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ABSTRACT

A new method based on wavelet denoising and the analysis of Thorpe displacements dT profiles is presented
for turbulent patch identification. Thorpe profiles are computed by comparing the observed density profile r(z)
and the monotonic density profile rm(z), which is constructed by reordering r(z) to make it gravitationally stable.
This method is decomposed in two main algorithms. The first, based on a wavelet denoising procedure, reduces
most of the noise present in the measured profiles. This algorithm has been tested from theoretical profiles and
has demonstrated a high efficiency in noise reduction, only some limitations were detected in very low-density
gradient conditions. The second algorithm is based on a semiquantitative analysis of the Thorpe displacements.
By comparing each displacement dT with its potential error EdT, it is possible to classify samples in three possible
states: Z (dT 5 0), U (dT , EdT), and S (dT . EdT). This classification makes it possible to compute two statistical
indexes: the displacement index ID, the quotient between the number of S values and the number of averaging
points; and the uncertainty index IU, the quotient between the number of points on state U and the number of
averaging points. The displacement index ID has been used as the parameter for turbulent patch identification,
identifying the patches as segments with strict positive ID values. To illustrate the method, a number of field
profiles covering a wide density gradient range were analyzed. Turbulent patches were validated following the
tests proposed by Moum and Galbraith and Kelley. The high percentage of validating patches indicates that the
proposed method is very efficient even at very low-density gradients where the potential error on dT is high,
and shows that it is a powerful tool for turbulent patch identification.

1. Introduction

One of the objectives of analyzing microstructure
density profiles is to identify turbulent patches and com-
puting its characteristic vertical length Lp. The char-
acterization of the turbulent patches has usually been
applied at depths with high-density gradients. The main
reason for selecting high-density gradients is that dia-
pycnal fluxes in the aquatic environments are mainly
originated by turbulent mixing; therefore, realistic es-
timates of coefficients of vertical turbulent exchange
must be based on the occurrence and properties of tur-
bulence patches (Prandke and Stips 1992). In addition,
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there is also a secondary operational reason: high-den-
sity gradients avoid the methodological constraints re-
lated to instrumental noise (Gregg 1987; Moum 1996a).

In recent years, the interest in relating turbulent mix-
ing to biological processes has increased (see the special
issue of Scientia Marina, 1997, vol. 61, suppl. 1). For
example, the differences in turbulent regimes can yield
vertical differences in population dynamics and selec-
tive processes among planktonic algae (Reynolds 1992),
or zooplankton distribution (Haury et al. 1990). The
changes in turbulent mixing regimes can be considered
not only one of the main driving forces in the succession
of the planktonic communities (Margalef 1983) but also
a physical constraint for plankton evolution (Catalan
1999). To understand the relationship between the tur-
bulent regimes and biological processes, turbulence
must be characterized in a wider range of density gra-
dients, starting from the low-density gradients typical
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in boundary layers to the high-density gradients char-
acteristic of pycnoclines. Expanding turbulent patch
characterization to low-density gradients can also be
useful in many physical studies. The characteristics of
turbulent patches near surface layers, where the density
gradient is usually low, can provide valuable informa-
tion to understand the exchange of momentum, heat,
and mass between the atmosphere and natural water
bodies.

Methods of turbulent patch identification: A brief
review

Several algorithms and tests based on density profiles
(or associated scalars, i.e., salinity or temperature) have
been proposed for the identification of turbulent patches.
These algorithms are usually derived from Thorpe’s
method (Thorpe 1977), which computes a reference den-
sity profile rm(z) by sorting the original density profile
r (z). Two distinct values can be computed from these
density profiles: the density fluctuation, defined as r9(z)
5 r (z) 2 rm(z); and a Thorpe displacement dT (z). The
latter is the vertical distance that an individual fluid
particle (i.e., a single density value) of the original pro-
file r (z) has to be moved in order to generate the stable
density profile rm(z).

Density fluctuations can be used to obtain quantitative
information of the energetics of mixing by computing
the available potential energy of the fluctuations (APEF;
Dillon 1984):

ng
APEF 5 z r9, (1)O i inr i510

where n is the number of samples associated to the
patch, g is the acceleration of gravity, and r0 is the
average water density.

