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Abstract: A potentially useful Cyber-Physical Systems element is a modern forward error correction
(FEC) coding system, utilizing a code selected from the broad class of Low-Density Parity-Check
(LDPC) codes. In this paper, development of a hardware implementation in an FPGAs of the
decoder for Quasi-Cyclic (QC-LDPC) subclass of codes is presented. The decoder can be configured
to support the typical decoding algorithms: Min-Sum or Normalized Min-Sum (NMS). A novel
method of normalization in the NMS algorithm is proposed, one that utilizes combinational logic
instead of arithmetic units. A comparison of decoders with different bit-lengths of data (beliefs that
are messages propagated between computing units) is also provided. The presented decoder has
been implemented with a distributed control system. Experimental studies were conducted using
the Intel Cyclone V FPGA module, which is a part of the developed testing environment for LDPC
coding systems.

Keywords: cyber physical systems; LDPC; QC-LDPC; FPGA; min-sum; normalized min-sum;
distributed control system; token ring

1. Introduction

In recent years, there has been a strengthening link between advancement in computational
technologies and components of physical systems. The so-called Cyber-Physical System (CPS) consists
of a set of modules that interact with each other and communicate with the outside world. Combining
computational and communication aspects with control techniques in one system becomes a challenge.
Cyber-Physical Systems applications can be found in almost all areas of human life, such as production
systems, intelligent networks, robotics, transport systems, medical devices, military systems, home
networks, intelligent buildings, etc. In many CPS applications, digital communication systems play
a key role, as they are often integrated with the executive system. During communication, data may be
disturbed by various unwanted signals, noise and/or interferences. Error Correction Coding (ECC)
techniques can not only detect communication errors, but also reconstruct valid data. Low-Density
Parity-Check (LDPC) codes are one of the best known codes with very good correction capabilities.

LDPC codes were firstly presented in 1962 by R. G. Gallager [1], but the technology of that time did
not allow practical applications. Research and development of LDPC codes was resumed in 1999 after
an article by D. J. C. MacKay [2]. Today, LDPC codes have been already used in various applications,
the DVB-S2 and DVB-T2 (digital television) standards [3], 10-Gbase-T Ethernet networks [4], ITU-T
G.hn [5], 802.11ad (WiGig) [6], 802.11n/ac/ax (WiFi) and 802.16e (WiMAX) [7]. In 2015, the first
information about applications of LDPC codes in 5G networks was revealed [8].

An LDPC code is defined by its parity check matrix, which is a sparse matrix, or equivalently,
by the corresponding bipartite factor graph (known as a Tanner graph [9]). The graph structure has
a direct relationship with the structure of the LDPC encoder and decoder. Particularly important
for implementation reasons are the Quasi-Cyclic (QC) codes [10], for which parity check matrix is an
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array of square submatrices, with every submatrix being a cyclic permutation of an identity matrix.
These types of arrays allow for efficient hardware implementation of the parallel and semi-parallel
QC-LDPC decoder [11].

The research activities in the area of LDPC coding techniques are still prevalent and they
include, among others, the methodical construction of LDPC codes [10,12,13], decoding algorithm
design [11,14,15] and efficient decoder implementation [4,16-18]. The implementation issues typically
constraint the design to some class of implementation oriented LDPC codes, which most commonly
belong to the mentioned QC-LDPC class.

LDPC codes are decoded iteratively using the sum-product algorithm, also known as belief
propagation [2], which closely approximates maximumd-likelihood decoding. The commonly used
message passing schedule is a two-phase message passing scheme [11], where a decoding iteration is
divided into two rounds of computations, corresponding to variable and check nodes of the code graph
respectively. There are also known other schedules, for example the layered decoding scheme [19].

