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Abstract
Dependence on personal computers has required the development of security mechanisms to protect the information stored in
these devices. There have been different approaches to profile user behavior to protect information from a masquerade attack;
one such recent approach is based on user file-access patterns. In this paper, we propose a novel classification ensemble for file
access-based masquerade detection. We have successfully validated the hypothesis that a one-class classification approach
to file access-based masquerade detection outperforms a multi-class one. In particular, our proposed one-class classifier
significantly outperforms several state-of-the-artmulti-class classifiers. Our results indicate that one-class classification attains
better classification results, even when unknown attacks arise. Additionally, we introduce three new repositories of datasets
for the identification of the three main types of attacks reported in the literature, where each training dataset contains no object
belonging to the type of attack to be identified. These repositories can be used for testing future classifiers, simulating attacks
carried out in a real scenario.
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FPrate False positive detection rate
FS File system
FSN File-system navigation
GUI Graphical user interface
HCI Human–computer interaction
MDS Masquerade detection system
MTeS Masquerade testing set
MTrS Masquerade training set
MRO Most representative object
PC Personal computer
PCA Principal component analysis
ROC Receiver operating characteristic
TeS Testing set
TP True positive
TPrate True positive detection rate
TrS Training set
UTeS User testing set
UTrS User training set
ZFP Zero-false positives
1vA One versus all
5-FCV Fivefold cross-validation
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1 Introduction

We live in a technology-dependent society where the use of a
personal computer (PC) is common in daily life. A PC stores
a large amount of a user’s sensitive information, and more
often than not has either poor protection against cybercrime
or none at all. A masquerade is a cyberattack whereby an
intruder (or masquerader) impersonates a legitimate user; it
is of interest as it is commonly perpetrated by an insider. To
mitigate this problem, amasquerade detection system (MDS)
typically first extracts a profile froma history of user behavior
and then uses that profile to raise an alarm whenever a new
behavior observation differs significantly from the users pro-
file. Example behavior patterns used for profile construction
include command usage [41], keyboard usage [23,24,33,34],
mouse usage [36,48], and file-system navigation (FSN) [4–
7,38].

In the FSN approach to masquerade detection, a user is
profiled based on the files that the user has accessed and how
the user has accessed them. The main advantages of FSN are
twofold: (i) It is operating system independent; and (ii) it can
be used to protect personal profiles in cloud-based file reposi-
tories [7]. The FSN approach has been successfully validated
usingWUIL [7], a repository that contains logs of day-to-day
user activity, and performs faithful attack simulations on each
subject participant’s computer. WUIL is currently composed
of 73 different users, each with logs containing dozens of
ordinary daily activities, and considers three distinct types of
attacks.

FSN also provides a richmedium for discovering abstract,
high-level features for masquerade detection. Accordingly,
most research on it has centered on feature selection. For
example, Camiña et al. [5] built a detection model out of
features regarding file usage (such as new access occurrence
and file inter-access time), as well as system-dependent file
features (such as file depth and inter-file path distance). In
contrast, Camiña et al. [6] proposed a set of features using
a key concept of virtual and cache memory to characterize
user behavior, namely locality. Camiña et al. [6] included a
direction feature vector, which captures the position toward
which a target user often moves. We call the feature space
of [5,6] the structure and locality, respectively.

Masquerade detection using FSN has been addressed
using both multi-class classification [6,7] and one-class clas-
sification [32]. In addition to a log of ordinary behaviors (the
so-called negative class), the construction of a multi-class
classifier requires examples of the positive class, in our case,
masquerades. Because it is very difficult to obtain example
attacks, it is no surprise that masquerade detection is often
structured as a one-class classification problem. However, no
experimental comparison has been conducted to determine
whether a one-class classifier is as accurate as a multi-class

one, at least in the context of the FSN approach to masquer-
ade detection.

The main contribution of this paper is a novel one-
class classifier which is trained using only a sample of
allegedly negative examples (ordinary user behavior), which
outperforms a number of multi-class classifiers for masquer-
ade detection using FSN. In the design of our classifier,
we have drawn inspiration from another one-class classi-
fier, the Bagging-TPMiner algorithm [32], for strengthening
classification construction and masquerade identification.
Our experimental results using the WUIL repository show
that our classifier surpasses several multi-class classifiers
reported in the literature. These results indicate that practical
applications can be built using a one-class classifier without
requiring data on real attacks or simulated ones, the latter of
which are often argued as not being representative of real-
world intruders.

The remainder of this paper is organized as follows. First,
in Sect. 2, we overview different types of user behaviors
that have been studied for masquerade detection. Then, in
Sect. 3, we present an outline of the WUIL repository. In
Sect. 4, we introduce our proposal for file access-based mas-
querade detection, which is based on a one-class approach.
Next, in Sect. 5, we outline the different classifiers used in
our experimentation and discuss our experimental methodol-
ogy. In Sect. 6, we present the results of our experiments and
compare them against those of previous works. Finally, in
Sect. 7, we report on the conclusions drawn from this study
and provide guidelines for further work.

2 Masquerade detection review

There are several types of user behaviors that have been used
for masquerade detection. In this section, we outline some
of the most prominent works and the information employed
for user profiling.

2.1 UNIX commands

One of the most influential works in masquerade detection
was proposed by Schonlau et al. [41]. The authors suggested
that users should be profiled regarding their history of com-
puter commands. They developed a repository of datasets,
called SEA,1 which became the de facto standard for devel-
oping and comparing masquerade detection mechanisms.

