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Abstract. The rise of whole-genome shotgun sequencing (WGS) has enabled numerous breakthroughs
in large-scale comparative genomics research. However, the size of genomic datasets has grown exponen-
tially over the last few years, leading to new challenges for traditional streaming algorithms. Modern
petabyte-sized genomic datasets are difficult to process because they are delivered by high-throughput
data streams and are difficult to store. As a result, many traditional streaming problems are becoming
increasingly relevant. One such problem is the task of constructing a maximally diverse sample over
a data stream. In this regime, complex sampling procedures are not possible due to the overwhelming
data generation rate. In theory, the best diversity sampling methods are based on a simple greedy algo-
rithm that compares the current sequence with a large pool of sampled sequences and decides whether
to accept or reject the sequence. While these methods are elegant and optimal, they are largely con-
fined to the theoretical realm because the greedy procedure is too slow in practice. While there are
many methods to identify common elements in data streams efficiently, fast and memory-efficient di-
versity sampling remains a challenging and fundamental data streaming problem with few satisfactory
solutions. In this work, we bridge the gap with RACE sampling, an online algorithm for diversified
sampling. Unlike random sampling, which samples uniformly, RACE selectively accepts samples from
streams that lead to higher sequence diversity. At the same time, RACE is as computationally efficient as
random sampling and avoids pairwise similarity comparisons between sequences. At the heart of RACE
lies an efficient lookup array constructed using locality-sensitive hashing (LSH). Our theory indicates
that an accept/reject procedure based on LSH lookups is sufficient to obtain a highly diverse subsample.
We provide rigorous theoretical guarantees for well-known biodiversity indices and show that RACE
can nearly double the Shannon and Simpson indices of a genetic sample in practice, all while using
the same resources as random sampling. We also compare RACE against Diginorm and coreset-based
diversity sampling methods and find that RACE is faster and more memory efficient. Our algorithm is
straightforward to implement, easy to parallelize, and fast enough to keep pace with the overwhelming
data generation rates. We expect that as DNA sequence data streams become more mainstream and
faster, RACE will become an essential component for many applications.1
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1 Code is available at https://github.com/brc7/DiversitySampling
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1 Introduction

DNA sequencing plays an essential role in advancing biological research and in various applications such as
virology and medical diagnosis. In particular, fast and efficient analysis of DNA sequences improves the ability
of researchers to detect and catalog diverse sets of organisms and species [25]. Large scale genomic repositories
such as the European Nucleotide Archive (ENA) [15] and the NCBI Short Read Archive (SRA)[16] are the
product of ambitious experimental efforts to sequence as many organisms as possible. These datasets are
important for a wide array of applications to human health, including pathogen surveillance [26], antibiotic
resistance detection [14], and cancer genomics [21]. However, the size of these archives now rivals the largest
datasets at web-scale companies and government agencies. The SRA currently contains over 30 million FASTQ
files with over 26 petabytes, and the ERA contains one-fifth of a petabyte of bacterial and viral DNA alone.
Historically, the total size of sequencing data has doubled every 2 years. Furthermore, the rate of exponential
growth is likely to increase thanks to recent developments in sequencing hardware.

Currently, it is possible to generate very large quantities of sequencing data at extremely fast data rates.
For instance, the PromethION system from Oxford Nanopore Technologies has a data throughput rate of over
4 terabytes per day. Plans are underway to parallelize the data collection process and increase the data rate
even further. Although very recent base calling algorithms, such as Guppy, can potentially keep up with the
data stream, researchers are generating datasets much faster than they can be transmitted to online archives.
These datasets are large enough that it is a practical challenge to store them locally. As a result, large-scale
genome processing, transmission and storage pose problems from an algorithmic and systems perspective.
Based on historical trends and recent hardware, it is likely that storage and transmission of the complete
data will soon become infeasible. To cope with the onslaught of data, the algorithms community will need to
develop streaming algorithms that are appropriate for sequencing data.

In spite of recent methods designed to handle the data deluge [25], new methods are needed that focus on
data compression, sampling, and summarization to facilitate faster algorithms and practical systems at such
scale. Since sequence datasets contain highly redundant information, we may be able to represent the same
scientifically relevant information in much less space by selectively sampling sequences from the data stream.
It is clear that the sampling process cannot require more than one pass through these overwhelmingly large
datasets. The most popular approach for sampling on a data stream is reservoir sampling, which returns a
uniform random sample from the stream after one pass through the data. However, random samples lose
rare information. In fields such as metagenomic studies, where we wish to identify all organisms present in
a population, we often need to preserve rare sequence. Most sequences will belong to common organisms
with large sub-populations, but relatively few sequences will correspond to rare organisms. Therefore, the
probability of retaining information from these rare organisms under random sampling is suboptimal. While
this issue can be resolved by storing a very large number of samples, this is undesirable because it increases
the amount of genetic information passed to computationally-expensive downstream pipelines.