Every hardware LDPC decoder belongs to one of the categories: serial, semi-parallel or parallel,
which means the decoder computation units execute the decoding algorithm in a serial, semi-parallel
or parallel manner, respectively. The serial decoder has the lowest throughput, but also the lowest
hardware utilization. The parallel decoder has the highest throughput and hardware requirements.
A semi-parallel decoder is a compromise solution that is the best choice in most applications. The results
of the research presented in this paper concern a semi-parallel decoder architecture with the two-phase
message computation schedule. The presented decoder solution can be adapted to any QC-LDPC code.
There exist a broad range of known implementations, most of them surveyed in [16], many of them
aimed at ASIC implementation [16,18], some of them for implementation in software [17]. The research
presented in this paper is devoted specifically to the implementation in a Field-Programmable Gate
Array (FPGA) chip. In the designed decoder, an important parts of the computing units are fitted
directly to the Look-Up-Table (LUT) fabric of FPGAs, giving a slightly improved decoding performance
and decreased resources requirements.

An important features of the LDPC decoder is the implemented method of calculating messages
in computing units, which is essentially independent of the chosen architecture. Computationally
efficient message computation algorithms are known as Min-Sum (MS) and Normalized Min-Sum
(NMS) [14,15]. The NMS algorithm differs from the Min-Sum algorithm by the additional normalization
stage, which slightly reduces the magnitude of the iteratively approximated beliefs, which has a known
effect of improved final decoding results.

The main scope of this paper is a presentation of an irregular QC-LDPC decoder implementation,
which is oriented specifically to a LUT based structure of an FPGA programmable chip. The essence
of the contribution of this paper is technology mapping approach, in which the normalization in the
NMS algorithm is directly oriented to the LUT-based architecture. Moreover, we present the decoder
design and resulting system solutions, aimed at an efficient implementation of the LDPC decoder
inside a LUT-based FPGAs.

This paper is organized as follows. The second chapter presents the theoretical background
of LDPC decoding and implementation of QC-LDPC decoder. Next, new concepts of technology
mapping of QC-LDPC decoder oriented to FPGA are proposed. The implementation of distributed
control unit of QC-LDPC decoder and the original implementation of normalization module which
is oriented to LUT-based architecture are presented. Section 4 illustrates experimental results
of proposed solutions. The obtained results were compared with solutions known from the literature.
The article ends with a summary, which contains directions for future work.

2. Theoretical Background of Hardware Implementation of a Semi-Parallel QC-LDPC Decoder

An LDPC code is defined by a parity check matrix H of size M x N. An example matrix H of a QC
type code is shown in Figure 1 in the form of an array of its M x N = 8 x 16 entries. Matrix H is a QC
matrix, since it consists of circulant submatrices of size P x P = 4 x 4. A submatrix will in short be
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called the matrix P. Parity check matrix H of QC-LDPC code can be presented in the form of an array
of submatrices, where “X” corresponds to the all-zero submatrix and a numerical value s corresponds
to a an identity matrix circularly shifted by s positions to the right (i.e., columns are cyclically shifted
by the indicated number). For QC-LDPC codes, storing the H structure in the decoder (RAM/ROM)
memory requires only storing the array of cyclic shift values. The implementation of the presented
decoder takes advantage of this simplified representation.
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Figure 1. An example matrix H of the QC type code.

An example parity check matrix of QC-LDPC code, constructed for this research with a method
presented in [20] , is shown in Figure 2. The size of the submatrix is P = 64 in this case, the size
of the matrix H is 512 x 1024 and the code rate is R = (N — M)/N = 1/2. The minimum number
of non-zero elements in rows is 6 and the maximum number is 7. For columns these are respectively 2
and 7. It means this is an irregular code with the maximum column weight of 7.
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Figure 2. QC-LDPC offset matrix for P = 64 and R = 1/2.
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LDPC decoding algorithms with complexity scaling as O(N) belong to the class of iterative
belief propagation (BP) algorithms, where beliefs are propagated between nodes represented as a
Tanner graph. This graph is a bipartite graph with control vertices representing rows of H, bit vertices
representing columns of H and edges representing non-zero positions in H. The commonly used
method for determining the beliefs (messages propagated in the algorithm) are Min-Sum and NMS [15].
The decoding process utilizing Min-Sum function can be presented in consecutive steps as follows:
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1.