SEA includes the activity of 70 users. For each user, it
contains a record of 15,000 commands (without options or
arguments) executed in a regular UNIX session. The com-
mand sequence of each user is divided into 100-command

1 Available at www.schonlau.net/intrusion.html.

123

www.schonlau.net/intrusion.html


Bagging-RandomMiner: a one-class classifier for file access-based masquerade detection 961

blocks, each of which is called a session. Fifty users, ran-
domly chosen, were designated to be honest. For each
legitimate user, the first 50 sessions are clean, whereas the
remaining ones may or may not have been replaced with
a session from an illegitimate user. The problem posed
by Schonlau et al. [41] is as follows: For each legitimate
user, build a mechanism able to distinguish which sessions
have been contaminated and which have not. Note that, in
passing, SEA does not include faithful masquerades, as it
adopts a one versus all (1vA) approach, where other, ordi-
nary users are considered to have attempted to masquerade
against an intended user.

SEA has been used with different approaches and classi-
fiers. Twoexamples are thework ofMaxion [30] and thework
ofMaxion [31], who used naïve Bayes to evaluate a test com-
mand sequence in which user u has allegedly participated.
The authors first computed the probability that a command
sequence has been typed by u and then compared it against
a sequence having been generated by not u (evaluated in the
same way as the former one, except using legitimate users
other than u). In another work, Wang and Stolfo [45] showed
that using one-class naïve Bayes based only on the user his-
tory of commands is enough to obtain similar masquerader
detection performance.

In [25], the authors performed an empirical study with
the aim of investigating the effectiveness of a support vec-
tor machine (SVM) for detectingmasquerade activities using
two differentUNIX command sets, whichwere used byMax-
ion [30] in previous studies. The authors introduced the
concept of “common commands,” where names and argu-
mentswere included in experiments, and their SVMachieved
improvement of masquerader detection from 82.1 to 87.3%.

In [20], the authors argued that models created by SVM
are invisible and uninterpretable by security administrators
and consequently, new models containing a language more
similar to that used by experts in the application domain
are needed. The authors designed an experimental study
where a rule-based approach for masquerader detection is
analyzed using n-grams of the command sequences used
by Maxion [30] in previous studies. The authors showed that
by using a boosting decision stumps method, classification
results were improved from 80.1 to 89.2%.

Recently, bioinformatics genetic algorithms have been
used for masquerade detection using SEA, for example, the
work of Vidal et al. [44]. In [44], the authors used sequence
alignment, which is commonly used to measure the simi-
larity between two sequences of proteins, DNA, or RNA.
They measured a similarity score between a user command
sequence, commonly called a signature, and the sequence
being evaluated. The similarity score is determined through
analysis of the number of mutations between sequences. A
mutation can be a substitution, an insertion, or an elimi-
nation of commands; when fewer mutations occur between

sequences, a greater similarity score is obtained. If the simi-
larity score is high, it is very likely that the sequence was
performed by the user; if there are many mutations, the
sequence may be a masquerade sequence.

SEA is themost popular repository formasquerader detec-
tion; unfortunately, it has contributed more to classification
(from a machine learning perspective) than to actual mas-
querader detection. The main reason is that SEA includes
an awkward masquerade scenario, where an intruder has to
type in 100 commands because it involves no masquerade
attempts, adopting the 1vA validation approach mentioned
earlier. This drawback canbewitnessed even in recent papers,
for example, [22,27], where the key question is how to apply
powerful classification techniques rather than how to detect
masquerade attacks.

2.2 Mouse usage

Human–computer interaction (HCI) has also been used to
approach masquerader detection. A profile is extracted by
observing how a user interacts with a computer, usually
through a specific I/O device, such as a mouse and keyboard.
Because it provides significant control of a graphical user
interface (GUI), the mouse has been a popular target in user
profiling for masquerader detection.

Pusara and Brodley [36] published a dataset that contains
information on mouse movements in a 2D screen, namely
the final coordinates of the mouse pointer as well as angle,
time, and distance traveled from the last pointer position. The
dataset captured information from 18 users who were asked
to browse the Internet over a time interval; the model for
masquerader detection is hence application dependent. For
an MDS, Pusara and Brodley [36] proposed a decision tree
classifier, namely C5.0; thus, their MDS is not a one-class
classifier and they used a 1vA validation approach.

Garg et al. [15] also provided a dataset based on mouse
usage information, the main difference being that the dataset
also includes mouse clicks. For an MDS, they suggested
using an SVM, but as a binary classifier. Using this approach
implies that the model is built using the ordinary behavior of
both the user being protected and the remaining community,
again using a 1vA validation approach. The dataset proposed
by Garg et al. [15] is far from thorough, as it involves only
three users.

Shen et al. [42] reported on an experimental study of a
range of anomaly-detection algorithms in mouse dynamics.
The authors created a dataset containing 17,400 samples
from 58 users. They evaluated 17 algorithms designed for
detecting mouse dynamics reported in the literature. The
comparison measured detection accuracy, usability with
respect to sample length, sensitivity to training sample size,
and scalability regarding the number of users. The experi-
mental results indicated that the six top-performing detectors
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achieved equal error rates ranging from 8.81 to 11.63% with
a detection time of 6.1 s.

In conclusion, mouse usage for masquerader detection
enables the possibility of contrasting users to one another.
However, the masquerade scenarios that have so far been
considered are of little interest, as they are constrained to
one specific application. Moreover, creating a masquerade
dataset is still required because the existing ones include
only a few users. Further, the methods do not follow the
one-class approach, and consequently, they adopt a 1vA val-
idation approach.

