . . , 9, ?,@{ } and
|T| � 64. Hence, in the text key generation, each eight bits
belongs to the set of T, that is, k|8·i+7

8·i ∈ rand(T), where
i � 0, 1, . . . , [m/8] − 1. For example, for a 64-bit key, the key
consists of 8 characters. In the text key, the probability that
the ith key bit is one depending on the order in each
character. Let the occurrence probability denote
μi � max(Pr(ki � 1), Pr(ki � 0)), where Pr(ki � x) is the
probability that the ith key bit is x. Figure 5 shows the
occurrence probability of the ith key bit μi. For example, the

Neural 
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Ciphertext, c

Plaintext, p

Loss 
function 

k

f

Key, k

Figure 1: A schematic diagram of the DL-based cryptanalysis.
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Figure 2: A DNN model.
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BIN
00000000 0 NUL
00000001 1 SOH
00000010 2 STX
00000011 3 ETX
00000100 4 EOT
00000101 5 ENQ
00000110 6

BEL
ACK

00000111 7
BS00001000 8
HT00001001 9
LF00001010 0A
VT00001011 0B
FF

00001101 0D CR
00001100 0C

00001110 0E SO
00001111 0F SI
00010000 10 DLE
00010001 11 DC1
00010010 12 DC2
00010011 3 DC3
00010100 14 DC4
00010101 15 NAK
00010110 16 SYN
00010111 17 ETB
00011000 18 CAN
00011001 19 EM
00011010 1A SUB
00011011 1B ESC
00011100 1C FS
00011101 1D GS
00011110 1E RS
00011111 1F US
00100000 20 SPACE

00100010
21 !

00100011
22 ″

00100100
23 #

00100101
24 $

00100110
25 %

00100111
26 &

00101000
27 ′

00101001
28 (

00100001

29 )
00001010 2A ∗

HEX Char. BIN
00101011 2B +
00101100 2C ,
00101101 2D -
00101110 2E .
00101111 2F /
00110000 30 0
00000110 31

2
1

00110010 23
300110011 33
400110100 34
500110101 35
600110110 36
7

00111000 38 8
00001100 37

00111000 39 9
00111010 3A :
00111011 3B ;
00111100 3C <
00111101 3D =
00111110 3E >
00111111 3F ?
01000000 40 @
01000001 41 A
01000010 42 B
01000011 43 C
01000100 44 D
01000101 45 E
01000110 46 F
01000111 47C G
01001000 48 H
01001001 49 I
01001010 4A J
01001011 4B K

01001101
4C L

01001110
4D M

01001111
4E N

01010000
4F O

01010001
50 P

01010010
51 Q

01010011
52 R

01010100
53 S

01001100

54 )
01010101 55 T

HEX Char. BIN
01010110 56 V
01010111 57 W
01011000 58 X
01011001 59 Y
01011010 5A Z
01011011 5B [
01011100 5C

]01011101 5D
^01011110 5E
–01011111 5F
`01100000 60
a01100001 61
b

01100011 63 c
01100010 62

01100100 64 d
01100101 65 e
01100110 66 f
01100111 67 g
01101000 68 h
01101001 69 i
01101010 6A j
01101011 6B k
01101100 6C l
01101101 6D m
01101110 6E n
01101111 6F o
01110000 70 p
01110001 71 q
01110010 72 r
01110011 73 s
01110100 74 t
01110101 75 u
01110110 76 v

01111000
77 w

00100011
78 x

01111010
79 y

01111011
7A z

01111100
7B {

01111101
7C |

01111110
7D }

01111111
7E ~

01110111

7F DEL

HEX Char.

W

Figure 4: Characters used in the text key generation.
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Figure 3: Data set.
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first bit of the key character is always 0, and the second bit is
one with the probability of 0.828.

Taking the occurrence probability of each key bit into
consideration, the performance of finding the ith key bit can
be expressed as the deviation as follows:

εi � ρi − μi, (11)

where ρi is the BAP and μi is the occurrence probability of
the ith key bit. If M known plaintexts is given, the perfor-
mance of finding the ith key bit is given by
εi(M) � αi(M) − μi, where αi(M), which is the probability
of a correct majority decision, is obtained from equation (9).