X

y

Initialization: Assigning input values that are Log-Likelihood Ratio (LLR). For every m € M (n)
andn € (1,N):

P(xn = 0|yn)>
= L(x =In| —+= 1
Qum ( n|]/n) (P(xn — 1|yn) 1)
Control nodes: Determination of minimum values. For every n € N'(m) and m € (1, M):
Ry := H Sgn(ka) min |ka| (2)

keN (m)\n keN (m)\n
Bit nodes: Adding minimum values and LLR input values. For every m € M(n) and n € (1,N):

Qum = L(xn|yn) + Z Rin 3)
ke M(n)\m

Pseudo-posteriori probabilities: Determination of pseudo-posteriori probabilities. For every
ne(1,N):

Qn = L(xﬂ|yn) + Z Rin 4)
ke M(n)

Hard decisions: Making trial, hard decisions. For every n € (1,N):

. )1 gdyQn,<0
xn.—{o ody On > 0 5)
Verification of control equations:
H2' =0 Q)

Another iteration: If the control equations have been met, decoding is terminated with £, as an
outcome. Otherwise, the next iteration of decoding begins, starting from the (2) control nodes,
unless the iteration limit is exceeded.

where:

:= meaning is “becomes”,

= [x1,x2, ..., xy]—code vector,

= [y1,Y2,- - -, Yn|—received vector,

Qum—credibility LLR value from the n-th bit vertex to the m-th Tanner graph control vertex,
L(xn|yn)—LLR a priori probabilities for the n-th bit,

(1,N) is a set of integers between 1 and N,

N (m)—a set of column indexes in the parity check matrix H containing one in the m-th row,

M (n)—a set of row indexes in the parity check matrix H containing one in the n-th column,
Riun—message from the m-th control vertex to the n-th bit vertex of Tanner graph,
X%,—decoded vector.

It is known [21] that significantly improved decoding performance can be obtained by adding

a normalizing parameter to Equation (2). Equation (2) will then take the form (7), where p > 1
is a normalizing parameter, or equivalently form (8), wherea =1/Band 0 < a < 1.

enin | Qkom|

Ripn := H Sgn(ka)

@)
keN (m)\n p

Rynn = [ H sgn(ka)] emin ‘ka‘ X (8)
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3. New Concepts of Technology Mapping of QC-LDPC Decoder Oriented to FPGA

3.1. Construction of the QC-LDPC Decoder with a Distributed Control System

The block diagram of the QC-LDPC irregular decoder is shown in Figure 3. Initially, the decoder
receives a priori LLR values L(x,|y,), which are stored in memory. The data is propagated between
modules in a portion of P messages parallel in a data bus. The received data is forwarded to
the initialization module and then P messages in the bus are re-positioned by cyclically shifting
to the right using the Shift Right (SR) module. The number of positions to shift the data vector
is defined in the offset memory S (Shift), which contains the stored shift values, corresponding to P
submatrices of H. The shifted message vectors are stored in Q;;;; memory, according to the Equation (1).

Memory Communication Input — output
handli dul b
L{xn|yn) andling module [¢ us
generator
y [
Initialization
module Offset
'—— memory
# 5 Memory Res‘_”t
A transmission
SR RT‘ module
Control unit L
node
Memor
Y Rmn
Qnm Verification
\ ? . , L, Memory module of
Bit node unit o control
Offset SP 4—,7 QnmiQn T equations

Figure 3. Block diagram of the QC-LDPC irregular code decoder.

The unit computing control node messages reads data from the Q,;,, memory and determines
the minimum value and the sign according to the Equation (2). The obtained result can be modified by
the normalizing parameter « according to the Equation (8). The computed control node messages are
saved to the R;;, memory.

The unit calculating bit node messages reads data from the R;;; memory and then cyclically shifts
them to the left using the SL module. The unit computes the sums of appropriately chosen messages
stored in Ry, and L(x,|y,) memories, in accordance with the (3) equation. Formulas (3) and (4) are
similar, therefore the Qy;; and Q, are computed simultaneously in the bit node unit. The obtained
results are stored in memories Q. and Q, respectively.

