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Abstract: The ability to engineer the precise geometries, 
fine-tuned energetics and subtle dynamics that are char-
acteristic of functional proteins is a major unsolved chal-
lenge in the field of computational protein design. In 
natural proteins, functional sites exhibiting these prop-
erties often feature structured loops. However, unlike the 
elements of secondary structures that comprise ideal-
ized protein folds, structured loops have been difficult to 
design computationally. Addressing this shortcoming in a 
general way is a necessary first step towards the routine 
design of protein function. In this perspective, we will 
describe the progress that has been made on this prob-
lem and discuss how recent advances in the field of loop 
structure prediction can be harnessed and applied to the 
inverse problem of computational loop design.

Keywords: binding site design; loop modeling; position-
ing functional residues; protein design; Rosetta software.

Introduction: why focus on 
computational design of structured 
protein loops
The routine engineering of functional proteins has been 
a longstanding goal in the field of computational protein 

design. However, while the computational engineering 
of new protein structures has advanced rapidly (Huang 
et al., 2016), the computational engineering of new func-
tions has been more difficult (Fleishman and Baker, 2012).

One important reason for this discrepancy is that 
protein structures are largely built from secondary struc-
tural elements (e.g. α-helices, β-sheets and canonical turns) 
with well-understood and predictable patterns of backbone 
torsion angles and hydrogen bonds, while functional sites 
(e.g. active sites and binding interfaces) are often built from 
structured loops with less regular conformations, shaped 
by the complex and competing requirements of protein 
function. Early efforts in protein design focused on second-
ary structure, defining the rules for α-helix formation (Err-
ington et al., 2006) and creating simple β-sheet elements 
(Lacroix et  al., 1999). Exploring the principles of protein 
secondary structure and their topological arrangements 
ultimately led to the development of methods – based on 
the assembly of protein structures from peptide fragments, 
together with high-resolution sampling methods and all-
atom energy functions – that have been highly successful 
in combining helical and sheet elements to create a variety 
of new, idealized protein folds (Koga et al., 2012).

Now, attention is shifting to the design of protein 
function. Computational protein design, sometimes in 
conjunction with directed evolution, has been applied to 
place catalytic groups (Bolon and Mayo, 2001; Jiang et al., 
2008; Rothlisberger et al., 2008; Siegel et al., 2010; Privett 
et  al., 2012), engineer shape-complementary binding 
interfaces (Chevalier et al., 2002; Kortemme et al., 2004; 
Fleishman et al., 2011; Karanicolas et al., 2011; Kapp et al., 
2012), and switch between different conformational states 
(Ambroggio and Kuhlman, 2006; Davey et  al., 2017). In 
natural proteins, these functions are more often per-
formed by structured loops than by α-helices or β-sheets, 
presumably because loops can access a broader range of 
conformations with greater variation in flexibility or rigid-
ity. For this reason, it seems inevitable that the design of 
complex protein functions will require the ability to design 
structured loops with high accuracy. But the same confor-
mational and dynamical breadth that make structured 
loops functionally useful also makes them challenging 
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to design: the number of possible conformations is vast, 
and even single mutations can have important long-range 
effects on loop structure and flexibility. Despite these 
challenges, a few examples of successful loop design have 
been reported. There have also been significant advances 
made in the field of loop structure prediction (Li, 2013), 
making it timely to discuss how these advances might be 
harnessed to computationally design structured loops 
with greater control than is currently possible.

In this perspective we will begin by discussing exam-
ples of functional loops found in nature, to illustrate the 
different applications that loop design aims to enable. 
We will then continue by reviewing the progress that has 
been made to date towards the design of structured loops, 
before concluding by discussing several promising ways 
for the field to continue moving forward.

Functional loops in nature
Many examples of functional loops can be found in 
enzymes. In fact, loops are much more common in enzyme 
active sites (50% of residues) than they are in general (30% 
of residues) (Bartlett et al., 2002). One way that loops can 
contribute to catalysis is by positioning functional groups 
in the active site (Figure 1A). A good example is ketoster-
oid isomerase, where the positioning of a general base 
(Asp38) by a structured loop is estimated to have a 1700-
fold effect on kcat (Schwans et al., 2014).

Loops can also contribute to catalysis by acting as a 
lid for the active site and changing the reaction environ-
ment (Figure 1C). For example, upon substrate binding 
to triose phosphate isomerase (TIM), an active site loop 

moves more than 7 Å to surround the substrate and 
hydrogen-bond with the substrate’s phosphate group. 
This substantial conformational change excludes solvent 
from the active site and prevents the release of reaction 
intermediates (Pompliano et  al., 1990). However, the 
closed ‘lid’ also limits the rate of product release, high-
lighting a carefully balanced trade-off between creat-
ing a protected active site environment and exchanging 
product for substrate. The active site loop structure in 
TIM is mostly preorganized, moving primarily around 
a hinge, suggesting that the loop might be optimized to 
reduce the entropy penalty of closing (Lolis and Petsko, 
1990). Rationally designing similar systems will require 
exquisite finesse.