However, in the research of biological and physical
interactions at small scale, Thorpe displacements may
provide some quantitative information that cannot be
achieved directly with density fluctuations. The esti-
mation of water displacements may be required, for ex-
ample, when relating turbulent mixing with the changes
on the encounter rate between predator and prey, or the
changes of the environmental light for photosynthetic
organisms. The information derived from the displace-
ments can be especially important in very low-density
gradients, in which the small density fluctuations (that
represent a very small variation on the available poten-
tial energy) can be associated to large vertical displace-
ments.

Statistical properties of r9(z) or dT (z) profiles are usu-
ally the main input for the algorithms of turbulent patch
identification. To date, there is no accepted statistical
model of overturning that can be used as a reference
for validating the computed density fluctuation or
Thorpe displacement profiles. The lack of any theoret-
ical model has led to the search for methods for turbulent

patch identification based on heuristic reasoning and
empirical parameters.

Dillon (1982) defined a complete overturn (i.e., a mix-
ing patch) as the region where no heavier or lighter fluid
particles in r (z) relative to rm(z) are found outside the
patch, and no heavier or lighter fluid particles relative
to rm(z) outside the patch are found within it. The meth-
od relies on the ability to resolve density fluctuations
on scales much smaller than the typical particle dis-
placement necessary to create the reordered profile. In-
strumental noise or mismatches in time response of tem-
perature and conductivity probes may yield patterns of
scales similar to mixing motions, especially at low-den-
sity gradients. Therefore, care should be taken when
applying this method to weakly stratified environments,
because the thickness of a turbulent patch can be greatly
overestimated.

Gregg (1980) proposed zero-crossing counting as an
alternative method of turbulent patch identification. In
this method, a turbulent patch is identified as the depth
interval at which the distance between consecutive zero-
crossing density fluctuations are smaller than a certain
threshold. To avoid potential artifacts caused by instru-
mental noise, only strongly pronounced patches (which
imply a relative high background density gradient) are
usually considered (Prandke and Stips 1992).

Moum (1996a,b) proposed two conditions to validate
a turbulent patch. 1) Patches should contain only data
with significantly different fluctuation signals from their
respective noise levels; 2) patches must have well-de-
fined upper and lower boundaries that yield two specific
requirements: LTmax , Lp, where LTmax denotes the max-
imum Thorpe displacement throughout the patch; and
# dT(z) dz over the depth range of the patch should be
equal to 0. The first condition requires a relatively high
stratification background level in order to obtain high
values of fluctuation.

Galbraith and Kelley (1996) proposed an alternative
test, which was initially developed for conductivity–
temperature–depth (CTD) profiles, but it can also be
used with microstructure data. The test is implemented
in two parts. The first part of the test is focused on the
artifacts derived from random noise. Density fluctua-
tions are examined for ‘‘runs’’ of adjacent positive or
negative values, defining the run length as the number
of samples contained in each run. The probability den-
sity function (PDF) of the run length is compared with
the PDF expected from random noise series. As a di-
agnostic parameter, the authors chose the root-mean
square (rms) of the run lengths computed within a patch.
This value decreased when the amount of random un-
correlated noise added to the observed profile was in-
creased. This yields a threshold value for rms run length
within an individual turbulent patch that must be ex-
ceeded in order for it to be validated. Patches with rms
run length below the threshold are considered artifacts
generated from random noise. The second part of the
test rejects artifacts derived from systematic errors such

D
ow

nloaded from
 http://journals.am

etsoc.org/doi/pdf/10.1175/1520-0426(2002)019<1390:TPIIM
P>2.0.C

O
;2 by guest on 10 July 2020



1392 VOLUME 19J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

as salinity spikes, which are caused by time-response
mismatches in temperature and conductivity sensors.
Temperature and salinity covariations with respect to
density are screened within the turbulent patch, and only
patches with tight relationships between r, T, and S are
validated. Calibration with examples from coastal and
deep-sea environments indicates that this test can be
used to validate turbulent patches in strongly stratified
environments, but that noise will prevent the validation
in weakly stratified environments.

The common feature of all the methods listed above
is a general inability in identifying turbulent patches at
low-density gradients. Here we proposed a new method
that significantly improves patch detection at low-den-
sity gradients. The method is designed to reject patches
caused by random noise, although it does not replace
the need for careful data acquisition practices and for
postprocessing to minimize the effects of systematic er-
rors such as salinity spiking.