6.2. Simulation Environment. +e performance of the DL-
based cryptanalysis is evaluated for the lightweight block
ciphers: S-DES, Simon32/64, and Speck32/64, as shown in
Table 1.

In order to train the DNN with an acceptable loss rate, it
is necessary to expand the network size. Hyperparameters,
such as the number of hidden layers, the number of neurons
per hidden layer, and the number of epochs, should be tuned
in order to minimize a predefined loss function. +e tra-
ditional way of performing hyperparameter optimization
has been grid search or random search. Other hyper-
parameter optimizations are Bayesian optimization, gradi-
ent-based optimization, evolutionary optimization, and
population-based training [30, 31]. Moreover, automated
ML (AutoML) has been proposed to design and train neural
networks automatically [30]. In our simulation, by using the
data set of Simon32/64 and Speck32/64 ciphers, we simply
perform an exhaustive searching to set the number of hidden
layers, L, and the number of neurons per hidden layer, ηl,
through a manually specified subset of the hyperparameter
space, L ∈ {3, 5, 7} and ηl ∈ {128, 256, 512}. Additionally, to
reduce the complexity, we choose a smaller number of
hidden layers if the performance difference is not greater
than 10−5. If the number of epochs is greater than 3000, the
error becomes small, and when it reaches 5000, it is suffi-
ciently minimized, so we set the number of epochs is fixed to

5000. Consequently, the parameters used for training the
DNNmodels are as follows: the number of hidden layers is 5,
the number of neurons at each hidden layer is 512, and the
number of epochs is 5000. We use the adaptive moment
(Adam) algorithm for the learning rate optimization of the
DNN.

+e powerful “Tensorflow” is introduced to design and
process the DNN. Also, we deploy a GPU-based server,
which is equipped with Nvidia GeForce RTX 2080 Ti and its
CPU is Intel Core i9-9900K. +e implemented DL-based
cryptanalysis tool is shown in Figure 6. +e GUI was
implemented by using PyQt over Python 3.7. +e imple-
mented tool provides various combinations of ML archi-
tectures, hyperparameters, and training/test samples.

6.3. Simplified DES

6.3.1. Overview of S-DES. S-DES, designed for education
purposes at 1996, has similar properties and structure as
DES but has been simplified to make it easier to perform
encryption and decryption [32]. +e S-DES has an 8-bit
block size and a 10-bit key size. +e encryption algorithm
involves five functions: an initial permutation (IP); a
complex function labelled fK, which involves both permu-
tation and substitution operations and depends on a key
input; a simple permutation function that switches the two
halves of the data; the function fK again; and finally a
permutation function that is the inverse of the initial per-
mutation (IP−1). S-DES may be said to have two rounds of
the function fK.

Because the length of the key is limited, the brute-force
attack, which is known as an exhaustive key search, is
available. Some previous work presented an approach for
breaking the key using genetic algorithm and particle swarm
optimization [33, 34], which is concluded that the genetic
algorithm is a better approach than the brute force for
analysing S-DES.

6.3.2. Test Results. For training and testing the DNN, we
generate N plaintext-ciphertext pairs with different keys, as
follows:

c(j)
� S − DE S p(j)

, k(j)
􏼐 􏼑, j � 0, 1, . . . , N, (12)

where k(i) ≠ k(j) for i≠ j and N � Nr + Ns. Here, Nr is the
number of samples for training and Ns is the number of
samples for testing. In the simulation, we useNr � 50000 and
Ns � 10000. +e plaintext is any combination of a random
binary digit, that is, pi ∈ rand 0, 1{ }. We generate the en-
cryption key by using two methods: a random key and a text
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Figure 5: Occurrence probability in the text key generation.

Table 1: Block ciphers used in case studies.

Item S-DES Simon Speck
Block size (bits), n 8 32 32
Key size (bits), m 10 64 64
Round, R 2 32 22
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key. In the S-DES with a 10-bit key, the text key has any
combination of one character and two random binary bits.