Structured loops also play an important role in pro-
tein-protein interactions (Figure 1B). Perhaps the most 
prominent examples in this category are antibodies, 
which use six structured loops – called complementa-
rity determining regions (CDRs) – to bind an astonish-
ing breadth of targets with high affinity and specificity. 
As antibody CDRs mature, their shape complementa-
rity to their antigen increases (Li et  al., 2003; Kuroda 
and Gray, 2016). Moreover, mature CDRs often adopt 
conformations that are pre-organized for binding (i.e. 
conformations that resemble the bound structure, even 
in the absence of antigen) to minimize the loss of con-
formational entropy upon antigen binding (Thorpe and 
Brooks, 2007; Wong et al., 2011; Davenport et al., 2016). 
However, pre-organization is not a universal feature of 
high-affinity antibodies (Jeliazkov et al., 2018). Antibod-
ies with less organized CDRs may benefit from the ability 
to change their conformation to maximize complemen-
tarity, or to bind their antigen in multiple modes (James 
et al., 2003; Wang et al., 2013). The challenge for rational 
design will be to create loops that can similarly present 
the complementary surfaces necessary for tight and spe-
cific recognition.

Another class of functional loops can be found in pro-
teins that react to their environment. One example is the 
bacterial outer membrane protein G (OmpG) that forms a 
pH-gated pore in the membrane. The gating is mediated by 
an extracellular strand-loop-strand motif containing two 
histidine residues (Yildiz et al., 2006; Zhuang et al., 2013). 
At basic pH, the histidines are neutral and positioned on 
adjacent strands of the β-barrel that forms the pore. At 
acidic pH, protonation of the histidines results in charge 
repulsion that causes the strands to unfold, lengthen-
ing the loop and allowing it to adopt a conformation that 
covers the pore. Another prominent example is the acti-
vation loop present in protein kinases. When phosphoryl-
ated, this loop forms contacts that stabilize the active site 
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Figure 1: Important applications of loop design.
(A) accurately positioning a functional sidechain to interact with 
a ligand (light green: protein, dark green: loop with functional 
sidechain, purple: ligand), (B) creating a binding interface (light 
purple: binding partner), and (C) adopting different functional 
conformations in response to environmental stimuli, for example, 
ligand binding (blue, dashed: loop conformation in the absence of 
ligand, dark green: loop conformation in the presence of ligand).
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and contributes to catalysis (Steichen et al., 2012). These 
examples illustrate the utility of being able to design and 
balance multiple functional loop conformations.

What is loop design?
Here we define loop design as the problem of predicting 
sequences that will allow a loop to satisfy certain struc-
tural and functional requirements (Figure 2A), such as 
positioning one or more sidechain groups, adopting a 

particular binding conformation, or changing conforma-
tion in the presence of a ligand (Figure 1). We define a loop 
as a contiguous stretch of protein backbone anchored 
within a larger scaffold and typically – although not nec-
essarily – lacking secondary structure. For the purpose of 
this review, we will consider loop design as being distinct 
from the field of loop grafting, which aims to present a 
fragment of one protein on the scaffold of another, with 
important applications in vaccine design (Azoitei et  al., 
2011; Jardine et al., 2013; Correia et al., 2014). Both loop 
grafting and loop design aim to create loops in particular 
conformations. However, for loop grafting the sequence 
and structure of the loops is known in advance while for 
loop design determining the sequence and structure of the 
loops is the key challenge.

It is instructive to consider how a loop design algo-
rithm might operate given a perfect score function and 
infinite computing resources. In such a hypothetical situ-
ation, the first step would be to exhaustively propose 
design models (combining both sequence and structure) 
that satisfy the structural requirements without introduc-
ing any breaks in the backbone (Figure 2B). The second 
step would be to subject these designs to intense simula-
tion for the purpose of locating their free energy minima 
(Figure 2C). Any design that still satisfies the structural 
requirements in its free energy minimum would be an 
excellent candidate for experimental validation. In reality, 
of course, both steps of this algorithm are prohibitively 
expensive. However, the growing body of literature on loop 
design (which we will review below) has found various 
ways to approximate the ideal scenario, for example, by 
copying fragments of structures from existing proteins, 
using sophisticated macromolecular structure prediction 
algorithms, and even incorporating human intuition into 
the design process.

Loop design: the state of the art
In spite of the numerous applications, there are not many 
examples of loop design using computational prediction 
and design methods. An early example is the effort to 
improve a monomeric variant of TIM by restabilizing an 
8-residue active site loop (Figure 3A) that, in wildtype TIM, 
participated in the dimer interface (Thanki et al., 1997). In 
four iterations, computational models of the loop were pre-
dicted using Monte Carlo simulations, then mutations were 
proposed by visual inspection to correct various defects 
in the models. The final result was a 7-residue loop that 
improved the activity of monomeric TIM. Furthermore, a 
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Figure 2: Schematic of a generic loop design protocol.
(A) A loop design problem is defined by one or more target 
interactions (functional requirements). (B) The first step of a generic 
loop design protocol is to generate design models that satisfy the 
design goal (shades of blue and green: different design models with 
different conformations and sequences). (C) The second step of a 
generic loop design protocol is to identify which models will satisfy 
the design goal in their minimum free energy conformations. The 
free energy diagrams each illustrate two hypothetical states, one 
that satisfies the design goal (left) and one that does not (right). The 
green checkmark indicates a design that should be experimentally 
tested, while the red cross indicates a design predicted to be 
non-functional.
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crystal structure of the designed protein agreed well with 
the predicted loop conformation (0.5 Å root mean squared 
deviation (RMSD) of the backbone heavy atoms C/Cα/N/O 
in the loop). This report established early on that loop 
design is both achievable and useful.