2.3 Keyboard usage

Keyboards remain the most popular device for HCI, and
accordingly, they have been a popular subject of study in the
context of masquerader detection. For user profiling, key-
board dynamics can be either static (if users are required to
type the same key sequence), or free text. Key to the static-
text approach is the work of Killourhy andMaxion [23], who
studied a number of MDSs reported as state-of-the-art meth-
ods. In this case, every MDS under consideration is based
on a one-class classifier, and most depend on the notion of
distance. Each MDS detects masqueraders based on how the
users type their passwords. The authors developed a dataset
to conduct a fair comparison of these MDSs so that every
MDS is constructed using the same collection of feature
vectors. The dataset includes the activities from 51 users,
each of which participated in eight sessions. In each ses-
sion, every user correctly typed a fixed, common password
50 times. Recently, Morales et al. [34] used this dataset, but
with the goal of predicting which users are more likely to be
masquerade-protected using keystroke dynamics.

In the context of free text,Messerman et al. [33] developed
a dataset that contains logs of 55 users working in a webmail
application. The datasetmainly involves key presses and time
stamps. Again, the MDS proposed by Messerman et al. [33]
is not a one-class approach. Furthermore, both [23] and [33]
adopted the 1vA validation approach.

Keyboard-based user profiling may not be suitable for a
general masquerader detection scenario. On the one hand,
MDS construction may span an unacceptably long time
interval. This is especially true, for example, in the static-
text approach if a change-password policy is mandatory. On
the other hand, for successful masquerader detection, this
approach currently requires the masquerader to interact with
a specific, designated application, which is not realistic for
this type of intrusion.

2.4 System-wideMDSs

An alternate view to masquerade detection states that, apart
from user behavior, one needs to capture the state of the

underlying working system. For example, (N)IDES [10], one
of the earliest attempts at masquerade detection, is an expert
system that takes into account CPU usage, the number of
attempts to access password-protected directories, and other
session information. It also involves user-level features, such
as working with commands, and especially working with
certain categories of commands, such as compilers or editors.

In a similar approach, Salem and Stolfo [39] struc-
tured masquerader detection using a mixture of features.
For the user level, they considered features such as brows-
ing, communication, information gathering, among others,
and for the system level, registry modification, process cre-
ation/destruction, file system (FS) access, DLL usage, etc. In
a follow-up paper proposed by Song et al. [43], the authors
attempted to identify which of these features best capture
user patterns, at least in their dataset, called RUU. For that
purpose, Song et al. [43] applied Fisher’s method of fea-
ture selection for multi-class learning (which, as the name
suggests, is not a one-class approach). They concluded that
the most discriminative feature is the number of processes
run by each user. While RUU includes separate attack logs,
these attacks were simulated in an external computer, not in
the users computer. This approach could be a serious limita-
tion, because a users pattern may drastically differ from one
computer to another, which is attributable to issues such as
computer architecture and FS organization.

2.5 FS navigation for masquerader detection

The existing masquerader detection systems, although suc-
cessful, suffer from two main limitations. First, MDS evalu-
ation has not been thorough, as it does not involve faithfully
simulated attacks, adopting a 1vA approach. Second, MDS
construction is sometimes limited to the information output
by a single application, overlooking the entire picture. We
have also seen that a user profile for masquerader detection
is usually built out of a record of user actions (in the form of
either I/O events or running commands).

Prompted by this situation, Camiña et al. [4] argued that
not only is it the action but also the object upon which the
action is executed that might be used to distinguish users.
They introduced a novel MDS based on the ways in which
users navigate the structure of their FS. Furthermore, they
developed WUIL2 Camiña et al. [5], a repository that col-
lects FS navigation information from several users, but more
importantly, it collects several faithfully simulated masquer-
ade attempts. They showed that by using a definition of FS
object distance, which is not applicable in the context of
actions, it is possible to build detection models that outper-
form those based on commands only.

2 http://homepage.cem.itesm.mx/raulm/wuil-ds/.
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WUIL can be used for different high-level abstractions.
An example is task abstraction [7], where related files are
linked to a user task, relying on an ancestor directory that
holds the files. Task abstraction has been recently improved
by Rodríguez et al. [38], allowing better user characteri-
zation with an increase in efficiency and faster detection
time. Another approach, locality abstraction, based on the
memory-based locality concepts, was developed by Camiña
et al. [6]with high-accuracy results. In Sect. 3, an explanation
of the WUIL repository information gathering is presented
along with further WUIL applications of previous works
related to the present work.

In [46], the authors introduced a method for detecting
malicious processes that was then extended in Wang et
al. [47]. The method uses an anomalous measure, called
file path diversity (FPD) that considers the path diversity
involved in a process’s FS access. Broadly, Wang et al. [46]
started by defining an FPD function that takes a file f , and
a most popular path, p; if f is a descendant of p, then FPD
equals 0; otherwise, it equals 9/3(lca( f ,p)), where lca( f , p)
stands for the path of the least common ancestor of both f
and p, and length has its standard interpretation, returning
the length (or depth) of a given path. fpd( f , P) is the exten-
sion of fpd( f , p) over a set of most popular paths, P , in
the expected manner, and yields the minimum fpd( f , p), for
some p ∈ P . Now, given both a file access window w of the
form f0, . . . , fn , and P , a set of most popular paths, Wang
et al. [46] mark w as abnormal if:

1

s+1

(
fpd2( f0, P)+fpd2( f1, P)+· · · + fpd2( fs, P)

)
> u

(1)

where u is a predefined threshold. Finally, a process is consid-
ered malicious if the FPD determines that at least k windows
are abnormal.

In [16], the authors attempted to detect insider malicious
behaviors, such as stealing files. The authors claim that it
should be possible to exploit information between the files
that are accessed by user j in the current period AT

j , against

files accessed during the users history, AH
j . Gates et al. [16]

worked under a hypothesis based on two conditions: (i) If
files that one user currently accesses have been accessed in
the recent past by the same user, then this is likely to be a
legitimate action; and (ii) if files are similar to files previously
accessed, then this is less likely to bemalicious theft. Tomea-
sure similarity, the authors resort to two observations: First,
files under the same directory may be considered as more
similar than files that are far apart in the FS; and second, files
accessed by essentially the same set of users may be viewed
as more similar than files accessed by a disjoint set of users.
The authors successfully applied the techniques to profile
identification and anomaly detection; however, there is not a

single combination of techniques that dominates among the
best results.