2. Proposed procedure for turbulent patch
detection

a. Constraints on turbulent patch identification

Instrumental limitations derived from resolution and
noise imposes basic constraints on turbulent patch de-
tection. Assuming that turbulent patches can be iden-
tified from non-null values of Thorpe displacements, the
limit for patch identification resides in the capacity to
distinguish between displacements caused by instrument
noise and those generated by turbulent processes.

It is not necessary to know the numerical value of dT

for displacement validation, only two conditions are re-
quired: 1) the displacements are different than 0, and
2) the error associated with each displacement EdT is
smaller than the displacement itself.

In order to evaluate EdT, an error analysis based on
the solid-body rotation model has been developed (It-
sweire et al., 1986; Imberger and Boashash 1986) in
which a cylindrical overturning eddy in a linear density
profile yields a z-shaped r (z) segment. In this model it
is possible to express the length of the theoretical dis-
placement dT as a function of the stable density gradient
]r/]z (i.e., the local gradient computed from the mono-
tonic profile), and the magnitude of the density fluc-
tuation r9:

r9
d ø . (2)T ]r /]z

From (2) is possible to derive the relative error of dT as

E E EdT r9 ]r /]zø 1 . (3)
d r9 ]r /]zT

Since the computation of local density gradient is based
on a greater number of measurements than that of den-
sity fluctuation, we can neglect the contribution of the

relative error of the monotonic density gradient. Then,
from (2) and (3)

Er9E ø . (4)dT ]r /]z

The error of Thorpe displacements EdT is derived as
a function of two parameters: the density gradient ]r/
]z (which is imposed as a background condition), and
the error on density fluctuation Er9. Improving turbulent
patch detection requires minimizing EdT, which is only
possible by reducing Er9. In this case it is necessary to
find a method for optimal density recovery that mini-
mizes noise from the density profile without losing small
density perturbations derived from the overturn motions
at low-density gradients.

b. A wavelet analysis approach to noise reduction

In the last few years there has been considerable in-
terest in the use of wavelet transforms for removing
noise from data. When data are intermittent in nature,
as is the case of density fluctuations, wavelet analysis
is highly advantageous over either Fourier or real-space
analysis (Pen 1999).

The wavelet transform of a function f (x) with finite
energy is defined as the integral transform with a family
of functions Cl,t(u) [ l21/2C[(u 2 t)/l] and is ex-
pressed as

`

Wf (l, t) 5 f (u)C (u) duE l,t

2`

` 1 u 2 t
5 f (u) C du, (5)E 1 2lÏl2`

where l is a scale parameter, t a location parameter,
and Cl,t(u) are called wavelets. In the continuous wave-
let transform (CWT) the wavelet transform can be com-
puted for every value of l and t. For empirical mea-
surements, discrete wavelet transform (DWT) is pref-
erable since f (x) is known at discrete points (x 5 nj).
This requires the discretization of (5) in the scale and
space domain. The discretization of the domain of (5)
is not arbitrary since it is necessary to conserve the
amount of information in the signal. The simplest and
most efficient case for practical computation is the dy-
adic arrangement (Daubechies 1992; Mallat 1989),
where l 5 2m and t 5 j2m resulting in

`

DWT f (m, j) 5 f (n)C (n)O m,j
n52`

` m1 n 2 j2
5 f (n) C . (6)O m1 2m 2n52` Ï2

Mallat (1989) produced a fast wavelet (FWT) algorithm
that computes the DWT very efficiently. The Mallat
algorithm is a classical scheme in signal processing
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FIG. 1. Schematic diagram of the three steps of the denoising method: multilevel decomposition, thresholding, and multilevel
reconstruction.

known as a two-channel subband coder using quadrature
mirror filters (QMFs). The original signal is first de-
composed into low- and high-frequency components by
the convolution-subsampling operations with the pair
consisting of a ‘‘low-pass’’ filter and a ‘‘high-pass’’ filter
directly on the discrete domain. The low-frequency
components (approximation coefficients) keep the glob-
al features of the signal, and the high-frequency com-
ponents (detail coefficients) retain the local features.
The decomposition process can be iterated recursively
on the approximation coefficients while the detail co-
efficients are maintained intact. At the last iteration, both
approximation and detail coefficients are kept. By ap-
plying such decomposition to the measured data (Cohen
et al. 1993), it is possible to obtain empirical wavelet
coefficients associated to different levels of local char-
acterization.