Another example of loop design via computational 
prediction and visual inspection was reported more 
recently. In this case, players of FoldIt (Cooper et  al., 
2010) – a gamified version of the Rosetta structure pre-
diction and design programing (Kaufmann et  al., 2010; 
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Figure 3: Successful applications of loop design.
Each panel shows crystal structures of a protein with redesigned loops (red and dark gray) and the starting structure (termed scaffold, 
blue and light gray). The redesigned loops are shown in red and the loops in the starting scaffolds are shown in blue. Ligands (if any are 
present) are shown in green. PDB IDs for the relevant structures are given in the top-right corner of each panel. Note that the design models 
are not shown, so these images do not illustrate how accurate the designs were, only how different they were from their starting scaffolds. 
(A) The stabilized active site loop of MonoTIM (Thanki et al., 1997). The catalytic Lys supported by this loop is shown. The dashed backbone 
in the scaffold indicates a lack of electron density. (B) The active site of a computationally designed Diels-Alderase (Eiben et al., 2012). 
(C) An exogenous loop grafted onto the FN3 scaffold (Hu et al., 2007). (D) A de novo loop inserted into a de novo 5-residue-repeat scaffold 
(MacDonald et al., 2016). (E) The substrate binding loop in the active site of hGDA (Murphy et al., 2009). The Cβ of the Asn intended to bind 
ammelide is shown, but the remainder of the sidechain was not resolved. (F) The engineered CDR loops (bold labels) of an insulin-binding 
antibody (Lapidoth et al., 2015). Note that the crystal structure does not include the antigen (insulin).
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Leaver-Fay et al., 2011) – were asked to improve a compu-
tationally designed Diels-Alderase (Siegel et al., 2010) by 
designing an active site loop that would better desolvate 
the substrate (Eiben et al., 2012). In the first round of the 
design, the players were allowed to make 5-residue inser-
tions into any of the four active site loops. The authors 
experimentally tested the four best designs (as judged 
by the score of the Rosetta energy function and by visual 
inspection) and over 500 variants of these designs. In the 
second round of the design, the players were instructed 
to stabilize the best first-round design through the crea-
tion of a helix-turn-helix motif (Figure 3B). This time, the 
authors tested the two best designs and over 400 variants. 
The end result was a variant with a 13-residue insertion 
that improved catalysis by 150-fold. A model of the final 
variant created by the players was similar to the crystal 
structure, except for a rotation in one of the helices (3.1 Å 
C/Cα/N/O RMSD). Although the design process required 
experimentally testing hundreds of variants, it demon-
strated that human intuition can guide the design of long 
and functional loops.

An early example of automated computational loop 
design was an effort to build new loops into the fibronec-
tin type III (FN3) domain (Hu et  al., 2007) (Figure 3C). 
This domain had already been established as a non-anti-
body scaffold for evolving loop-based binding interfaces, 
and like an immunoglobulin domain, it has a β-sandwich 
fold from which it presents three mutation-tolerant loops. 
The authors redesigned one of these loops by searching 
for 12-residue fragments in the protein data bank (PDB) 
with similar take-off and landing points to the loops in 
question (within 3 Å), grafting each of those fragments 
onto the FN3 scaffold, repairing the resulting (small) dis-
continuities in the backbone and finally optimizing the 
sequence of the inserted residues while allowing slight 
backbone movement (≈0.3 Å C/Cα/N/O RMSD). Three 
designs were purified and two were successfully crystal-
lized. One design had the intended loop conformation 
(0.46 Å RMSD), which was similar to the original native 
loop (0.77 Å RMSD). The conformation of the loop in the 
other design could not be determined due to missing 
electron density for the loop, which suggests the lack of 
a single defined conformation. The significance of this 
work is that it demonstrated that a structured loop could 
be computationally designed, by borrowing a loop back-
bone conformation from a naturally existing structure 
and redesigning the sequence to match the new environ-
ment. However, the work did not address the problem of 
designing function.

A more recent report addressed the design of de novo 
loops, which were built into a de novo scaffold assembled 

from 24 repeats of a 5-residue motif (MacDonald et  al., 
2016) (Figure 3D). The loops were designed by inserting 
eight residues in the middle of the scaffold, sampling 
conformations with a coarse-grained and sequence-
independent algorithm, then reconstructing the inser-
tion in full-atom detail and performing fixed-backbone 
sequence optimization. This protocol produced 4000 
loop designs. The conformations represented by these 
designs (which remained sequence-independent) were 
assumed to approximate the ensemble of states acces-
sible to an 8-residue loop, allowing the authors to esti-
mate the probability that each design would fold into its 
intended conformation by threading the design sequence 
onto each backbone and comparing the resulting Boltz-
mann-weighted scores. The 10 designs with the highest 
predicted probabilities of folding correctly were tested. 
Of these, five could be purified and four could be crystal-
lized. The crystal structures were relatively low-resolution 
(>3.5 Å), but two were consistent with their design models, 
one was inconsistent with its model, and one had missing 
density for the loop. This report showed that it is possi-
ble to create loops with de novo conformations, but these 
conformations emerged during the design process (rather 
than being defined a priori) and were not intended to be 
functional.