Inspired by these developments, we consider the streaming diversity sampling problem. In this problem,
we are given a data stream D of elements (or sequences) x1, x2, . . . , xN , which we see one element at a time.
The task is to construct a diverse sample S of D using limited computational resources. In particular, we
expect the following three properties to be satisfied by the sampling algorithm:

1. One Pass: It is clearly prohibitive to make a second pass over the stream. Thus, once we see xi we must
immediately decide whether to accept or reject it and move on. It should be noted that this decision is
oblivious to all future samples xi+1, xi+2, ..., xN

2. Efficient Computation: An intuitive and straightforward solution is to store a buffer of elements and
compare the current element xi to all the sampled elements. While this will preserve diversity, it is very
slow for large sample sizes. Large numbers of comparisons are infeasible in the online setting because the
data generation rate is usually much faster than a linear scan with pairwise comparisons. For datasets at
the petabyte scale, this procedure is prohibitively slow.

3. Tiny Main Memory: There are several efficient near-neighbor based methods which can return the
closest element efficiently, but they all require expensive data structures that are super-linear in the size
of the data. Since these structures must reside in main memory, such methods are prohibitive. We can
expect a reasonable sub-sample of peta-scale datasets to be sufficiently large that it does not fit in any
existing RAM. Therefore, we cannot perform near-neighbor lookups on genetic data streams in practice.

Our aim is to perform diverse sampling while achieving the above three properties. Diversity maximization
problems have been explored by the computational geometry community in the context of diverse coresets [11]
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and diverse near-neighbor search [2]. Diversity is usually defined geometrically. For instance, a common
definition is that diversity is equal to the minimum pairwise distance between the points of the sample set.
However, other diversity measures are more useful and well-known for genomics problems. In this paper we
will focus on biodiversity measures such as the Simpson index and Shannon index which are popular in the
bioinformatics community.

1.1 Related Work

One can always construct a random sample of the dataset using the popular reservoir method originally
proposed by [27]. Random sampling has all three aforementioned properties but is undesirable because it
discards important information. In this section, we review related ideas and their shortcomings.

Composable Coresets To the best of our knowledge, the only direct solution to the diversity sampling
problem is the approach proposed by [11]. This algorithm is based on the idea of composable coresets. Suppose
we want to efficiently solve an optimization problem on a large dataset D. A coreset is a subset S of D with
the following property. If we solve the optimization problem on S, we obtain an approximate solution to the
problem on D. Since |S| < |D|, coresets enable fast processing of massive datasets with limited memory. Now
suppose we construct a coreset S1 for dataset D1 and S2 for dataset D2. The coresets are composable if we can
merge S1 and S2 to get a coreset for the combined dataset D1 ∪D2. Composable coresets can solve streaming
problems by breaking the stream into buffers of M elements. We begin by constructing a composable coreset
S for the first M elements of a data stream. To process the next M elements, we construct another coreset
and merge it with S [11]. Since the cost of finding the coreset scales with M , the buffer size M is chosen to
fit within computational constraints. The output is a diverse coreset of the entire data stream. Although the
merging and construction operations can be costly, this approach seems to work well in practice on web-scale
streaming data [1].

Buffer Algorithms Another category of algorithms use a buffer to identify the most frequent elements.
Two well-known algorithms are lossy counting (deterministic) and sticky sampling (probabilistic) [18]. Lossy
counting records the frequency of each unique item in an array. After processing each chunk of the data
stream, we decrement the counters and remove any elements with zero count values. Lossy counting reports
a slight underestimate of the element frequencies but provably identifies the most common elements in the
stream.

Sticky sampling is a related method for the same problem. Rather than keep a fixed-size array, sticky
sampling dynamically allocates a new counter when it samples a new element. Unlike lossy counting, sticky
sampling doubles the chunk size each iteration while randomly sampling over the chunk. Elements are collected
from the stream with probability 1/r, where r is the chunk size. After each chunk, the count values in the
buffer are decremented according to a random process. As before, elements are removed from the buffer when
they have zero count value.