The method for noise reduction here proposed is de-
rived from a wavelet-thresholding algorithm based on
Mallat’s scheme (Donoho and Johnstone 1994; Donoho
1995), and it comprises three main steps (Fig. 1).

• Multilevel decomposition: FWT (Mallat 1989) is ap-
plied to decompose the signal into different levels of
local characterization. Figure 1a shows an example of
this hierarchical decomposition. In this example, the
level of decomposition was set to 3, yielding one se-

ries of approximation coefficients cA3 and a set of
three distinct detail coefficient signals cD1,2,3.

• Thresholding: The method assumes that the noise can
be modeled as a random Gaussian signal, so the major
part of the noise is finally stored in the detail coef-
ficients. To reduce noise contribution, a threshold
function is applied to the detail coefficients, thereby
suppressing those coefficients smaller than certain am-
plitude (Fig. 1b).

• Multilevel reconstruction: A denoised profile can be
recovered from the transformed coefficients by ap-
plying the inverse fast wavelet transform (IFWT) re-
cursively over each level of decomposition (Fig. 1c).

One of the most important advantages of this method
is that it not only optimizes the mean-square error but
also ensures, with high probability, that the denoised
signal is at least as smooth as the original (Donoho
1995). Alternative techniques that simply optimize the
mean-square differences can, in some cases, generate
undesirable noise-induced structures (‘‘ripples,’’
‘‘blips,’’ and oscillations), which may generate inter-
pretative artifacts on density fluctuations and Thorpe
displacements. An example of the advantages of the
multiscale approach of this method on measured data
is shown in Fig. 2. Unlike the classic low-pass-filtering
applications, it is possible to smooth the segments where
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FIG. 2. (a) Example of the denoising method applied to a real temperature profile. (b) The detail of the profile shows that the method
smoothens the segments in which there are no significant changes (B1) but keeps the small fluctuations appearing at low-density gradients
(B2).

TABLE 1. Features of the five segments of the theoretical profile
used for testing the numerical limitations of the denoising method.

Segments

Number
Interval

depth (m) N 2 (s22)

Overturns

Depth (m) Size (m)

1
2
3
4
5

0.00–1.50
1.50–2.00
2.00–2.75
2.75–4.25
4.25–7.25

6.25 3 1026

4.00 3 1026

2.25 3 1026

1.00 3 1026

2.50 3 1027

0.75
1.75
2.35
3.50
5.00
6.50

0.2
0.2
0.2
0.3
0.4
0.3

there are no significant changes [Fig. 2b(B1)] while
keeping the small fluctuations appearing at low-density
gradients [Fig. 2b(B2)].

NOISE SENSITIVITY ANALYSIS: THEORETICAL TEST

With no accepted statistical model of overturning,
there is little guidance to confirm from field data whether

density fluctuations are caused by overturning motions
or whether they are artifacts from instrumental noise or
numerical postprocessing. For this reason a set of the-
oretical profiles were designed for quantifying the po-
tential error of dT in the proposed denoising method.
These profiles were based on the solid-body rotation
model. Although this model is an oversimplification of
real structures, it is easy to check the error contribution
by comparing the theoretical z-shaped structures with
the final result. It is not possible to guarantee the optimal
recovering on real data with this test, but it does give
some clues about the limitations of the numerical meth-
od. To determine the resolution limits for patch detec-
tion, the test was designed using the worst field con-
ditions, namely, low buoyancy frequencies and small
overturn sizes. The first test profile comprises five seg-
ments, each with a different associated buoyancy fre-
quency. Hypothetical overturns were simulated in each
segment. In the fifth segment (the most critical), two
overturns of different length were simulated. A com-
plete description is given in Table 1.
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FIG. 3. Noise sensitivity test applied to dT computation. (a) Theoretical density profile used for the test. The circles
indicate the depth and size of the theoretical overturns. (b) The dT profile computed from (a). (c)–(e) The dT profiles
computed from (a) adding increasing levels of noise Ns. The dT profiles obtained with (black) and without (gray)
applying the denoising method. See text for further details.