Computational loop design was used to alter protein 
function in an effort to change the substrate specificity 
of the enzyme human guanine deaminase (hGDA) from 
guanine to ammelide (Murphy et  al., 2009) (Figure 3E). 
The ultimate goal was to change the substrate specificity of 
hGDA from guanine to cytosine, but ammelide was chosen 
as an intermediate step because it resembles guanine on one 
face and cytosine on the other. The design approach was to 
remodel the loop in hGDA that positions an arginine (Arg) 
to recognize guanine to instead position either asparagine 
(Asn) or glutamine (Gln) with the right geometry to bind 
the cytosine-resembling face of ammelide. (Interestingly, 
in natural cytosine deaminases the corresponding Asn/Gln 
is positioned by a different active site loop, so this project 
in essence attempted to build a novel active site architec-
ture.) The loop was remodeled by (i) positioning the amide 
groups of the Asn and Gln sidechains ideally with respect 
to ammelide, (ii) rotating the sidechain χ angles to generate 
backbone conformations capable of supporting that ideal 
positioning, (iii) superimposing segments from the scaf-
fold on those backbones, (iv) randomly adding or removing 
residues from either end of those segments, and (v) repair-
ing the backbone with peptide fragment insertions (Simons 
et  al., 1997), cyclic coordinate descent (CCD) (Canutescu 
and Dunbrack, 2003) and minimization of backbone tor-
sions using Rosetta (Kaufmann et  al., 2010). This loop 
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remodeling protocol was then followed by fixed-backbone 
sequence design on the lowest-scoring backbone model 
(which featured Asn and two deletions) to create designs. 
A single design (with Gly-Asn-Gly-Val as the loop sequence) 
was chosen for experimental characterization, based on 
visual inspection and the results of an unrestrained loop 
modeling simulation predicting that the design would fold 
into the desired conformation. The chosen design yielded 
a 100-fold increase in ammelide deaminase activity, along 
with a 25 000-fold decrease in guanine deaminase activity. 
A crystal structure revealed that the loop was close to the 
computational design model (1.0 Å Cα RMSD), but that the 
designed Asn was not visible in the electron density. This 
report is significant because it showed that loops can be 
designed for function. But there is still room for improve-
ment. The designed loop was relatively short (four residues) 
and its conformation only differed slightly from that of the 
starting wildtype structure. For more ambitious design 
goals, we must learn how to design larger loops and more 
dramatic conformational changes.

Loop design has also been applied to the problem 
of computationally designing antibody CDRs to bind 
particular targets of interest. This is an especially chal-
lenging problem for a number of reasons: (i) there are 
six CDRs, which interact with each other to form a large 
binding interface, (ii) some of the CDRs, most notably the 
3rd CDR on the antibody heavy chain (termed H3), can 
be long [typically 3–20 residues (Regep et al., 2017)], and 
(iii) the position and conformation of the antigen must 
be predicted in concert with the CDRs. However, there is 
also an exceptional amount of sequence and structural 
data available for antibodies. These data were recently 
leveraged to rationally design antibody binding inter-
faces for human insulin and Mycobacterium tubercu-
losis acyl-carrier protein 2 (Lapidoth et  al., 2015; Baran 
et  al., 2017). The design protocol was premised on the 
long-standing concept that each CDR except H3 can be 
assigned to a small number of conformational clus-
ters (Chothia and Lesk, 1987). By combining CDRs from 
each cluster, 4500 models were created. The epitope was 
docked against each model, and the antibody sequence 
was designed to stabilize both the binding interface and 
the interactions between the CDRs, subject to sequence 
restraints derived from the natural sequence profiles 
for each cluster. Each CDR was then optimized by itera-
tively installing different backbone conformations from 
the same cluster and re-sampling the sidechains (Lapi-
doth et al., 2015). With the benefit of manual design and 
directed evolution, this protocol produced antibodies 
with mid-nanomolar binding affinities. The anti-insulin 
antibody was crystallized in its unbound form (Figure 3F) 

and showed atomic-level accuracy in four of the six CDRs 
(backbone and sidechain), with the only errors being in 
H1 and the notoriously difficult H3 (Baran et  al., 2017). 
This method shows that it is possible to design structured 
loops in binding interfaces, even while also optimiz-
ing other degrees of freedom (e.g. epitope docking). The 
drawback to this method is that it depends on the vast 
amount of information available for the antibody scaf-
fold. Other common scaffolds, e.g. TIM-barrels might also 
be amenable to this type of design, but there remains a 
need for methods that can be applied more generally to 
any existing scaffold or to new protein folds designed 
entirely de novo.

What can we learn from loop 
modeling?
With the current state of computational loop design in 
mind, it is interesting and worthwhile to consider how the 
field might progress in the near future. To do so, it is instruc-
tive to examine the related – but much more mature – field 
of loop modeling. Loop modeling is the problem of predict-
ing the structure of a loop given its sequence. This is the 
inverse of the loop design problem, which can be framed 
as predicting sequences that will adopt a particular loop 
structure. By considering the similarities and differences 
between these two related problems in the following sec-
tions, we will highlight how previous advances in loop 
modeling can illuminate the way forward in loop design.