Sketching Algorithms Sketching algorithms construct a compact (sub-linear space) data structure to
summarize information from large quantities of data. The Count-Min sketch (CMS) is a data summary that
can efficiently approximate how frequently an element occurs in a data stream [7]. The CMS consists of an
array of counters that is randomly indexed using a hash function. When a new element x arrives from the
stream, it is hashed to a small set of counters, which are incremented. Each counter keeps track of how many
times x has been seen, plus the number of times another element has mapped to the same counter or had a
hash collision. By randomly merging counters, the CMS provides an accurate frequency estimate for the most
frequent items of a data stream. Diginorm [5], Bignorm [28] and NeatFreq [20] are sketching algorithms for
genetic data normalization that use the CMS. These methods reduce the size of genetic datasets by eliminating
redundant reads. At a high level, Diginorm and Bignorm use the CMS to downsample high-frequency k-mers
while attempting to retain rare information.

1.2 Limitations: Why are existing methods insufficient?

Existing algorithms have two key limitations that prevent their application to large-scale data streams with
fast data rates such as genome sequence data streams. The streaming algorithm literature is largely focused on
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locating frequent elements and eliminating exact duplicates in the data stream. Such methods lack robustness
to even a slight perturbation in the elements. Thus, a CMS or lossy counting buffer can answer whether we
have seen a particular sequence but cannot tell whether we have seen any similar sequences. Duplicate
detection will avoid redundancy but may not actually increase the diversity of our sample, especially since
many sequences that are otherwise identical will have small perturbations. Furthermore, the sketch size grows
with the number of sequences in the stream, making duplicate detection expensive and prohibitive for long-
running data streams. This is reflected in our experiments, where Diginorm [5] required very large amounts
of memory.

Composable coresets are the only known streaming algorithm that can reject similar sequences, but they
scale poorly with sample size. As a result, composable coresets are infeasible for practical data streams. In
our experiments, we could not scale coresets to work on genetic datasets with more than 1 million reads. In
this paper, we provide a significant departure from the existing line of work and propose a novel sampling
algorithm. We use the statistical view of locality-sensitive hashing to bypass distance computations while still
preserving diversity and robustness to perturbation.

2 RACE Sampling Algorithm

We propose a fast diversity sampling routine that handles high-throughput streams of sequence data. Our
method constructs a diverse sample set by rejecting sequences that are similar to the collected samples. The
most critical part is that we do not perform any kind of pairwise distance computation. We are able to avoid
distance computations by using locality-sensitive hashing and the recently proposed RACE algorithm. Before
describing our algorithm, we introduce two fundamental components of our proposal.

Locality-Sensitive Hashing A locality-sensitive hash (LSH) family [12] is a family of functions with the
following property: Under the hash mapping, similar points have a high probability of having the same hash
value.

Definition 1. (R, cR, α, β)-sensitive hash family
A family H is called (R, cR, α, β)-sensitive with respect to a distance function d(x, y) if the following properties
hold for h ∈ H and any two points x and y:

– If d(x, y) ≤ R then PrH[h(x) = h(y)] ≥ α
– If d(x, y) ≥ cR then PrH[h(x) = h(y)] ≤ β

The two points x and y are said to collide if h(x) = h(y). We will use the notation ρ(d(x, y)) to refer to the
collision probability PrH[h(x) = h(y);x, y]. Note that ρ is only a function of the distance d(x, y) between x
and y. Also, observe that we can increase the sensitivity of a LSH function. For any positive integer n, if there
exists a (R, cR, α, β)-sensitive LSH function h(·) with ρ, then the same hash function can be independently
concatenated n times to obtain a new hash function that is (R, cR, αn, βn)-sensitive with collision probability
ρn. Finally, we introduce the rehashing trick. If a LSH function h(·) has collision probability ρ and we hash
the LSH values to a finite range [1, R] using a universal hash function, then the new hash function is locality
sensitive with collision probability ρR−1R + 1

R .

RACE Sketch The RACE sketch is an array A of counters indexed by a LSH function. When a new data
element x arrives from the stream, we hash x using R different LSH functions to get R indices. We increment
the RACE counters at these indices and process the next element. The RACE sketch can also be queried to
quickly determine whether we have already seen a data element similar to x. To do this, we take the mean
of the count values at the R indices corresponding to x. The fundamental theoretical result from [17] and [6]
is that this process approximates the sum of LSH collision probabilities, which is a useful geometric object
known as a kernel density estimate.