The other theoretical profiles were constructed by
adding increasing levels of zero mean Gaussian white
noise to the initial profile. The noise level for the first
noisy profile was derived from the density error variance
equation due to electronic and quantification error pro-
posed by Gregg (1979):

2 2 2
]r ]r ]r

2 2 2 2s 5 s 1 s 1 sre T P S1 2 1 2 1 2]T ]P ]S

2 2 2
]r ]S ]r

25 s 1T 1 2 1 2 1 2[ ]]T ]T ]S

2 2 2
]r ]S ]r

21 s 1P 1 2 1 2 1 2[ ]]P ]P ]S

2 2
]S ]r

21 s , (7)C1 2 1 2]C ]S

where r is density; S salinity; T temperature; C is con-
ductivity; and , , , are the noise variance of2 2 2 2s s s sS T C P

salinity, temperature, conductivity, and pressure, re-
spectively.

Based on laboratory test measurements of the micro-
structure sensors and considering the worst case for the
partial derivatives in (7) the estimated density error var-
iance, , was 6.25 3 1028 kg2 m26. To consider added2sre

uncertainties in field measurements, a factor of 50% and
100% increase in noise was also computed, yielding two
new density profiles with noise variance of 1.40 32sre

1027 and 5 3 1027 kg2 m26, respectively.
The test was developed in two steps. First, the de-

noising method was applied over the noisy theoretical
density profiles. The multilevel wavelet transform was
based on Daubechies wavelet (Daubechies 1992) and
the level of decomposition was set to 9.

Detail coefficients were transformed by applying a
soft threshold function (Donoho 1995):

sgn(cD)|cD 2 thr | cD . thr
cD9 5 (8)50 cD , thr.

With this function, coefficients smaller than the
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FIG. 4. Diagram of the of local gradient classification method. (a) Scheme of the local density gradient computation. (b) Comparing
displacement values with their potential error allows the classification of each displacement into one of the following categories:
Zero (Z ), Uncertain (U ), and Signal (S).

threshold ‘‘thr’’ are suppressed while the rest of the
coefficients are shrunk an equivalent of the threshold
value. The threshold value was selected as in Donoho
and Johnstone (1994):

thr 5 jÏ2 log(n), (9)

where n is the number of samples and j is a rescaling
factor estimated from the noise level present in the sig-
nal. The estimation of the noise level was based on first
level of detail coefficients cD1 well suited for zero mean
Gaussian white noise in the denoising 1D model (Misiti
et al. 1996):

median(|cD |)1j 5 . (10)
0.6745

Once the synthetic density profiles were denoised, the
Thorpe displacements were computed by comparing the
result calculated from the original theoretical profile
(without noise) to the Thorpe displacements calculated
from the denoised density profiles.

Figure 3 shows the graphical results of this test. By
comparing the denoised results (Figs. 3c–3e) with the
expected profile (Fig. 3b), overturns were clearly re-
solved in the first four segments. In the last segment,
which is the most critical because it has the lowest
density gradient, noise was reduced considerably, but
its effects yielded a significant error in the estimation
of displacements and some spurious overturns ap-
peared.

c. Local gradient classification method for patch
identification

To overcome the artifacts generated from the re-
maining noise, a complementary method based on a
semiquantitative analysis of dT was implemented.

The method compared the displacement dT and its
error EdT. The error EdT was computed from (4). The
error on density fluctuation Er9 was estimated as the
standard deviation of noise s re according to (7). In-
strumental errors were estimated based in Luketina
(1986). The local density gradient ]r/]z (which can
change significantly depending on the scale considered)
was computed over the depth range defined by the depth
of the particle in the original profile and the depth as-
sociated with the monotonic profile (Fig. 4a).

Comparisons of the displacement and its potential
error were categorized into three possible states (Fig.
4b). The sample was labeled Zero (Z) when it had the
same associated depth in the original and the monotonic
density profiles (i.e., dT 5 0). The label Uncertain (U)
was assigned when Thorpe displacement was smaller
than the associated error. Finally, the label Signal (S)
was assigned when the value of the displacement was
larger than the associated error. In this case it was pos-
sible to ensure that the sample has non-null Thorpe dis-
placement.

Two statistical indexes that consider the percentage
of each data category in a depth range were defined.
The displacement index (ID) was computed as the quo-
tient between the number of S values and the number
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FIG. 5. Noise sensitivity test applied to ID index computation (in dark gray). (a) Theoretical density profile
used for the test. Circles indicate the depth and size of the theoretical overturns. (b) Displacement index ID

in dark-gray and uncertainty index IU in light-gray computed from (a). (c)–(e) The ID and IU computed from
(a) with increasing levels of noise added . (f ) Mean displacement index computed from every patch2sre

detected in (e), a threshold thres^ID(50)& 5 0.1 has been represented (in dotted line) showing that all the false
turbulent patches are below this value. See text for further details.