The basic structure of a loop modeling algorithm is as 
follows: The inputs are (i) the sequences of one or more 
loops and (ii) the atomic coordinates for the remainder of 
the protein, which might be taken from homology models 
or experimental structures with missing atoms. The 
outputs are the atomic coordinates for the loops in ques-
tion. To produce these coordinates, a loop modeling algo-
rithm has four components: (i) a suitable representation 
of the system, (ii) an algorithm to sample new loop con-
formations, (iii) an algorithm to ensure that the protein 
backbone stays closed, and (iv) an energy function to 
score different loop conformations. We will discuss each 
of these components, and how they might be repurposed 
for loop design, below.

Representation

There are two main classes of representations employed in 
loop modeling algorithms: full-atom and coarse-grained. 
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Full-atom representations include all protein backbone 
and sidechain atoms, although most still exclude solvent 
atoms. Coarse-grained representations strip away some 
atomic detail in the interest of simplicity. This could 
mean replacing the sidechain atoms with a single large 
sphere, removing the sidechain atoms altogether, or 
retaining only the protein α-carbons. One advantage 
of coarse-grained representations is that they typically 
have smoother energy landscapes, which can be more 
thoroughly explored. In contrast, full-atom representa-
tions have the potential to be more accurate as details 
of physical interactions, such as the precise geometries 
of hydrogen bonds in functional sites, can be modeled. 
To combine the potential advantages of both classes of 
representations, many loop modeling methods begin by 
searching for reasonable loop conformations in a coarse-
grained representation, and then switch to a full-atom 
representation to winnow and refine those conformations 
(Fiser et al., 2000; de Bakker et al., 2003; Jacobson et al., 
2004; Wang et al., 2007; Mandell et al., 2009; Lee et al., 
2010). An interesting exception are algorithms that use 
only a full-atom representation (Das, 2013; Wong et  al., 
2017). These methods are based on the premise that loops 
can be sampled stepwise, so these algorithms build loops 
by sampling each residue in full-atom detail, one-at-a-
time, until the whole loop has been assembled.

The sequential approach of many loop modeling algo-
rithms – coarse-grained exploration followed by full-atom 
refinement – may not generally be appropriate for loop 
design. As already defined, loop design is fundamentally 
a search for sequences adopting desired conformations 
subject to functional requirements (Figure 2). Coarse-
grained versions of this search could in principle include 
a representation that encodes a sequence. One such repre-
sentation is the Rosetta ‘centroid-mode’, which represents 
different sidechain types as spheres with different sizes 
and charge properties (Simons et al., 1997, 1999). However, 
it is unclear whether sequence-aware coarse-grained rep-
resentations can encode the functional requirements 
of a design problem in sufficient detail. A prototypical 
example is a design goal where functional groups of spe-
cific side chains need to be accurately positioned within 
an active site. In this case, design solutions will need to 
take into account the specific size and geometry of these 
sidechains, even during coarse-grained remodeling of 
the surrounding backbone environment. To address this 
problem, it will be desirable to develop hybrid representa-
tions – perhaps specific to the loop design problem – with 
tunable levels of detail. For example, one could imagine an 
algorithm where functional side chain groups are placed 
using all atom details while the rest of the loop (i.e. the 

backbone and any peripheral sidechains) is built in lower 
resolution. Plausible models could then be subjected to 
full-atom sequence design and structural refinement.

Sampling

Loop modeling algorithms differ in their approaches to 
sampling different conformations. These approaches are 
traditionally categorized as either ‘template-based’ or  
‘template-free/de novo’ (Shehu and Kavraki, 2012; Li, 
2013; Fiser, 2017), where the former query databases of 
known structures to sample loop conformations, and 
the latter do not. However, most recent sampling algo-
rithms lie on a continuum between the two. On one side 
of this continuum are the algorithms that do not borrow 
three-dimensional coordinates from any existing ‘tem-
plate’ protein structure. For example, some algorithms 
randomly place atoms in a ‘cloud’ around the loop and 
subsequently refine them to satisfy certain physical or 
experimental restraints (Fiser et al., 2000; Liu et al., 2009; 
Heo et  al., 2017). Other algorithms begin with a physi-
cally plausible backbone conformation and perturb it via 
Monte Carlo (Collura et al., 1993; Macdonald et al., 2013) 
or molecular dynamics (MD) (Rapp and Friesner, 1999; 
Hornak and Simmerling, 2003; Olson et  al., 2011) simu-
lations. A small step along the continuum is to sample 
backbone torsions from a Ramachandran distribution 
derived from the frequencies of the ϕ and ψ backbone 
torsions in high-resolution protein structures (Galak-
tionov et al., 2001; Xiang et al., 2002; DePristo et al., 2003; 
Jacobson et al., 2004; Spassov et al., 2008; Mandell et al., 
2009; Adhikari et al., 2012; Liang et al., 2014; Tang et al., 
2014). This approach has also been extended to two-resi-
due (Stein and Kortemme, 2013) and three-residue (Rata 
et  al., 2010) ϕ and ψ distributions. A further step along 
the continuum are algorithms that sample new loop con-
formations by stitching together larger fragments (usually 
three to nine residues) from known structures (Rohl et al., 
2004; Wang et al., 2007; Lee et al., 2010). This fragment-
based approach is based on the assumption that all rel-
evant local conformations are present in the PDB (Simons 
et al., 1997; Perskie et al., 2008) and is widely recognized 
for its successful application to the ab initio prediction of 
protein tertiary structures (Bradley et  al., 2005). Finally, 
on the far side of the continuum are fully template-based 
algorithms. These algorithms query structural databases 
for loops of the right length that approximately match the 
takeoff and landing points of the loop in the input struc-
ture (Deane and Blundell, 2001; Michalsky et  al., 2003; 
Fernandez-Fuentes et  al., 2006a; Peng and Yang, 2007; 
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Choi and Deane, 2010; Holtby et al., 2013; Messih et al., 
2015; Marks et  al., 2017; Nguyen et  al., 2017). Matching 
loops are usually ranked by how well they fit the gap and 
align with the input sequence, and can be subsequently 
relaxed using a full-atom score function. Template-based 
algorithms can be very fast, a fact that was recently lever-
aged to create an interactive program for loop modeling 
and design (Hooper et al., 2018).