Theorem 1. ACE Estimator
Given a dataset D and a LSH family H, construct an ACE array A a LSH function h(q) from H. Then for
any query q,

E[A[h(q)]] =
∑
x∈D

ρ(d(x, q)) var(A[h(q)]) ≤

(∑
x∈D

√
ρ(d(x, q))

)2
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Algorithm 1 Diversity Sampling with RACE

Input: Data stream D, threshold τ , RACE repetitions R, RACE array size B, number of LSH concatenations n,
size of sequence k-mers k
Output: Diverse sample S
Initialize: R independent LSH functions {h1, . . . , hR} with range B and n concatenations
Sample S ← 1 and A← 0B×R

for x ∈ D do
Score s← 0
for r in 1 to R do
s = s+A[r, hr(x)]
Increment A[l, hl(x)]

end for
s = s/R
if s < τ then

Append x to S
end if

end for

Fig. 1. Illustration of the RACE diversity sampling algorithm (Algorithm 1). To create a diverse sample S of a
sequence data stream, we hash each element with R LSH functions and find the mean (score) of the corresponding
array locations and increment them. If the mean is smaller than τ , we keep the sequence. Otherwise, we discard it.

By querying several ACE array repetitions (RACE), we obtain a good estimate of E[A[h(q)]]. The key intuition
behind RACE is that if E[A[h(q)]] is small, then q is far away from most elements in the dataset since there
are many low collision probabilities. Therefore, x is an outlier and we have not seen many similar elements.

2.1 Our Proposal

We propose a sampling algorithm that uses RACE to select a diverse set of sequences. When a new sequence
x arrives from the stream, we estimate E[A[h(x)]], which we will refer to as the RACE score s(x). If the
score is larger than a threshold τ , we reject x since this implies that we have seen many similar sequences.
Otherwise, we store x as part of our sample. Algorithm 1 describes our approach. There are several valid
string distance measures with corresponding LSH families that are appropriate for this situation, including
the Hamming distance, Jaccard distance, and edit distance [19]. In practice, we primarily consider the Jaccard
distance over the set of all k-mers because the MinHash LSH family [4] can be implemented very efficiently
for both genomic and metagenomic applications [23]. However, our results and algorithms generally apply to
other string distances.

2.2 Computation and Memory Cost

Before we address the intuition and analysis of the RACE diversity sampling algorithm, we review the
computation and memory requirements of Algorithm 1. RACE is clearly a one pass streaming algorithm since
we only see each element of the dataset once. The computational cost of RACE diversity sampling consists of
three basic operations. We need to compute R hashes of the sequence string followed by R counter look-ups
and R scalar additions to the count value. In our experiments, we show that we can use R as small as 10.
Clearly, the computational cost is negligible.
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The memory footprint is also small. Unlike reservoir sampling, sketches or coresets, RACE does not need
to store buffers of sequence data. Instead, we store a B × R array of integers in RAM. Even for very large
datasets, we only need B = 100k and R = 10. This is only one million numbers to store, or a few megabytes
of RAM.

2.3 Intuition

The RACE score is a kernel density estimate
∑
ρ(d(x, q)) over the sequence dataset, where the distance

between sequences is defined as the Jaccard similarity. Each RACE count is a noisy indicator of the number
of nearby sequences. Since the RACE estimates sharply concentrate around the kernel density, only a few
repetitions are needed to provide a good approximation. If a sequence is in a densely populated region of
the dataset, many of the RACE counts will be large. Algorithm 1 downsamples such regions of space. This
improves the sequence diversity of the sample since there are many common sequences that do not need to
be represented more than once. On the other hand, our algorithm keeps unique sequences because they are
likely to have a low score. RACE decides whether to keep a sequence based on the sum of Jaccard similarity
scores for each sequence in the sample. We expect RACE to perform better than random sampling because
random sampling over-represents densely populated regions and under-represents sparse regions, while RACE
attempts to represent both equally.

3 Theoretical Results

In this section we present theoretical results which show that Algorithm 1 maximizes the diversity index
of the sample. Our proof sketch is as follows. We start with the assumption that the sequence classes are
separable using a string distance. Using this assumption, we show that the distribution of the RACE counters
for S converges to a uniform distribution under Algorithm 1. We conclude our analysis with a proof that
if a sample has uniform RACE counters, then it has an optimal diversity index. We begin by defining the
diversity sampling problem.