TABLE 2. Characteristics of the reservoirs and lake from where the
field data surveys were conducted.

Location Profiler
Depth mean
(max) (m)

Total area
(m2)

Volume
(m3)

Boadella Reservoir
Sau Reservoir
Lake Banyoles

MST
MP
MST

17.0 (54.0)
26.3 (55.0)
15.7 (45.0)

3.6 3 106

5.8 3 106

1.1 3 106

62 3 106

124 3 106

17 3 106

of averaging points. It indicates the percentage of sam-
ples that unambiguously have displacements different
from zero. The uncertainty index IU was computed as
the quotient between the number of points on state U
and the number of averaging points. It provides an es-
timation of the measurement uncertainty.

The displacement index ID was used for turbulent
patch identification. Segments with ID equal to zero were
assumed to delimit the turbulent patches, and thus tur-
bulent patches were identified as segments with strict
positive ID values. With this method, the size of the
turbulent patches may be overestimated depending on
the number of samples considered for computing the
displacement index. The incremented size can be esti-
mated as 2nDz, where n is the number of averaged sam-
ples and Dz is the spatial resolution of the measure-
ments. Considering a 1-mm spatial resolution (a com-

mon value in microstructure profiles) and n 5 50, the
overestimation would be 10 cm, which can be neglected
in big patches, but it can represent a significant increase
when the patches are small. In order to overcome the
potential artifact, the vertical size of the patches was
reduced by decreasing their vertical boundaries (zpinit,
zpend) an equivalent of nDz (i.e., the new boundaries
were computed as (zpinit 1 nDz, zpend 2 nDz), depth
positive downward).

NOISE SENSITIVITY ANALYSIS: THEORETICAL TEST

Following the same approach as that of the denoising
procedure test, the set of theoretical profiles with dif-
ferent noise levels was used to evaluate the limits of
the method (Fig. 4). The values of ID and IU were com-
puted over 50 samples, which is a reasonable number
for statistical robustness and spatial resolution (50 sam-
ples correspond approximately to 5 cm for spatial res-
olution of 1 mm). Figure 5 shows the results of the
indexes computed from the sensitivity test profiles. The
ID values are represented as solid dark gray areas, while
IU values are in light gray. The theoretical ID profile
(Fig. 5b) shows how turbulent patches can be delimited
as segments of strict positive ID values, although in the
fifth segment, each overturn was split in two separate
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FIG. 6. Example of ID and IU computation with field data, corresponding to one of the profiles obtained
in the Lake Banyoles. (a) Potential density (dotted line indicates the estimated value for Er9). (b) Thorpe
displacement. (c) Density fluctuations. (d) The ID index. Rectangles indicate the depth range of the patches
identified. (e) The IU index.

TABLE 3. Results of the turbulent patches obtained from the series of profilers. The first column indicates the depth range considered in
each series. The buoyancy frequency computed from the range depth has been included showing the differences in background density
gradient. Patches were rejected when the mean ID was below the threshold [thres^ID(50)& 5 0.1].

Ref. Location
Depth range

(m)
N 2

(s22)
Total

profiles
Patch

detected
Patch

rejected

A
B
C
D

Boadella
Banyoles
Sau
Banyoles

7.0–9.0
7.0–9.0

10.0–16.0
0.0–4.5

(1.25–2.02) 3 1024

(4.99–13.93) 3 1025

(2.59–5.73) 3 1025

(1.08–10.56) 3 1026

27
83
42
83

41
90
46

181

5
3
8
9

patches due to the low displacements in the central part
of the overturns. The ID profiles computed from the
increasing noise profiles were solved in a very similar
way, but several false patches of small size appeared
(Figs. 5c–5e). However, even for the noisiest profile
(Fig. 5e) it was possible to reject the false patches from
the rest by computing the mean ID (Fig. 5f). All the
false turbulent patches were characterized by small val-
ues of ^ID&. As an example, the mean value of the false
patch seen in Fig. 5e was also seen in Fig. 5f. By com-
puting the mean value for every patch it is possible to
define a threshold of ^ID& to reject the false patches
generated by noise. In this test the threshold was de-
termined as thres^ ID(50)& 5 0.1 (dotted line in Fig. 5f).