In [40], the authors performed a masquerade detection
experiment that combines different behaviors. They collected
information on GUI coordinates, mouse data, keyboard data,
command line date, and file accesses under the Linux OS.
For file accesses, they collected the number of successful
and unsuccessful attempts to access specific files or folders
including the password file, log folder, and bin folder, among
others. Data gathering was performed on a shared computer
used by 16 different users, where there was an absence of
masqueraders and the 1vA approach was used.

3 Repository based on structure and locality

WUIL [5] is a repository of datasets developed by its authors,
who were motivated by the necessity for a masquerade file
access test dataset. WUIL is comprised of different users’
file access logs and a set of three types of simulated attacks
performed on each of the users’ computers. In this section,we
present an overview of the most important aspects of WUIL.

In its first version, WUIL included 20 users [5], but over
the time it has been enriched, ending with 73 users [7]. For
this work, we have added one more user, for a total of 74
users. The WUIL logs were gathered using the Windows
tool named audit. Each entry in a log holds different types
of information, the most important being time, date, and the
path to the file being accessed. For each user, file usage was
collected for the amount of time that the user allowed; some
users provided only one-day logs, but others provided more
than 60-day logs.

WUIL also includes three types of simulated attacks. The
attacks are called basic, intermediate, and advanced. In the
basic attack, the masquerader is not prepared to perform the
attack and he can only see the files. In the intermediate attack,
themasquerader is preparedwith aUSBflash drive, and using
theWindows search utility, looks for a specific set of files and
manually copies them to the USB flash drive. Finally, in the
advanced attack, the masquerader equips the USB flash drive
with a script that automatically searches for files and copies
them to the USB flash drive.

WUIL has been shown to be suitable for use in different
types of experiments. For example, WUIL has been used
with different types of windows (event windows [7,38] and
time windows [5,6]). In addition, different types of features
have been extracted from WUIL logs, including navigation
statistics [5], user tasks [7,38], and locality [6].

3.1 Feature extraction onWUIL

In Camiña et al. [5], a set of 25 features were extracted
from WUIL, and we will refer to them as structure features.

123



964 J. B. Camiña et al.

WUIL logs were divided into 30-s time windows, and struc-
ture features were based mainly on statistics of: number of
file accesses, time between each file access, the path dis-
tance between two adjacent accesses, navigation structure,
and depth. We refer the reader to Camiña et al. [5] for the
complete details of these features.

Classification results obtained using structure features
were appealing but not conclusive. Therefore, in Camiña
et al. [6], the authors introduced a new set of 16 features
based on an abstraction of the cache memory term of local-
ity; henceforth, we will refer to them as locality features.
Here, WUIL logs were divided into 30-s windows.

Locality features can be classified into three groups: spa-
tial (four features), temporal (eight features), and direction
(four features). The spatial locality features are based on the
distance between two consecutive file accesses assuming that
whenever the user has accessed a file, then it is highly likely
he/she will access files close to it in the near future. The tem-
poral locality features are based on the time elapsed since the
last time a file was accessed, assuming that whenever a file
has been accessed, it is highly likely to be accessed again in
the near future. The direction features are based on where the
user is moving to on the subsystem tree within the window,
assuming that the user should exhibit common direction pat-
terns.We refer the reader to Camiña et al. [6] for the complete
details of these features.

Camiña et al. [6] performed an experiment comparing
the performance results of structure features against local-
ity features using TreeBagging, a multi-class classifier. The
results showed that masquerade detection based on locality
features outperforms that based on structure features. As the
authors in [6] aimed to show the strength of using local-
ity features, they tested various feature selections, but they
considered only TreeBagger in their experiments. This gap
in the authors’ research methodology has motivated us to
examine our hypothesis that using a one-class classification
approach obtains similar or better classification results using
locality features to results obtained using other classification
approaches for file access-based masquerade detection.

4 Proposal for file access-basedmasquerade
detection

Bagging-TPMiner [32] aims to identify typical objects to
represent a genuine users behavior in the context of mas-
querade detection. To this end, the algorithm calculates a
distance between all pairs of a subset of objects, which in
the worst-case scenario is estimated to require up to O(n2)
comparisons. As a consequence, for large datasets, training
the algorithm is of very limited practical use. Thus, we have
extended Bagging-TPMiner so that it both requires signifi-
cantly less time for building a model and yields classification

results without a significant statistical differencewith respect
to Bagging-TPMiner.

Instance-based classification has been proven to obtain
competitive classification scores in a wide range of prob-
lems [1]. This idea has motivated us to develop an extended
version of Bagging-TPMiner that focuses on identifying
objects that could represent prototypes. A way to select these
objects is to randomly sample a given user dataset. The
rationale behind this idea is to take into account zones that
represent common user behavior and place less importance
on isolated objects, i.e., rare user behavior. Then, the obtained
sample can resemble the set of typical objects (as computed
in Bagging-TPMiner) and no inter-prototype distance cal-
culation is required. Note that training and classification in
our extended version are similar to those used in the origi-
nal version of the Bagging-TPMiner algorithm, except that
our training set (TrS) has a larger number of objects than the
original version.