In terms of sampling, the clearest difference between 
loop modeling and loop design is that the former only 
needs to sample conformation-space, while the latter 
needs to simultaneously sample conformation- and 
sequence-space. This poses a challenge called the ‘des-
ignability’ problem (Helling et al., 2001): given a desired 
conformation, is it possible for some sequence (in some 
environmental context) to adopt that conformation?

For loop design, one might hypothesize that the tem-
plate- and fragment-based algorithms (Murphy et  al., 
2009; Bonet et al., 2014; Lapidoth et al., 2015) might be 
more successful than de novo methods as the former 
address the designability problem: if conformations are 
sampled from a structural database, there is at least one 
known sequence for each conformation. However, there 
are still significant challenges in applying template-
based algorithms to the problem of loop design. The most 
significant challenge is ensuring that the loop will still 
adopt its conformation in the new structural context of 
the design. Moreover, template-based methods would 
need to be modified to account for the additional struc-
tural requirements imposed on the loop by the design 
goal. For example, to design a loop that places the func-
tional group of an active site residue in a defined geom-
etry, a database query would have to find loops that not 
only start and stop in the right place but are also capable 
of positioning the residue in question, limiting the 
number of potential results. This problem is amplified as 
more residues are included in the design, for example, in 
large binding sites and protein-protein interfaces. That 
said, loop design also makes finding suitable loops easier 
because the algorithm can pick its takeoff and landing 
points, and the loop can be of any length or sequence. 
Some design problems can also take advantage of scaf-
folds belonging to large families with many homologs 
of known structure, like antibodies or TIM-barrels, for 
which template-based algorithms are especially likely to 
be successful. Taken together, it is not clear a priori how 
difficult it will be to apply template-based algorithms to 
loop design. However, fragment-based sampling algo-
rithms might be more generally applicable. They offer 
analogous advantages to the template-based algorithms 
in terms of designability, but as the backbone can be built 

by combination of different shorter fragments rather than 
one large segment, it might be easier to find solutions 
that accommodate functional requirements imposed by 
the design goal (which could be expressed using spatial 
restraints, for example).

Another aspect of sampling in structure prediction 
is the difficulty of traversing large barriers in the energy 
landscape, leading to simulations that get trapped in 
local minima and fail to produce native conformations. 
A common strategy for addressing this problem is simu-
lated annealing, whereby the temperature of the simu-
lation is gradually increased (to traverse barriers) and 
decreased over the course of the simulation (Collura 
et al., 1993; Rapp and Friesner, 1999; Fiser et al., 2000; 
Rohl et al., 2004; Wang et al., 2007; Mandell et al., 2009; 
Adhikari et al., 2012; Macdonald et al., 2013; Liang et al., 
2014). A related alternative is parallel tempering, whereby 
simulations at different temperatures are run simultane-
ously and occasionally swap coordinates (Olson et  al., 
2008, 2011). Unlike simulated annealing, parallel tem-
pering produces ensembles with defined temperatures. 
Although such ensembles may be helpful for estimating 
entropies, few loop modeling applications have applied 
this strategy as of yet. Genetic algorithms have also been 
used to enhance sampling (Li et  al., 2011; Park et  al., 
2014; Heo et al., 2017). While genetic algorithms can trav-
erse barriers efficiently, they have to confront the fact 
that crossover operations involving backbone torsions 
are likely to produce large clashes (Unger, 2004). Lastly, 
a handful of methods have attempted to exhaustively 
sample conformational space, subject to some binning 
and pruning (Jacobson et al., 2004; Spassov et al., 2008; 
Das, 2013; Wong et al., 2017).