In the next stage, the control equations are verified according to (6). Control equations are
checked in verification module of control equation. If all control equations have been met, the result
transmission module begins reading data from the Q, memory by transferring it in the correct order to
the communication handling module. Otherwise, all calculations are repeated, starting with the control
unit node. Decoding can be interrupted if the assumed maximum number of iterations has been
reached. Each of the presented elements of the QC-LDPC decoder has its own control unit that
is responsible for its proper operation.

A typical method for implementing a control unit of an LDPC decoder is to use a global controller,
which controls the operation of the entire decoder. The disadvantage of this solution is the high level
of complexity of the controller and the possible occurrence of clock skew phenomena.
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The proposed decoder uses a distributed control system. Elements: “communication handling
module”, “initialization module”, “control unit node”, “bit node unit”, “verification module of control
equations” and “result transmission module” in Figure 3 have their own built-in control units.
The control of each element is activated by the preceding control unit as described by the decoder.
The first control unit in the communication handling module is activated by an external signal
informing it about the start of the transfer of a new, received data vector. A similar principle is used
in systems with so-called Token Passing, e.g., the IEEE 802.5 Token Ring [22] standard developed
in the 70s by IBM. This allowed for a significant simplification of the construction of individual control
units and their better adaptation to the needs of a given element. The distributed control system is also
less susceptible to clock skew phenomena.

Figure 4 shows a simplified layout of the QC-LDPC decoder, which indicates in what order
the Token is activated. The red arrows indicate the stages of running the distributed control system.
The dotted arrows are optional and, depending on the decision made by the verification module
of control equations, the Token will be passed to the result transmission module or the unit
for calculating control nodes.

777777777777777777777777777777 Memory « ] Communication | Input - output
. L(xn|yn) handling module bus

5 e x

e v 3
o Initialization e~ e

i i module / | ™~ \
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i e S transmission |&--—-—-----—-- .\

| Qnm | - - - module | | |
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| | calculating : Rmn : Verification
! i i Memory

| 1 control nodes [~ ¢ - module of
| ! . Qn control

| 3 Rmn Unit for A equations
i ! calculating bit !

! | - nodes [ '

| e QnmiQn

| )

Figure 4. Handing over the Token in a distributed control system.

Memory controlling and addressing is performed by control units located in the other elements
of the decoder. Since more than one element uses every message memory, an attention should be
paid to the address propagation. For this purpose, a multiplexer is used as shown in Figure 5.
When implementing the multiplexer in a hardware description language (e.g., Verilog), it must be
ensured that the selection of the address takes place depending on which Trigger was last to change its
state (edge trigger).
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__Input
data

| Output

—» Memory data

A

Address
|
—Trigger A—p &4-Trigger B—

—Address A-p
—Address B-p

Figure 5. Memory addressing by several control units.

As mentioned before, in the developed distributed control system, each system element is
activated by the preceding element, by detecting a change in the “Trigger X” signal, as shown
in Figure 6. After finishing the current iteration tasks, the control unit activates the next control unit
with the “Trigger Y” signal, at the same time deactivating itself. Every unit of the control system works

only when the “Enable” signal is active.

Control
lines

—Trigger X-»|s “ a|-Enable—p Control unit —Trigger Y—»

’—’Rcma

Figure 6. Enabling and disabling the control system in the decoder element.

3.2. Implementation of the Normalization Module

The block diagram of the unit calculating the control nodes messages R;;;, with normalization
elements of the NMS algorithm, is presented in Figure 7. The data read from memory is converted
from the two’s complement format (convenient for additions in bit node units) to the Sign and Module
(SM) format. Every data word contains P messages, represented by B-bit fixed point numbers, that
are separated and delivered to appropriate Min-Sign modules. Every Min-Sign module has d. inputs,
for messages corresponding to at most d. check node edges. The value of d. is also equal to the largest
number of non-zero elements in any row of H. The DMUX and MUX modules deliver the messages
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from memory to inputs of appropriate Min-Sign modules. Counters addressing the DMUX and MUX
are part of the control system unit. When the packet of data is smaller in a given computation cycle
than the maximum d., the other outputs of the DMUX are set to the maximum (positive) value,
which is transparent for the minimum operation as well as the sign-product operation.