4.1 Bagging-RandomMiner

Just as Bagging-TPMiner, Bagging-RandomMiner is an
ensemble consisting of multiple instances of the same clas-
sifier, RandomMiner in our case. RandomMiner works by
randomly selecting a percentage of the objects of a given
training dataset. The output of this step consists of a set of
objects that we call the most representative objects (MROs).
Each member in the MRO set is similar in context to a so-
called typical object in TPMiner, except that typical objects
are found using an exhaustive search. In a practical sense,
RandomMiner differs from the original TPMiner only dur-
ing the training of each individual classifier.

As a visual aid of Bagging-RandomMiner, consider Fig. 1
where a flow diagram of the training phase is presented. This
phase receives as input: the training dataset (T ), the number
of classifiers to use in the ensemble (N ), and the fraction of
objects (F) from the training dataset to bootstrap to build a
classifier. It generates as output an ensemble P of N classi-
fiers.

In detail, to construct a particular classifier i , we first
bootstrap a fraction F of objects from T , the TrS, and we
place those objects in T ′. Then, we sample RSpercent% of the
objects in T ′ and name them MRO. The next step is to com-
pute the covariance matrix over the objects in the bootstrap
T ′ and calculate the average object pair distance, which will
serve as a threshold to dictate, in the classification phase, if
a new object should be deemed as a normal user behavior
or not. The product of each iteration is a classifier that is
specified by a triplet: the MRO set, the average object pair
distance in theMRO set, and the covariance matrix, which in
turn are added to the ensemble P . The ensemble P is inputted
in the classification stage, which, as in TPMiner, evaluates
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whether a new object belongs to the negative class or should
be annotated as a masquerade.

4.1.1 Classification phase

The classification phase receives as input the ensemble P of
classifiers that was generated in the training phase and an
object (O) to classify. Consider Fig. 2, where a flow diagram
of the classification phase is presented. First, we initialize
S, which is a queue that will be used to store the vote that
each classifier assigns to the object O . For each classifier,
the minimum distance between an object in the MRO set and
the object O is computed and saved in dmin. This distance
is used by the classifier to calculate a similarity value which
will fall within the interval [0,1]. Note that a high similarity
value (> 0.6) indicates that the object O is likely to belong
to the cluster represented by MRO, corresponding to regular
user behavior. Once all the classifiers have registered a vote,
an average of all votes in S is calculated, which represents
the similarity value calculated by the ensemble. Based on
the idea that consecutive objects correspond to the same user
behavior, another queue, Q, is also constructed and is used
to calculate the average final score, which is the output of the
classification phase.

4.2 Classification region for Bagging-RandomMiner

To evaluate the performance of Bagging-RandomMiner, we
now discuss the merit of its classification region, especially
when compared against that of Bagging-TPMiner. To illus-
trate our point, we use the (training) dataset of User 1 from
WUIL [5] as a running example. Figure 3 portrays a 2D rep-
resentation of this dataset. To compute this representation,
we apply principal component analysis (PCA) [11] over the
dataset and then select the first two principal components
from it. Figures 4 and 5, respectively, portray the MRO and
the classification region for Bagging-RandomMiner; Figs. 6
and 7 do so for Bagging-TPMiner.

From Figs. 4, 5, 6 and 7, our proposal (Bagging-
RandomMiner) uses a smaller classification region than
Bagging-TPMiner, because it identifies areas with a high
density of data points. However, this classification region is
included in that of Bagging-TPMiner, thus explaining why
the former classifier attains results as good as those obtained
by the latter. A further analysis of this situation leads us to
hypothesize that although Bagging-TPMiner rightly consid-
ers typical objects whose influence area spans all possible
genuine user data points, the real pattern for a given user
is better captured by the more common behaviors than by
rarely executed actions (isolated data points). The strength
of Bagging-TPMiner for identifying typical objects that
correspond to uncommon, although genuine, user behavior

Fig. 1 Flow diagram of the training phase of Bagging-RandomMiner

appears to hinder its ability to fully discriminate some data
points of the minority class (masquerade attempts).

4.3 Parameter tuning for Bagging-RandomMiner

As the reader may now suspect, the performance of Bagging-
RandomMiner essentially depends on the percentage of
the input dataset to sample. This parameter value actually
yields a trade-off between classification performance and the
time required for classifier construction. To identify what
value(s) one should use, we compute classification measures
using the range RSpercent ∈ {5%, 10%, 15%, 20%}; this is
because, beyond 20%, our experiments show no classifica-
tion improvement. We have followed the validation protocol
introduced by Medina-Pérez et al. [32] for parameter tuning;
however, instead of using the WUIL repository [5], we used
the repository of datasets and the same data preprocessing
technique introduced in Camiña et al. [6].

Figure 8 portrays a summary of all performance values for
Bagging-RandomMiner, as measured by the area under the
receiver operating characteristic (ROC) curve (AUC) [12].
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Fig. 2 Flow diagram of the testing phase of Bagging-RandomMiner

Fig. 3 Graphical representation of running example consisting of the
twomain principal components as output by applyingPCA to the dataset
of User 1 in WUIL

The figure presents the results using a critical difference
(CD) diagram [9], because it succinctly presents the rank
of an algorithm with respect to the performance indicator
(the AUC in this case). The CD diagram also shows both the
magnitude and the significance of any differences among the
algorithms’ performance [9]. Note that, in particular, the best
algorithm appears rightmost, and statistically similar algo-
rithms are joined by a thick horizontal line.More specifically,
a CD diagram depicts the results of the Friedman test [9] and

Fig. 4 Most representative objects (MROs) identified by running
Bagging-RandomMiner over the running example

Fig. 5 Classification region of Bagging-RandomMiner associated with
the running example

Fig. 6 Typical objects identified by Bagging-TPMiner for the running
example

the Shaffer dynamic post hoc analysis [14], with a level of
significance of α = 0.05.