The index IU was computed to show how the level
of uncertainty increases when some noise is added to
the original profile. The high level of uncertainty ex-
plains why many algorithms fail to detect turbulent

patches at low-density gradients. However, our results
suggest that ID is a robust parameter for turbulent patch
identification, as it is computed only from validated dis-
placements.

3. Application to field data

Four series of microstructure profiles were used to
test the proposed method. Data were obtained from sen-
sors mounted on two distinct free-falling/rising micro-
structure profilers. The first probe was the MSS profiler,
developed by ISW Wassermesstechnik and Sea&Sun
Technology. The second was the MP profiler developed
by the Centre for Water Research (CWR), which at pre-
sent is commercialized, with an improved data acqui-
sition system (Carter and Imberger 1986), by Precision
Measurement Engineering as the Self Contained Au-
tonomous Microprofiler (SCAMP). Both instruments
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FIG. 7. Patch length Lp vs maximum Thorpe displacement within the patch LTmax. The plots correspond to the different series
of field measurements (referenced according to Table 3). Rejected turbulent patches according to Moum’s (1996a,b) method are
indicated as solid circles.

use a fast response thermistor FP07 (Thermometrics)
for microstructure temperature measurements. The MP
profiles were obtained by raising the profiler at nominal
rate of 0.1 m s21 and sampling data at 100 Hz, while
MSS profiles were obtained by falling the profiler at
nominal rate of 0.6 m s21 and sampling data at 1024
Hz. In both cases, the spatial resolution was close to 1
sample per millimeter.

The profile series were obtained in three field surveys.
In each series a fixed depth range was selected to il-
lustrate a range of background density gradients. The
surveys were performed at Sau reservoir, Boadella res-
ervoir, and Lake Banyoles, situated north of Catalonia,
Spain. Table 2 summarizes the morphometric features
of these three freshwater bodies. In these systems the
influence of salinity to density changes can be neglected
because of its low values and insignificant gradients.
Therefore, the main problem in detecting turbulent
patches was exclusively derived from noise instrumen-
tation in temperature measurements, avoiding problems
from mismatches of the sensors in time response.

The profiles were processed following the method-

ology proposed. Denoised pressure profiles were ob-
tained following the algorithm given in section 2. The
temperature profiles were processed in two steps. First,
temperature values were interpolated to regular depth
intervals using the denoised pressure profile as the spa-
tial reference. This step was necessary because the
wavelet transform is based on regular sampled data. In
the second step, the interpolated temperature profile was
denoised following the proposed algorithm. Then, den-
sity was determined from denoised temperature, deno-
ised pressure profiles, and salinity (derived from a fixed
value of conductivity) following Chen and Millero
(1986). Potential density was determined following
Wüest et al. (1996). The background density gradient
was evaluated in the range of selected depths by com-
puting the buoyancy frequency N 2 5 (1/rm)(]rm/]z),
where rm was the monotonic density profile. Finally,
turbulent patches were identified by applying the semi-
quantitative analysis of the Thorpe displacements,
which were computed from the potential density pro-
files. The values of ID and IU were computed over 50
points, and the patches were identified as depth seg-
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FIG. 8. Patch length Lp vs run length test, according to Galbraith and Kelley (1996). The plots correspond to the different
series of field measurements (referenced according to Table 3). Rejected turbulent patches are indicated as black solid circles
(threshold 5 4) or gray solid circles (threshold 5 7).

ments which had strictly positive ID(50) values. Figure 6
shows an example of the computed dT, ID(50), and IU(50)

profiles for one of the profiles obtained at Boadella res-
ervoir. Table 3 summarizes the results for the profile
series. The series has been tabulated from the highest
[N 2 5 O(1024)] to the lowest [N 2 5 O(1026)] back-
ground density gradients.

A total of 358 patches were identified, but 25 were
rejected considering that their mean IDs were below the
threshold established (thres^ ID(50)& 5 0.1). The final result
yields a total of 333 turbulent patches identified.

The tests proposed by Galbraith and Kelley (1996)
and Moum (1996a,b) were used for validating the tur-
bulent patches identified from the displacement index
ID(50). For these tests, it was necessary to compute three
characteristic parameters of the turbulent patches: the
vertical length Lp, the maximum Thorpe displacement
throughout the patch LTmax, and the rms value of run
length of r9.