Figure 7 shows the BAP of the DNN when we apply a
random key and a text key. +e results show the DL-based
cryptanalysis can break the S-DES cipher. When we apply a
random key, the key bits, k1, k5, and k8, are quite vulnerable
to the attack and the key bit of k6 is the safest. Because the
minimum value of the BAP is ρmin � 0.5389 at the 6th key
bit, from equation (10), we need M � 271 known plaintexts
to find all the key bits with a probability of 0.9 and we need
M � 891 known plaintexts to find all the key bits with a
probability of 0.99. When we apply a text key, the BAP
becomes high, thanks to the bias of the occurrence proba-
bility of each key bit, μi, as shown in Figure 5. Because the
minimum value of the BAP is ρmin � 0.6484 at the 6th key
bit, from equation (10), we need M � 19 known plaintexts to
find all the key bits with a probability of 0.9 and we need
M � 59 known plaintexts to find all the key bits with a
probability of 0.99.

Figure 8 shows the deviation between the BAP and the
occurrence probability of each key bit. Because of the bias of
the occurrence probability of each key bit in the text key, we
need to eliminate the bias characteristics of each key bit. +e
DNN shows that the key bits, which are quite vulnerable to
the attack, are (k2, k5, k8) in the text key and (k1, k5, k8) in the
random key.+e key bit of k6 is the safest both in the text key
and in the random key.

6.4. Lightweight Block Ciphers

6.4.1. Overview of Simon and Speck. Lightweight cryptog-
raphy is a rapidly evolving and active area, which is driven by
the need to provide security or cryptographic measures to
resource-constrained devices such as mobile phones, smart

Figure 6: Implemented DL-based cryptanalysis simulator.
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Figure 7: Bit accuracy in the S-DES with a random key.
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cards, RFID tags, and sensor networks. Simon and Speck is a
family of lightweight block ciphers publicly released in 2013
[35, 36]. Simon has been optimized for performance in
hardware implementations, while Speck has been optimized
for software implementations. +e Simon block cipher is a
balanced Feistel cipher with a u-bit word, and therefore, the
block length is n� 2u. +e key length,m, is a multiple of u by
2, 3, or 4. Simon supports various combinations of block
sizes, key sizes, and number of rounds [35]. In this paper, we
consider a Simon32/64 which refers to the cipher operating
on a 32-bit plaintext block that uses a 64-bit key.+e Speck is
an add-rotate-xor (ARX) cipher. +e block of the Speck is
always two words, but the words may be 16, 24, 32, 48, or 64
bits in size. +e corresponding key is 2, 3, or 4 words. Speck
also supports various combinations of block sizes, key sizes,
and number of rounds [35].

As of 2018, no successful attack on full-round Simon or
full-round Speck of any variant is known. +e authors in
[37] showed differential attacks of up to slightly more than
half of the number of rounds for Simon and Speck families of
block ciphers. +e authors in [38] showed an integral attack
on 24-round Simon32/64 with time complexity of 263 and
the data complexity of 232. +e work in [39] showed an
improved differential attack on 14-round Speck32/64 with
time complexity of 263 and the data complexity of 231.

6.4.2. Data Generation. For training and testing the DNN,
we generate N plaintext-ciphertext pairs with different keys,
as follows:

c(j)
� Simon

32
64

p(j)
, k(j)

􏼐 􏼑,

c(j)
� Speck

32
64

p(j)
, k(j)

􏼐 􏼑,

(13)

where j � 0, 1, . . . , N and N � Nr + Ns. Here, Nr is the
number of samples for training and Ns is the number of

samples for testing. +e plaintext is any combination of a
random binary digit, that is, pi ∈ rand 0, 1{ }. We generated
the encryption key by using two methods: a random key and
a text key. In the text key, the 64-bit key consists of 8
characters, where each character is one of 64-character set,
T. Hence, although the total keyspace is 264, the actual
keyspace is reduced to 248. For training, we use Nr � 5 × 105
samples, and for the test, we use Ns � 106 samples.