Definition 2. Diversity Sampling Problem
Given a streaming dataset D consisting of elements x1, x2, . . . , xN where each element xi belongs to one class
C1, C2 . . . CS and a diversity measure D(S), construct a subset S ⊂ D of M samples, where M � N , such
that

S = arg max
|S|=M

D(S)

Definition 2 is also given in [11] and the problem has been analyzed for a dozen different diversity measures
D(S). However, all of these measures are low-level geometric functions that do not consider the class labels.
The only exception is topic diversity, where we wish to solve a set coverage problem on the topics covered
by a sample of news articles. Here, we adopt more traditional biodiversity measures such as the Simpson,
Shannon, and Berger–Parker indices. In practice, our classes may be operational taxonomic units (OTU),
species, genera or any other classification. We want a subset that represents as many classes as possible.

3.1 Convergence of RACE Counts

Definition 3. ∆-separable classes: We say that two classes C1 and C2 are ∆-separable if d(x, y) ≥ ∆ for
all x ∈ C1 and y ∈ C2

Under any reasonable string representation there is a value of ∆ > 0 such that the sequence classes are ∆
separable using the string distance. Under this assumption, we can force each labeled class to map to a unique
set of buckets in the RACE array. Lemma 1 is a consequence of standard LSH amplification techniques [9].
To prove the lemma, we use the minimum distance ∆ to establish bounds on β from Definition 1. We then
apply the concatenation trick to bound the probability of hash collisions between sequences from different
classes.

Lemma 1. Suppose that two classes C1 and C2 are ∆-separable and that there exists a (R,∆,α, β)-sensitive
hash family H. Then given δ ∈ [0, 1] there exists a LSH function h(x) such that h(x) 6= h(y) for all x ∈ C1

and y ∈ C2 with probability 1− δ.
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Proof. Construct a hash function h(x) by concatenating n hash functions sampled from H and note that h(x)
is (R,∆,α, β)-sensitive. We want to lower bound the probability that there are no collisions between x ∈ C1

and y ∈ C2.

Pr(no collisions) = 1− Pr
( ⋃
x∈C1
y∈C2

Ax,y

)
≥ 1− δ ⇒ Pr

( ⋃
x∈C1
y∈C2

Ax,y

)
≤ δ

where Ax,y is the event that h(x) = h(y). Using the union bound and the fact that C1 and C2 are ∆-separable,
we have that

Pr
( ⋃
x∈C1
y∈C2

Ax,y

)
≤
∑
x∈C1

∑
y∈C2

Pr(Ax,y) =
∑
x∈C1

∑
y∈C2

ρ(x, y)n ≤ |C1||C2|βn

because d(x, y) ≥ ∆ for all x ∈ C1 and y ∈ C2. To get the result, put

n ≥
log δ
|C1||C2|

log β

The Kullback-Leibler (KL) divergence is often employed to characterize the relative entropy between two
probability distributions. By applying Lemma 1, we can show that the KL divergence between the uniform
distribution and the empirical distribution of RACE counts is minimized (i.e., the distribution of the RACE
count values converges to a uniform distribution).

Theorem 2. RACE Count Convergence
Construct a single RACE array with B buckets using a LSH function h(·) on the sample set S from Algo-
rithm 1. Then Algorithm 1 causes the distribution of the RACE counters in this array to converge to the
uniform distribution.

Proof. Let fD be the underlying probability distribution that generates each element of the data stream D.
Restrict the domain of h(x) to x ∈ supp(fD) and assume without loss of generality that the restricted range of
h(x) is the set of integers {1...B}. Now run Algorithm 1 until all of the B counters are nonzero. We will show
that the KL divergence between the distribution of RACE counts and the uniform distribution converges to
zero. The KL divergence is defined as

KL(P ||Q) =
B∑
i=1

pi log

(
pi
qi

)
To simplify the analysis, we assume log base 2. Let Q be the uniform distribution and let Pn be the distribution
of RACE counters after n elements have been read from the data stream. Let ∆n be the divergence between
Q and Pn. Then

∆n =
B∑
i=1

pi,n log

(
pi,n
qi

)
Here qi = 1/B and pi,n = bi,n/mn, where bi,n is the count value in bucket i and mn is the sum of all counts at
time n. The divergence ∆n is a random variable over the randomness of the hash function and data stream.
We want to show that ∆n converges almost surely to 0, or equivalently that