Figure 8 indicates that the classifier for the RSpercent =
5% test is significantly worse than the other tested options
(RSpercent ∈ {10%, 15%, 20%}). Moreover, there is no sig-
nificant statistical difference among the following options:
RSpercent = 10%, RSpercent = 15%, and RSpercent = 20%.
Based on these results, we recommend using our proposed
Bagging-RandomMiner with RSpercent = 20% because this
yielded the highest AUC among those with low values of
RSpercent.
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Fig. 7 Classification region of Bagging-TPMiner associated with the
running example

Fig. 8 CD diagram showing the statistical comparison of performance
(in terms of AUC) of Bagging-RandomMiner for different values of the
parameter RSpercent

5 Materials andmethods

In this section, we present the materials and methods used
throughout this paper. To demonstrate that our proposal
obtains similar classification results for file access-based
masquerade detection as the ones obtained using other classi-
fiers, we compare it with several supervised multi-class and
one-class classifiers (involving different paradigms). First,
we compare our proposal against Bagging-TPMiner [32]
because this method is a one-class classifier which has been
reported to outperformothers inmasquerade detection. Thus,
if our model outperforms Bagging-TPMiner, we then com-
pare it against several state-of-the-art classifiers.

In Sect. 5.1, we detail the repository of datasets used and
the cross-validation procedure executed for these datasets.
In Sect. 5.2, we present the selected classifiers and the ratio-
nale behind the design decisions. In Sect. 5.2, we discuss
the selected measures for assessing the performance of the
tested classifiers. Finally, the statistical tests used for com-
paring classification results are described in Sect. 5.3.

5.1 Datasets and data preprocessing

For our experiments, we used the repository of datasets and
the same data preprocessing technique introduced in Camiña
et al. [6]. For preprocessing the datasets, first, each TrS
is comprised of a user TrS (UTrS) and a masquerade TrS
(MTrS), whereas each testing set (TeS) is comprised of a user

testing set (UTeS) and a masquerade testing set (MTeS). To
build the different sets, we first divided the feature user logs
for fivefold cross-validation (5-FCV), using for each cross-
validation four subsamples to constitute the UTrS and the
remaining ones as UTeS. Then, we balanced the classes to
build the MTrS by selecting at random with replacement,
processed windows from other user attacks until we reached
the size of the UTrS used for training during the 5-FCV pro-
cess. It is important to mention that we do not balance the
datasets for the PBC4cip [28] method because this algorithm
was designed for class-imbalance problems, as was Bagging-
TPMiner. The MVS is built with the processed feature logs
of the three types of attacks performed on each user computer
(more details are available in Camiña et al. [6]).

After balancing the datasets, we performed the student’s
t-statistic normalization andMinMax scaling of the features.

In summary, our repository contains 74 users which
are described by 16 numerical features (locality features).
For each user, on average, there are approximately 10,000
instances belonging to the user class (UTrS=8000; UTeS=
2000) and 3000 instances belonging to the attack class
(MTrS=2000; MTeS=1000).

5.2 Supervised classifiers and evaluation
methodology

In our experiments, we test the following well-known clas-
sifiers as implemented in the Weka data-mining software
tool [17]: KNN [1], AdaBoost.M1 [13], J48 [37], LogRe-
gression [8],MLP [18], NaiveBayes [21], RandomForest [3],
and SVM [35].

Additionally, we test the following classifiers:

– PBC4cip is a contrast pattern-based classifier designed
for class-imbalance problems [28]. PBC4cip first extracts
a collection of contrast patterns from several decision
trees. Then, using the class-imbalance level of the train-
ing dataset, it weights the support of each pattern. Finally,
a query instance is classified to the class with the highest
sum of supports.

– Bagging-TPMiner is a novel one-class classifier ensem-
ble that has achieved interesting results with the WUIL
repository [32]. Bagging-TPMiner uses a bootstrap
approach in the training phase, such as TreeBagger, pay-
ing equal attention to dense and sparse regions, thus
capturing ordinary user behavior that is not commonly
used in other techniques. Bagging-TPMiner has been
reported to outperform other well-known one-class clas-
sifiers [32].

– TreeBagger is a bootstrap aggregating classifier [29]
that generates n random decision trees using a sub-
set of the training dataset. This subset is obtained by
sampling with replacement. Each tree contains approx-
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imately 63.2% of instances from the training dataset,
whereas the remainder of a tree is filled with repeated
instances. For classification,TreeBagger returns the high-
est voted class among the n decision trees regarding a
query instance. In [6], the authors showed that TreeBag-
ger achieved better results than the implementation of
decision tree bagging included in the Weka data-mining
tool [17].

To evaluate the performance of the classifiers, we use the
following measures.

AUC Areaunder theROCcurveAUCevaluates the true pos-
itive (true masquerader) detection rate (TPrate) versus
the false positive (false masquerader) detection rate
(FPrate). This measure is commonly used for mas-
querade detection because it, unlike G-mean [26] and
F-Measure [2], is an objective measure which is not
affected by subjective factors and is insensitive to
changes in the distribution of the training dataset [19].

ZFP Zero-false positivesmeasures the number of true mas-
queraders (TP) when no false masquerader (FP) is
detected; i.e., the value of TPwhen FP=0. The higher
the ZFP value, the more reliable the MDS. The main
reason is that users justifiably find it disturbing to con-
tinuously receive false masquerader alerts in a short
time interval.

We compute these performance indicators from ROC
curves according to Fawcett [12] and will average the results
of the 5-FCV performance indicators for each user.