6.4.3. Test Results. Figure 9 shows the BAP of the Simon32/
64 with a random key in unit of character. +e DNN shows
that the BAP of each key bit varies randomly with an average
of almost 0.5. Moreover, the results vary with each simu-
lation with different hyperparameters. +at is, the DNN
failed to attack the Simon32/64 with a random key.

Figure 10 shows the BAP and the deviation of the Si-
mon32/64 with a text key in unit of character. +e BAP of
each key bit is almost identical to the occurrence probability
of the text key because the DNN learns the characteristics of
the training data. However, when we eliminate the bias
characteristics of the text key, the DNN shows the positive
deviations, which means the DNN can break a Simon32/64
with a text key. For example, from equation (10), we need
just M � 215 known plaintexts in order to find the key bit of
k2 with a probability of 0.99. +e minimum value of BAPs is
0.51603 at k3, which is greater than μ3 by about ε3 � 0.00040,
except the last bits of each character. Hence, we can find the
encryption key with a probability of 0.9 given M ≈ 210.58

known plaintexts, and we can find the encryption key with a
probability of 0.99 given M ≈ 212.34 known plaintexts.

Figure 11 shows the BAP of the Speck32/64 with a
random key in unit of character. +e BAP of each key bit
varies randomly with an average of almost 0.5, similar to the
results of the Simon32/64. Moreover, the results vary with
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Figure 9: Bit accuracy probability of the Simon32/64 with a
random key.
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different hyperparameters. +at is, the DL-based attacks
against the Speck32/64 with a random key have been failed.

Figure 12 shows the BAP and the deviation of the
Speck32/64 with a text key in unit of character. +e DNN
shows the positive deviations. +at is, the DNN shows the
possibility of breaking a Speck32/64 with a text key. +e

minimum value of BAPs is 0.51607 at k3, which is greater
than μ3 by about ε3 � 0.00044, except the last bits of each
character. Hence, we can find the encryption key with a
probability of 0.9 given M ≈ 210.57 known plaintexts, and we
can find the encryption key with a probability of 0.99 given
M ≈ 212.33 known plaintexts.
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Figure 10: Bit accuracy probability and deviation of the Simon32/64 with a text key.
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7. Conclusions

We developed a DL-based cryptanalysis model and evalu-
ated the performance of the DL-based attack on the S-DES,
Simon32/64, and Speck32/64 ciphers. +e DL-based
cryptanalysis may successfully find the text-based encryp-
tion key of the block ciphers. When a text key is applied, the
DL-based attack broke the S-DES cipher with a success
probability of 0.9 given 28.08 known plaintexts. +at is, the
DL-based cryptanalysis reduces the search space nearly by a
factor of 8. Moreover, when a text key is applied to the block
ciphers, the DL-based cryptanalysis finds the linear ap-
proximations between the plaintext-ciphertext pairs and the
key, and therefore, it successfully broke the full rounds of
Simon32/64 and Speck32/64. When a text key is applied,
with a success probability of 0.99, the DL-based cryptanalysis
finds 56 bits of Simon32/64 with 212.34 known plaintexts and
56 bits of Speck32/64 with 212.33 known plaintexts, re-
spectively. Because the developed DL-based cryptanalysis
framework is generic, it can be applied to attacks on other
block ciphers without change.

+e drawback of our proposed DL-based cryptanalysis is
that the keyspace is restricted to the text-based key. How-
ever, although uncommon, a text-based key can be used to
encrypt. For example, the login password entered with the
keyboard can be text based if the input data are not hashed.
Modern cryptographic functions are designed to be very
random looking and to be very complex, and therefore, ML
can be difficult to find meaningful relationships between the
inputs and the outputs if the keyspace is not restricted.
Hence, our approach limited the keyspace to only text-based
keys, and the proposed DL-based cryptanalysis could suc-
cessfully break the 32 bit variants of Simon and Speck ci-
phers. If the keyspace is not limited, the DL-based

cryptanalysis failed to attack the block ciphers. In the future,
the accuracy of ML will be improved, and the accuracy
becomes more precise, thanks to the development of al-
gorithms and hardware. Moreover, advanced data trans-
formation that efficiently maps cryptographic data onto ML
data will help the DL-based cryptanalysis to be performed
without the keyspace restriction.
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