#SM” 10, Two's

B bits LTWO'S c?mplemem DMUX B*d, bits MIN —SIGN module B*d, bits | MUX 8 bits Normalization -
to ,SM" converter (1) (1) (1) 3 complement” converter
. . Two's complement” ]»»[ DMUX }» . MIN —SIGN module ]» ; +[ MUX b ’[ Normalization LSM" to ,,Two's
B*d, bit: B*d. bits—{ B bit:
Data f B hits 1o ,SM” converter (2) < DIt (2) < it (2) ' a complement” converter
ata from —
B L, Two's complement DMUX - B MIN —SIGN module " . MUX . Normalization LSV 10, Two's
- memory 8 bits t0 ,5M” converter 3) B7d. bits (3) 87d. bits (3) 8 bits a complement” converter

Qo
. L, Two's complement DMUX - 5 MIN —SIGN module " . MUX ; Normalization Mo, Two's
B b\ts+{ 10 ,SM" converter ]»»[ ) }»B d, bits: @) B*d. bits-{ @) B bits

complement” converter
DMUX MIN —SIGN module MUX Normalization
B*d, b\'ls){ ]»B"d: bitr»[ ) b\'tsbl
(P) (P) (P} a

L{ Control unit }J

Figure 7. Block diagram of the unit calculating the control nodes messages Ry;.

Data to
memory—»
Renn

LSM” to ,, Twa's
complement” converter

B bits L TWO'S c?mplemenl
to ,5M” converter

The values of the minimum and the sign are determined in P separate Min-Sign modules operating
in parallel, then normalized by the a parameter, according to (8). After multiplexing in MUX, results
are converted back from the SM representation to the two’s complement format and saved in the
Ry memory.

The typical hardware-efficient implementation of the multiplication of a fixed-point number by
a constant coefficient («) can be presented in the form of a module consisting of shifters and adders.
In this method, & < 1 is expressed as:

H=012" w2724 a2 B 9)

where a1, ay,... € {0,1}. Since multiplication by 277 is equivalent to shifting the fixed-point binary
representation by b bits towards LSB, and a1, ay, . . . are constants, multiplication of a message m by «
can be realized by summing these b-shifts of message m, for whicha, =1in (9),b=1,2,...,B.

For example, multiplication by & = 0.75 = 0.5 + 0.25 can be implemented making use of a single
adder, while multiplication by 0.5 and 0.25 is realized by shifting the fixed-point number by one and
two bits, respectively. Performing this multiplication using shift registers and B-bit adders results
in a truncation error, because of shifting-out the least significant bits. For data buses smaller than 6-bit,
the truncation error can be quite significant, making other implementation more feasible. Therefore we
propose another approach, which is oriented to the LUT-based FPGA.

The typical FPGAs chip contains an array of programmable logic blocks (ALM—Adaptive Logic
Module in the case of Intel devices) and a hierarchy of reconfigurable interconnections that allow the
blocks to be wired according to the specific project needs [23]. The ALM block consists of combinational
logic (LUT), adders and registers [24]. The design of the ALM unit is shown in Figure 8. Each LUT has
a maximum of 8 inputs and can be configured to realize any logic (binary) function.

Therefore, when implementing the normalization module in an FPGA structure, it is possible to
perform a low-precision normalization in the form of a direct mapping of the normalizing function
into FPGA logic resources, that is LUTs. Figure 9 presents Karnaugh maps for several parameters
of &, with 4-bit precision. The maps are dependent only on the module of the number—sign bits are
processed independently. It should be noted that multiplication by 0.625, 0.6875, 0.75 and 0.8125 values
can be implemented using combinational logic (LUTs) and registers. A single LUTs is enough for a 4-bit
precision. The a = 1 parameter is also considered in Figure 9, which corresponds to QC-LDPC
decoding without normalization. During the research, numerous variants of the Karnaugh maps were
verified. The article presents one of the best Karnaugh map for the tested control matrix H.
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Figure 8. Design of the ALM unit in the Cyclone V system [24].
input 0 1 input 0 1
00 000 001 00 000 001
01 001 010 01 001 010
11 100 100 11 100 101
10 011 011 10 011 011
a=0.625 output a=0.6875 output
input 0 1 input 0 1
00 000 001 00 000 001
01 010 010 01 010 010
11 101 101 11 101 110
10 011 100 10 011 100
a=0.75 output a=0.8125 output
input 0 1 input 0 1
00 000 001 00 000 001
01 010 = 011 01 010 010
11 110 | 111 11 110 111
10 100 101 10 011 100
a=1 output Proposal output