5.3 Statistical tests

In supervised classification, commonly, the results produced
by different classifiers are corroborated through statistical
tests to determine whether these results are statistically dif-
ferent. Some nonparametric tests and post hoc procedures
have been suggested by Demšar [9] to perform a compar-
ison among different classification results. In this paper,
we apply Friedman’s test (as a nonparametric test), as sug-
gested in Demšar [9]. Friedman’s test reveals whether or not
there are significant statistical differences among the com-
pared classifiers. However, Friedman’s test cannot determine
which classifiers have statistical differences among them.
Hence,we performShaffer’s statistic procedure (as a post hoc
procedure) as suggested by García [14]. We selected Shaf-
fer’s statistic procedure because it is more powerful than the
classical Nemenyi and Holm procedures and it is less com-
putationally expensive than Bergmann-Hommels dynamic
procedureGarcía [14]. All statistical tests are executedwith a
level of significance of α = 0.05 as proposed by García [14]
and Demšar [9].

6 Experimental results and discussion

For our experiments, we first compare our proposal and
Bagging-TPMiner to select the best one. Then, the classi-
fication results of the best classifier selected from the first
comparison are contrasted with the classification results
obtained by other state-of-the-art classifiers (see Sect. 5.2)
by using the Locality datasets described in Sect. 5.1. To sim-
plify the presentation, a supplementarymaterial website3 has
been created for this paper, which contains all experimental
results, statistical test results, and all necessary informa-
tion for downloading the repositories of datasets used in our
experimentation.

6.1 Comparing Bagging-RandomMiner versus
Bagging-TPMiner

Tables 1 and 2 show the compared methods (see the col-
umn comparison), the sum of ranks for the problems where
Bagging-RandomMiner outperformed Bagging-TPMiner
(see the column R+), the sum of ranks for the opposite (see
the column R−), the result of the null hypothesis (see the col-
umnHypothesis), and the p value computed by theWilcoxon
signed-rank test.

From Table 1, note that the null hypothesis was rejected.
Consequently, concerning the AUC metric, our proposal
obtains statistically better classification results thanBagging-
TPMiner. Moreover, from Table 2, note that our proposal
obtains classification results (regarding ZFP values) similar
to those obtained by Bagging-TPMiner.

It is important to highlight that although our proposal
significantly outperforms Bagging-TPMiner regarding the
AUC but not the ZFP, our proposal has a computational
complexity equal to O(n) in the training phase, whereas
Bagging-TPMiner has a computational complexity equal to
O(n2). As a consequence, our proposal is significantly faster
in the training phase and obtains better classification results
regarding AUC than Bagging-TPMiner.

6.2 Comparing all selected classifiers against
Bagging-RandomMiner

It is important to highlight that some of the tested classifiers
produced errors regarding some users in the repository. For
such experiments, we decided to remove the results from all
the tested classifiers regarding these users to obtain a fair
comparison among the tested classifiers. As a consequence,
we show the classification results for 69 users from the 74
available in the repository described in Sect. 5.1.

Figure 9 shows a scatter plot of the average Friedman
ranks according to AUC and ZFP for all the tested clas-

3 drive.google.com/file/d/0B9jNhJSXlx7GNTJKUHFqb0Rtdjg/view.
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Table 1 Wilcoxon signed-rank
test comparing the average AUC
of Bagging-RandomMiner to
the average AUC of
Bagging-TPMiner, using all the
tested datasets

Comparison R+ R− Hypothesis (α = 0.05) p value

Bagging-
RandomMiner
versus Bagging-
TPMiner

1715.0 631.0 Rejected 0.000917

Table 2 Wilcoxon signed-rank
test comparing the average ZFP
of Bagging-RandomMiner to
the average ZFP of
Bagging-TPMiner, using all the
tested datasets

Comparison R+ R− Hypothesis (α = 0.05) p value

Bagging-
RandomMiner
versus Bagging-
TPMiner

1049.0 1297.0 Not Rejected 0.442268

Fig. 9 Average ranking for the tested classifiers according to AUC
versus ZFP

sifiers. In this figure, the best classifiers according to the
AUC appear to the left, and the best classifiers according to
ZFP appear at the bottom. Hence, the classifier closest to
the coordinate origin (1,1) is the best one considering both
performance metrics. Moreover, in this figure, those clas-
sifiers enclosed by an ellipse have no significant statistical
differences among them regarding both evaluated measures.
In Fig. 9, we can observe that our proposal (Bagging-
RandomMiner), RandomForest, and PBC4cip obtain the best
ranking results for both measures (AUC and ZFP). Further,
note that Bagging-RandomMiner is not statistically different
from RandomForest and PBC4cip models.

Figure 10 shows a scatter plot of the average classifica-
tion results according to AUC and ZFP for all the tested
classifiers. In this figure, the best classifiers according to the
AUC appear to the right, and the best classifiers according
to ZFP appear at the top. Hence, the classifier closest to the
upper right corner is the best one considering both perfor-
mance metrics. Additionally, in this figure, those classifiers

MLP

Fig. 10 Average AUC versus average ZFP for the tested classifiers

enclosed by an ellipse have no statistical difference among
them regarding both evaluated measures. In Fig. 10, once
again Bagging-RandomMiner, RandomForest, and PBC4cip
models obtain the best results for the two metrics (AUC and
ZFP), with Bagging-RandomMiner being the best classifier
when calculating AUC, although it shows no statistical dif-
ference with respect to PBC4cip and RandomForest.

From Figs. 9 and 10, we can conclude that Bagging-
RandomMiner, RandomForest, and PBC4cip have no sta-
tistical differences among them and that they outperform
the results obtained for AUC and ZFP by other well-known
supervised classifiers in file access-based masquerade detec-
tion problems.