Pr( lim
n→∞

∆n = 0) = 1

where

lim
n→∞

∆n =
B∑
i=1

lim
n→∞

bi,n
mn

log

(
lim
n→∞

1

qi

bi,n
mn

)
Observe that bi,n and mn are non-decreasing bounded sequences. While this alone does not guarantee con-
vergence, it is easy to see from Algorithm 1 that bi,n attains its supremum bτc and therefore bi,n → bτc and

mn → Bbτc since mn =
∑B
i=1 bi,n. Therefore we have that

lim
n→∞

1

qi

bi,n
mn

=
Bbτc
Bbτc

= 1⇒ lim
n→∞

∆n = 0

This proves that ∆n converges almost surely to zero.
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3.2 Analysis of the Diversity Index

Diversity Indices We measure sample diversity using the Shannon index (1), inverse Simpson index (2), and
Berger–Parker index (3).

H ′ = −
S∑
i=1

si log si (1) λ−1 =

(
S∑
i=1

s2i

)−1
(2) DB = max

1≤i≤S
si (3)

S is the number of OTUs, species or, more generally, classes in the sample S. The proportion si is the
ratio ni/m, where ni is the number of times that class i appears in the sample and m is the total sample
size. There is a strong connection between Theorem 2 and the KL divergence argument in Section 3.1 and
the diversity index. Assume the classes are ∆-separable and use Lemma 1 to ensure that each class maps to
a unique set of buckets in the RACE array. We can now express the diversity index in terms of the RACE
counts.

Corollary 1. Assume that classes C1, . . . CS are ∆-separable and use the hash function from Lemma 1 to
construct a RACE array on the output of Algorithm 1. Then the ratio si converges almost surely:

si =
ni
m

a.s.→ bτcBi
bτcB

=
Bi
B

where Bi is the number of buckets in the hash range of class Ci.

A simple case: Consider the simple case where each class maps to a single bucket (Bi = 1). With B = S
buckets, we have that the inverse Shannon index converges to the maximum value of logS. An elegant proof
begins with the observation that there is a relationship between H ′ and the KL divergence from Theorem 2.

logS −H ′ = logS +
S∑
i=1

si log si =
S∑
i=1

si log

(
si

1/S

)
= KL(P ||Q)

The last equality is obtained using the fact that si = bi/m when we assume that Bi = 1 and B = S. Since
KL(P ||Q)→ 0, H ′ → logS. The key component of this analysis is that si → 1/S. It is easy to see that this
value of si also maximizes the other diversity indices. In fact, RACE works for any diversity measure D(S)
that attains its optimal value when si = 1/S.

The general case: The previous argument assumed that Bi = 1 but does not hold when Bi 6= 1. However,
RACE still converges to the optimal diversity index when each class maps to the same number of buckets.
To see this, suppose that each class maps to k different buckets. Then Corollary 1 holds with Bi = k and
B = kS. Therefore, we have that si → k/kS = 1/S. A number of useful data models have this property. For
instance, we might consider a dataset where class Ci consists of a uniform sample on the ball B(ci, ri). If all
the ball radii {r1, ...rS} are the same, then all the classes will all map to the same number of buckets. This
model assumes that the sequences in each class are highly similar to each other, but one can construct other
models with the same convergence behavior that do not require this assumption.

Although useful in theory, all of our assumptions are too restrictive in practice. Classes often do not
map to the same number of buckets. However, Corollary 1 still provides strong convergence guarantees and
useful intuition. If each class maps to approximately the same number of buckets, then RACE sampling will
produce a sample with a diversity index that is nearly optimal. Furthermore, Corollary 1 indicates that we will
oversample classes with high sequence diversity. OTUs with large pan-genome sizes will cover a larger number
of buckets in the RACE array than OTUs with small pan-genomes. For instance, RACE sampling would likely
retain many samples belonging to Escherichia coli bacteria in metagenomics applications. Escherichia coli
has an open pan-genome with an incredibly high degree of sequence diversity [10]. Therefore, Escherichia
coli will cover a larger number of RACE buckets and have a higher Bi than a species with a smaller, closed
pan-genome. In general, Corollary 1 shows that RACE sampling attempts to preserve sequence diversity
based on the Jaccard string metric. RACE will oversample classes that cover large volumes of the Jaccard
metric space. Equivalently, RACE oversamples OTUs with large pan-genomes but attempts to sample from
each OTU present in the sample. In contrast, random sampling will oversample common OTUs with large
populations. Therefore, our theory shows that RACE is an effective method for rare-species sampling in
metagenomic studies.
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Fig. 2. MinHash on short read DNA sequences. Based on the k-mer length, different taxa (clusters) of sequences may
be easy or difficult to separate using MinHash. The collision probability of MinHash (left) is equal to the Jaccard
similarity (right).