At least in principle, any of these barrier traversal 
strategies could be applied to loop design, especially 
to the step where proposed designs are simulated to 
assess which will in fact adopt the desired conformation 
(Figure  2C). This computational ‘validation’ step (more 
specifically a consistency check) is similar to a loop mod-
eling simulation, but with a subtle difference: the simu-
lation can stop as soon as it finds a robust number of 
alternative conformations with lower predicted energies 
than the design being validated. This difference could 
allow the validation problem to be recast as a compari-
son between a small number of plausible off-target states, 
rather than as a large-scale search of conformational 
space for the energy minimum. In turn, this comparison 
could be addressed using enhanced sampling techniques 
that estimate the free energy difference between small 
numbers of known states (Kastner, 2011; Comer et  al., 
2015).
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Closure

A specific feature of loop sampling algorithms is that 
they must be able to sample new loop conformations 
without creating chain breaks in the protein backbone. 
This problem is referred to as loop closure. A concep-
tually simple (although combinatorially complex) solu-
tion is to allow the sampling algorithm to build the loop 
from both ends, and to keep the fraction of models that 
meet in the middle (DePristo et al., 2003; Jacobson et al., 
2004; Das, 2013). This approach is common for sampling 
algorithms that are enumerative. Another solution is to 
define a score term that favors a closed backbone (e.g. a 
harmonic restraint across the break) and to let the sam-
pling algorithm (or a gradient minimizer) find confor-
mations that satisfy that term (Collura et al., 1993; Fiser 
et al., 2000; Rohl et al., 2004; Fernandez-Fuentes et al., 
2006b; Spassov et  al., 2008; Liu et  al., 2009; Adhikari 
et al., 2012; Macdonald et al., 2013; Tang et al., 2014; Heo 
et al., 2017). However, this solution may require spend-
ing a significant amount of time sampling conformations 
that are not closed, which is inefficient. An alternative is 
to use inverse kinematics algorithms borrowed from the 
field of robotics that calculate the accessible conforma-
tions of objects subject to constraints, such as determin-
ing the possible positions of the interior joints of a robot 
arm given fixed positions for the shoulder and finger-
tips. In the context of loop modeling, such algorithms 
can be used after sampling to adjust the backbone tor-
sions in the loop such that the loop remains closed. 
Iterative inverse kinematics algorithms such as cyclic 
coordinate descent (CCD) (Canutescu and Dunbrack, 
2003) converge on a closed backbone over a series of 
steps and have been applied in many protocols (Shenkin 
et al., 1987; Xiang et al., 2002; Wang et al., 2007; Minary 
and Levitt, 2010; Li et al., 2011; Liang et al., 2014; Marks 
et  al., 2017). Analytical inverse kinematics algorithms 
such as kinematic closure (KIC) (Coutsias et  al., 2004) 
calculate exact solutions to the closure problem using 
6 degrees of freedom (such as backbone torsions) to 
achieve closure, allowing any other degrees of freedom 
to be sampled freely. These algorithms have also been 
used in many protocols (Wedemeyer and Scheraga, 
1999; Coutsias et  al., 2004; Mandell et  al., 2009; Lee 
et  al., 2010; Park et  al., 2014; Wong et  al., 2017). Loop 
design will require efficient sampling in sequence- and 
conformation-space, so the efficiency of the inverse 
kinematics methods makes them good choices for 
maintaining closure. KIC in particular can simultane-
ously satisfy multiple geometric restraints [such as 
ring closure (Coutsias et  al., 2016), disulfide bonding 

(Bhardwaj et al., 2016) and catalytic group placement], 
which may be valuable for loop design.

Scoring

The final component of a loop modeling algorithm is the 
score function used to evaluate which conformations are 
the most realistic. Loop modeling algorithms lie on a con-
tinuum based on the score function they employ. On one 
side of the continuum are the algorithms that use physi-
cal score functions like AMBER (Rapp and Friesner, 1999), 
CHARMM (Olson et al., 2008, 2011; Spassov et al., 2008), 
and OPLS (Jacobson et  al., 2004). Some algorithms also 
use a ‘colony’ score term that tries to capture the effects 
of entropy by favoring the models with the most confor-
mationally similar neighbors (Xiang et al., 2002; Fogolari 
and Tosatto, 2005). On the other side of the continuum are 
algorithms that use statistical score functions derived from 
distributions of atoms and residues observed in high-res-
olution structures, such as DFIRE (Yang and Zhou, 2008; 
Lee et al., 2010; Holtby et al., 2013; Wong et al., 2017), DOPE 
(Adhikari et  al., 2012), SOAP-Loop (Marks et  al., 2017), 
GOAP (Zhou and Skolnick, 2011) and others (Galaktionov 
et al., 2001; Macdonald et al., 2013). However, many loop 
modeling algorithms use hybrid score functions which 
include both physical and statistical terms (Fiser et  al., 
2000; de Bakker et al., 2003; Rohl et al., 2004; Wang et al., 
2007; Mandell et al., 2009; Li et al., 2011; Liang et al., 2014; 
Park et  al., 2014; Heo et  al., 2017). Some methods use a 
statistical score function for coarse-grained sampling and 
a physical score function in the full-atom sampling stage.

What considerations are relevant to loop design? 
Hybrid score functions have been shown to be success-
ful in many applications of computational protein design 
using Rosetta (Huang et  al., 2016). Although there are 
clear examples of shortcomings (Mandell et  al., 2009; 
Das, 2011; Dou et al., 2017), all of the computational loop 
design methods reviewed above used the Rosetta score 
function (Kuhlman et al., 2003; Alford et al., 2017). While 
other score functions could also be applied to loop design, 
one consideration is the need for a score term that allows 
for the comparison of models with different sequences. 
For example, arginine might be more likely to score better 
than alanine simply because the former has more atoms, 
and thus more opportunities to make favorable contacts. 
Design score functions must use an additional score term 
(called a ‘reference energy’ in Rosetta) to counteract this 
bias.