Moum’s test validates the turbulent patch when LTmax

, Lp, and # dT(z) dz over Lp is equal to 0. In order to
consider the error in computing the Thorpe displace-

ment, the second condition was relaxed to # dT(z) dz ,
0.05 Lp.

Figure 7 shows the test validation results on the plots
of patch length Lp and maximum Thorpe displacement
LTmax associated to the turbulent patches detected. Those
rejected are given as solid circles and all have a small
patch length value. From the total of 333 identified
patches with the method here proposed, 309 (92.8%)
were validated according to Moum’s test.

Galbraith and Kelley’s (1996) run length test is based
on run length series of density fluctuations. Patches with
rms run length below the threshold are considered ar-
tifacts generated from random noise. The authors pro-
posed a threshold of seven derived from CTD mea-
surements and numeric simulations. However, in the
case of microstructure profiles, it could be possible to
reduce the threshold to four as first analyses indicates
that patches with run lengths of four or more are sta-
tistically different from noise (P. S. Galbraith 2001, per-
sonal communication). As the threshold is derived em-
pirically, guided by visual inspection of turbulent patch-
es (Galbraith and Kelley 1996), the two threshold values
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were considered in order to reflect the sensitivity and
the robustness of the threshold selection.

Figure 8 shows the test validation results obtained
from the four series of microstructure profiles (Table 3)
according to the Galbraith and Kelley test. From the
total 333 detected patches, 10 patches (3.0%) had a run
length smaller than 4; 58 patches (17.4%) had a run
length between 4 and 7; and 265 (79.6%) had a run
length greater of 7. Even for the most restrictive thresh-
old (7) and for the lowest-density gradient (Fig. 8d) the
rejected patches correspond to the small size range.

4. Summary and conclusions

A new algorithm is presented based on a semiquan-
titative analysis of Thorpe displacement dT and a wave-
let-denoising algorithm to identify turbulent patches and
computing its vertical scale Lp. Our results show that
the denoising algorithm is very efficient in reducing
noise level in the measured data, which is especially
important for increasing the resolution of the patch iden-
tification method.

A set of theoretical profiles was designed for testing
the limits of the denoising and patch identification meth-
ods. The results from this test show that it is possible
to identify small patches even in the critical conditions
of extreme low-density gradients. The final results ob-
tained from different series of field data were validated
following Moum’s (1996a,b) test (92.8% of validated
patches), and Galbraith and Kelley’s (1996) test (97.0%
of validated patches using a rms run length threshold
of 4). This high percentage of validated patches shows
the robustness of the method for detecting turbulent
patches in a wide range of density gradients.

The main features of this new method are as follows.
1) General applicability: The method can detect the tur-
bulent patches in very low-density gradients. This feature
is especially important in the case of turbulent boundary
layer characterization, where the gradient is usually low.
It is also relevant in the studies of the interaction between
turbulence and biological processes, because in these cas-
es it is necessary to characterize the turbulent patches in
a wide range of density gradients. 2) Robustness: The
uncertainties derived from noise should not significantly
change the final identification. The results obtained with
the test demonstrate that the method is very robust, as
the global features of the detected patches do not change
with different noise levels.
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J. Wüest for critical comments on an early draft, and
Dan E. Kelley and Peter S. Galbraith for providing some
routines for validating the identified patches. Remarks
by two anonymous reviewers led to substantial im-
provements in the manuscript; they are thanked for their
careful and constructive comments.

APPENDIX

Pseudocode of the Proposed Method

1) Denoise raw depth.

• Wavelet multilevel decomposition
• Compute threshold and apply soft thresholding
• Wavelet multilevel reconstruction

2) Interpolate raw temperature and conductivity to
regular depth.

3) Denoise regular raw temperature and regular raw
conductivity (as in step 1).

4) Compute density profiles from denoised tempera-
ture, conductivity, and depth.

5) Compute monotonic density profile.
6) Compute density fluctuations and Thorpe displace-

ments.
7) Evaluate local density gradient from monotonic

density and Thorpe displacement.
8) Compute ID(50) and IU(50) (window of 50 points, i.e.,

0.05 m with 1-mm depth resolution).
9) Identify turbulent patches (consecutive samples

with ID(50) . 0).
10) Reduce the overestimated size of the turbulent

patch derived from windowing effect (i.e., 0.05 m
at each end).
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