Table 1. Dataset information. We report the ENA run accession, dataset size N , mean sequence length L, number of
species in the dataset S, and a description of the application. All of our datasets are for Illumina HiSeq 2000 data.

Dataset N L S Description

SRR4343843 81,870 456.8 849 Odor-causing bacteria in automobile air conditioning systems
SRR1565331 269,247 71.0 1120 HMP2 sample of anterior nares
SRR1804823 9,199,019 98.6 6387 HMP2 sample of supragingival plaque
SRR2175724 10,214,210 98.4 6759 HMP2 sample of fecal matter
SRR1804468 501,590 99.4 3630 HMP2 sample of buccal mucosa

4 Experimental Results

The goal of this section is to evaluate the diversities of the sample sets produced by RACE against baseline
sampling methods. We use a variety of methods to produce the same number of samples and evaluate them
based on the number of taxa represented in the subsample and the Shannon Diversity Index. We also aim to
provide a characterization of the time needed to run our method against competing baselines.

4.1 Datasets

We use metagenomic microbiological studies accessed through the ENA to evaluate our methods. We found
that metagenomic datasets tend to have separable classes with reasonable sequence diversity. Consequently,
sequences belonging to the same species often have much higher Jaccard similarities compared to sequences
belonging to different species. It should be noted that FASTQ files from the ENA do not specify the species
that corresponds to each each sequence. To obtain the ground truth reference labels we used Kraken2 to clas-
sify each read with a taxon label. While relying on Kraken2 to label metagenomic reads has been previously
shown to be both sensitive and accurate, this process can induce bias if applied to microbiomes with poor rep-
resentation in the Kraken2 database [22]. To address this, we focused on human-host associated microbiomes
from the HMP2 project [24], where we found that over 70-80% of the microbial species in these samples were
contained in the database. Before performing the classification and sub-sampling, we used Trimmomatic [3]
to remove errors in the read data. Additional information is available in Table 1.

4.2 Experiment Setup

We implemented random sampling, composable coresets and used diginorm as a baseline. We briefly describe
each of our methods:

1. Composeable coresets: We used the Jaccard distance and a window length of 100 sequences.
2. Reservoir Sampling: We used the default reservoir sampling method that stores a buffer of sampled

elements.
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3. Diginorm: We used the khmer software package with the default Diginorm settings [8]. To show results
for different sample sizes, we varied the Diginorm threshold.

4. RACE: We varied τ to represent a wide range of subsample sizes.

RACE Array Parameters The RACE algorithm requires five parameters: τ , R, B, k, and n. The size of the
RACE arrays is determined by R and B, while the number of samples in S is related to τ . R is the number
of RACE repetitions. B is the number of hash buckets in each array of counters. We use the rehashing trick
to bound the range of the hash function to the interval [1, B]. In practice, sequences do not occupy the whole
range of each hash function. Thus, we can reduce the memory needed by our method without losing much
information by rehashing to a narrower range than predicted by the theory. Although the memory usage of
the RACE algorithm is minimal even without rehashing, smaller RACE count arrays can be processed much
more quickly because they fit into the CPU cache. Increasing τ increases the number of samples that will be
saved by RACE. There is no closed-form expression for the number of samples that RACE will accept for a
given τ . However, a good heuristic is to set τ to be approximately equal to the desired number of sequences
from each species in S. In the experiments, we used R = 10 and B = 100, 000. However, the algorithm does
not seem to be sensitive to these parameters. Also note that for very small values of τ , we increased R to 50
or 100 to be able to produce smaller sketches.

LSH Parameters We use MinHash on all k-mers in the short read sequence. To construct the LSH functions,
we need to choose k and n, the number of LSH concatenations. k is the number of base pairs in the k-mers
used to vectorize the sequence. The k parameter controls the Jaccard similarity score between sequences
and n controls the sensitivity of the algorithm. Increasing k makes it less likely for two sequences to collide
under MinHash. The decrease in collision probability is larger for sequences from different OTUs than for
sequences in the same OTU. We characterized this behavior for one of our datasets (Figure 2) to show how
∆-separablility depends on k. In general, larger values of k and n are required to separate highly similar
sequences. RACE makes sampling decisions based on the Jaccard similarity scores determined by k and n.
To convert similarity score thresholds to standard alignment-based measures such as the average nucleotide
identity (ANI), one can use the MASH distance [23] or the more in-depth ANI estimation procedure proposed
by FastANI [13]. When n = 1, the guidelines for choosing k from [23] and [13] directly apply to the RACE
algorithm. For the human microbiome datasets, we used k = 18 and n = 1. For the additional experiments
in the Appendix, we used k = 6 and n = 4.