Another consideration for loop design is the solvent 
model. While many loop modeling methods use an 
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implicit solvent model for computational efficiency, it may 
be possible to apply explicit solvent models in the context 
of loop design. As mentioned in the section on barrier tra-
versal, the computational validation step of a loop design 
protocol (Figure 2C) may be able to devote more time 
towards a small number of structures, allowing the use of 
more resource-intensive techniques. As loops are typically 
solvent exposed, an explicit treatment of the solvent may 
yield worthwhile improvements in accuracy.

What problems are unique to loop 
design?
Having discussed loop design in the context of loop mod-
eling, let us now focus on aspects that are specific to loop 
design. The first of these aspects is a technical considera-
tion: how many residues should be in the designed loop? 
The loop must be long enough to address the design goal 
(e.g. if the goal is to position a residue, the loop must be 
able to reach said residue), but ideally as short as pos-
sible. Not only are shorter loops less likely to be confor-
mationally heterogeneous, they are also easier to model 
accurately. The most naive approach to designing loop 
length is to simply try several different lengths, but this 
is inefficient. Loop design already has to grapple with 
the enormous task of sampling both sequence- and con-
formation-space. Two more thoughtful approaches have 
already been explored. Murphy et al. randomly added and 
removed residues from the loop during design and vali-
dated their approach with a loop length recovery bench-
mark (Murphy et al., 2009). Lapidoth et al. sampled loop 
sequences and conformations from a database, which 
included loops of different lengths (Lapidoth et al., 2015). 
However, neither of these approaches modified their score 
function to compare loops of different lengths. Just as 
score functions will prefer large amino acids over short 
ones (as described already), so too will they prefer long 
loops over short ones. While this bias did not prevent 
either group from creating successful designs, it could be 
addressed using the worm-like chain model to create a ref-
erence state for loop lengths. Specialized algorithms are 
also needed to make length-independent structural com-
parisons (e.g. for clustering) (Nowak et al., 2016).

The second, more fundamental problem that loop 
design must confront is: how can the flexibility or rigid-
ity of a loop be accounted for during the design process? 
For example, one may wish to ensure that a designed loop 
is adequately rigid, or conversely, to create a loop with 
defined functional flexibility. Although it is well known 

that protein native states are best thought of as occupy-
ing an ensemble of conformations, only a handful of loop 
modeling methods have tried to account for the possibil-
ity that a loop might not have a single defined conforma-
tion (Shehu et al., 2006; Nilmeier et al., 2011; Marks et al., 
2018). This consideration may be less important for loop 
modeling, where the sequence segments being predicted 
come from natural proteins and are often well-structured, 
but it is of immediate importance to loop design, where 
the sequences being predicted were created computation-
ally and disorder could be a common mode of failure. 
There are many methods for predicting protein flexibility, 
and while a recent report has begun addressing the issue 
of designing flexibility by engineering exchange between 
different sidechain conformations at equilibrium (Davey 
et al., 2017), to the best of our knowledge these approaches 
have not yet been applied to the design of loop flexibility. 
There are two main approaches for predicting flexibility. 
The first is to generate an ensemble of possible conforma-
tions and then to calculate Boltzmann-averaged quanti-
ties (like RMSD) over that ensemble (Hilser and Freire, 
1996; Shehu et al., 2006, 2007; Benson and Daggett, 2008; 
Nilmeier et al., 2011). The challenge with this approach is 
the expense of computing the ensembles and the impos-
sibility of knowing whether all of the relevant states have 
been sampled. The ensembles must also be generated by 
a method that obeys detailed balance, which adds com-
plexity. The second approach is to represent the protein as 
a graph and to infer rigidity from the connectivity of that 
graph (Jacobs et  al., 2001; Pandey et  al., 2005; Dobbins 
et al., 2008; Sarkar, 2017; Bramer and Wei, 2018). Usually 
the nodes represent atoms or residues, and the edges 
represent the covalent and non-covalent interactions 
between those nodes. The challenge with this approach 
is that it abstracts the details of protein structure and is 
often more focused on motions at the domain level than at 
the individual residue level. It is an open question which 
approach will work best for loop design.

Closing remarks
In conclusion, we have reviewed the current state of 
the loop design field and highlighted several promising 
avenues for progress in the near future: (i) hybrid repre-
sentations of functional and structural requirements, (ii) 
template- or fragment-based sampling, (iii) inverse kin-
ematic closure methods, (iv) hybrid score functions that 
account for sequence- and length-biases and accurately 
balance polar interactions and solvation, (v) enhanced 
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sampling methods for evaluating competing conforma-
tions, and (vi) methods that incorporate loop flexibility 
and rigidity into the design process. The field has had 
success designing small loops and antibodies and is 
poised to continue making progress by repurposing and 
improving existing loop modeling algorithms. Questions 
such as how to sample loop lengths and how to make a 
loop either rigid or flexible still need to be grappled with. 
That said, we believe that many of the technologies ena-
bling the next steps forward are largely in place. Our hope 
is these steps will lead to methods capable of routinely 
and accurately designing structured loops. As loops are 
an integral feature of many functional proteins – includ-
ing enzymes, binders and switches – such methods will be 
a boon to the broader and ongoing effort to design func-
tional proteins using computational methods.
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