PBC4cip obtains a collection of contrast patterns that
describe the masquerade detection problem in terms of an
expert’s language; however, in a real scenario, it is impos-
sible to obtain valid samples of every possible attack, and
as a consequence, PBC4cip cannot be applied. For this type
of real scenario, the best choice is to use a one-class clas-
sifier because it does not require any prior knowledge of
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Fig. 11 Average AUC versus average ZFP of the classifiers Bagging-
RandomMiner, RandomForest, and PBC4cip for predicting attack 1
types

attack types, as it is trained with only genuine user informa-
tion. To evaluate the performance ofBagging-RandomMiner,
RandomForest, and PBC4cip in a more realistic scenario, in
Sect. 6.3, we conduct a comparison among these three clas-
sifiers by using a modification of the repository of datasets
presented in Sect. 5.1.

6.3 Comparing Bagging-RandomMiner,
RandomForest, and PBC4cip

This section aims to evaluate the performance of Bagging-
RandomMiner against PBC4cip andRandomForest in amore
realistic scenario. Consequently, we can determine which of
these three classifiers obtain the best classification result on
file access-based masquerade detection. To accomplish this,
wefirstmodify thedatasets presented inSect. 5.1 andperform
an experiment for classifying query instances belonging to a
type of attack for which the classifier was not trained. Finally,
these classification results are corroborated by using Fried-
man’s nonparametric statistical test proposed in Demšar [9].

We modified the repository presented in Sect. 5.1 as fol-
lows: For each training dataset, we removed all instances
belonging to a type of attack, and for the corresponding test-
ing dataset, we removed those instances belonging to the
remaining types of attacks in the training dataset. Conse-
quently, we created three repositories (one for each type
of attack) from the original locality repository presented in
Sect. 5.1 but each training dataset contains no information
on the three types of attacks to be identified.

Figure 11, shows a scatter plot of the average classi-
fication results according to AUC and ZFP for Bagging-
RandomMiner, RandomForest, and PBC4cip. In this figure,
the best classifiers according to the AUC appear to the right,

Fig. 12 Average AUC versus average ZFP of the classifiers Bagging-
RandomMiner, RandomForest, and PBC4cip for predicting attack 2
types

and the best classifiers according to ZFP appear at the top.
Hence, the classifier closest to the upper right corner is
the best one considering both performance metrics. From
Fig. 11 and Friedman’s test, we can state that Bagging-
RandomMiner exhibits better performance and is statistically
different to PBC4cip and RandomForest for both AUC and
ZFP for type 1 (basic) attacks.

Figure 12 presents a scatter plot of the average classi-
fication results according to AUC and ZFP for Bagging-
RandomMiner, RandomForest, and PBC4cip, similar to
Fig. 11, but for type 2 (intermediate) attacks. From this figure
and Friedman’s test, we can say that Bagging-RandomMiner
significantly outperforms PBC4cip and RandomForest for
both AUC and ZFP. Note also how the difference according
to ZFP is larger than the difference shown in Fig. 11. The
main reason is that the type 2 attack is more interactive than
the type 1 attack because some specific files are found and
copied to a USB flash drive, whereas for type 1 attacks, files
are not copied. In addition, according to Friedman’s non-
parametric statistical test, there is no statistical difference
between RandomForest and PBC4cip.

Figure 13 presents a scatter plot of the average classi-
fication results according to AUC and ZFP for Bagging-
RandomMiner, RandomForest, and PBC4cip, similar to
Figs. 11 and 12 but for type 3 (advanced) attacks. From this
figure and the statistical test used, we can state that Bagging-
RandomMiner outperforms and is statistically different to
PBC4cip and RandomForest for both ZFP and AUC mea-
surements. Although Bagging-RandomMiner had statistical
differences in the ZFP and AUC metrics to RandomForest
and PBC4cip, it can be seen that for the AUC there is not
as much difference as there is for ZFP. The main reason
for this result is that some automated scripts were executed
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PBC4cip

RF

Fig. 13 Average AUC versus average ZFP for Bagging-RandomMiner,
RandomForest, and PBC4cip for predicting attack 3 types

on each users computer in type 3 attacks and consequently,
these attacks could produce similar behaviors. Compared to
automated scripts, human behaviors are more diverse, and
therefore, they are more difficult to generalize by a classifier
designed for multi-class problems.

Finally, based on all the experimental results, we conclude
that theBagging-RandomMiner classifier is the best classifier
for file access-based masquerade detection among the tested
classifiers.

7 Conclusions and further work

The need for protecting information has prompted research
on MDSs aiming to detect an attack given a user behavior
profile. Existing approaches to user profiling have focused
mainly onone type of activity, usually user actions (command
usage, keyboard usage, and so on). In this case, the access-
patterns approach has reported better classification results for
masquerade detection thanother approaches designed for this
type of problem.

In this paper, we introduced a one-class classifier for file
access-based masquerade detection, which obtains signifi-
cantly better classification results than several state-of-the-art
classifiers. We corroborated our hypothesis that, in file
access-based masquerade detection, a one-class classifica-
tion approach outperforms the multi-class approach. This
hypothesis is supported by an in-depth experimental analysis
for file access-based masquerade detection taking advan-
tage of the one-class classification approach. Furthermore,
unlike classifiers not based on one-class classification, these
results indicate that one-class classification obtains high-
quality classification results when unknown attacks arise.

Additionally, we introduced three repositories of datasets
for identifying each of the three types of attacks introduced in
theWUIL repository without instances in the training dataset
belonging to the type of attack to be identified in the test-
ing dataset. These new repositories could be used for testing
future classifiers simulating attacks perpetrated in a real sce-
nario.

In the future, we will focus on the correlation analysis
between users’ performance and their features’ values, with
the aim of finding user behavior rules that can be followed
to better protect users. Furthermore, modern data storage is
moving to cloud services and to repositories where different
users can access the information of other users. Therefore,
in a future study, we plan to develop a new FSN repository
based on cloud services and repositories of data storage file
accesses.
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