4.3 Results

We provide two sets of experiments. On our smaller datasets, we provide an exhaustive comparison with
Diginorm and coreset baselines in Figure 3. However, coresets have a very low throughput and Diginorm
requires > 15GB of RAM for large datasets. Therefore, we only show comparisons between RACE and
random sampling at this scale (Figure 4). We also show that RACE preserves the Shannon diversity index in
addition to sampling more species (Figure 5). We show how sequence similarity varies with k-mer length in
Figure 2.

Table 2. Computational resources comparison. We report the data throughput, RAM usage, and (where available)
the 99th percentile latency. The 99th percentile latency is the maximum time needed to process 99% of streaming
inputs. It determines the data rate, as only 1% of inputs take longer to process. Note that the memory for random
sampling depends on the sample size and the memory for Diginorm depends on the input size.

Method Throughput (Mbp/sec) RAM Latency

RACE 2.6 16 kB - 16 MB 366 µs
Diginorm 6.4 500 MB - 15 GB –
Random Sampling 122 50 MB - 2 GB 7 µs
Coresets 0.012 50 MB - 2 GB 1.8 s

5 Discussion

From the results reported above, RACE consistently delivers highly competitive metagenomic diversity com-
pared to the provided baselines. RACE and random sampling were the only two algorithms capable of scaling
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Fig. 3. Number of species represented in a sample for RACE, random sampling (RS), composeable coresets and
Diginorm. Based on the Diginorm thresholding process, we were unable to specify the full range of sample sizes.

Fig. 4. Experimental results for large-scale datasets (> 107 reads). Due to the large scale of the datasets, coresets
were computationally infeasible and Diginorm required large volumes of RAM.

to large dataset sizes under reasonable computational constraints. While Diginorm and coreset methods can
sometimes provide samples with similar diversity to those obtained using RACE, it comes at a high resource
cost (Table 2). Coresets are computationally intensive and Diginorm is memory intensive when compared to
RACE. We found that Diginorm can consume memory that is upwards of 1000x the amount consumed by
RACE and that coresets have 200x lower throughput. While Diginorm and coresets are appropriate for offline
summarization and small datasets, neither algorithm provides the reliable and efficient diverse sampling per-
formance we observed using RACE. The large memory difference between RACE and random sampling is due
to the fact that random sampling needs to store a reservoir of sequences in RAM. This is required because
we need to be able to discard samples from the reservoir. RACE, on the other hand, can immediately output
the sequence as it arrives or dump it to disk once accepted. Furthermore, the entire RACE data structure fits
in the cache of the CPU, leading to both memory and computational advantages.

We expect that RACE will be broadly useful for OTU diversity sampling, species sampling and sampling
at higher taxonomic levels. While our thresholds are defined in terms of Jaccard similarity scores, these
scores are closely related to more conventional ways to differentiate between genomes such as ANI [23]. By
adjusting the similarity thresholds and changing the k and n parameters of the algorithm, we can make RACE
sufficiently sensitive to differentiate between highly similar sequences within the same OTU or sufficiently
indiscriminate to make coarser classifications. This utility will make RACE broadly useful. For instance, when
combined with read-until hardware technology, RACE may be able to construct the most informative sample
from the stream of genetic information.
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Fig. 5. Experimental results on SRR4343843 with τ from 0.1 to 30. We observe that RACE increases both the number
of species represented in the sample and the Shannon Index, showing that we do obtain a more diverse sample than
our random sampling baseline.

6 Conclusion

We have presented RACE, a streaming algorithm that constructs a diverse sample using minimal memory
and computation. Advances in DNA sequencing techniques enable the production of genetic data at a rate
that surpasses that at which we store and analyze the data. Our RACE streaming algorithm is a simple and
highly effective solution for compressing these massive datasets while preserving metagenomic diversity and
species representation. Based on similar speedups from coresets in computational geometry, we expect that
RACE will enable analyses with a smaller memory and computational footprint. The simplicity, speed and
low memory consumption of RACE compared to similarly-performing baselines provides ample evidence that
RACE is an effective method to compress genetic datasets for transmission, processing and storage. Our code
is available at https://github.com/brc7/DiversitySampling.
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