Figure 9. Karnaugh maps for several & parameters and 4-bit bus.

However, since the linear normalization is just an approximated method of belief calculation,
we assumed that it is possible that application of another (non-linear) normalization functions, can
result in not worse, possibly improved decoding correction performance. An example is the function
presented in the last set of Karnaugh maps, labeled “Proposal”, which is an arbitrarily chosen map,
experimentally shown to give the best results, at least for the case codes that we have experimented
with. This map is similar to a-normalization, but not exactly the same, and—as will be shown—results
in an improved decoding performance of the implemented decoder. Moreover, this map can still be
implemented in a single LUT of the FPGA. A logic function resulting from the synthesis of Karnaugh
maps can be implemented directly in an LUTs. Implementation of the normalization expressed as a logic
function is beneficial due to the direct fit into the FPGA architecture with LUTs.

Figure 10 presents graphically the dependence between 3-bit input module (represented by
an integer in the range 0...7) and 3-bit output of normalization modules, for a few investigated
normalizations, including the “Proposal” function that showed the best correction performance in our
simulation experiments, as will be presented in the next section.
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Figure 10. Different normalization functions investigated for a 4-bit precision (3-bit module) case.
4. Experimental Results

A special test environment was developed for the purpose of experimental research, the block
diagram of which is presented in Figure 11. The environment consists of three key elements: computer
(PC), microcontroller (eval-board STM32F4DICOVERY) and FPGA system (eval-board with Cyclone V
device). The PC computer runs a system simulation software developed in Python, modeling random
data generator, LDPC encoder, Binary Phase Shift Keying (BPSK) modulator/demodulator, AWGN
(Additive White Gaussian Noise) channel and LDPC decoder. The encoded and modulated data
is disturbed using the AWGN channel model, with noise level according to the variable Signal-to-Noise
Ratio (SNR). The erroneous data is then corrected (decoded) by LDPC decoding software. Such a testing
system allows verification of the correction properties of the LDPC code with given parity check matrix
H. The results of the simulation the form of Bit Error Ratio (BER) vs SNR in an AWGN channel can be
used as a reference chart for hardware implementations of the LDPC decoder.

The developed computer software is also responsible for generating description of QC-LDPC
decoders in a Hardware Description Language (Verilog) for the FPGA chip. The generator as input
parameters needs the parity check matrix H, specified by matrix size MtimesN, submatrix size P,
location of nonzero submatrices and corresponding cyclical shift values. The generator creates all files
(in Verilog) that are necessary to build a project in a Quartus environment. Additional parameters
for the generator are:

o  FPGA type and family (e.g., Cyclone V, 5CSEBA6U23I7);
e  Dbit-resolution of decoder input—a priori LLRs (e.g., 4-bits);
e  maximum number of decoder iterations (e.g., 50);

e type of algorithm used (e.g., Min-Sum or Normalized Min-Sum with chosen normalization).

A set of test data consisting of coded vectors (without interference) and distorted data vectors
can be generated by the developed software, which allows verification of the QC-LDPC decoder
FPGA implementation. A graphical interface of the whole environment was created with C#, while the
microcontroller software was written in the C language. The aim of the microcontroller is to distribute
the data, the clock and other control signals to the FPGA.
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Computer
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Figure 11. Test environment developed.

Making use of the environment, we can easily compare different constructions and configurations
of the hardware decoder, reporting the hardware utilization as well as experimentally obtained error
correction performance curves.

Table 1 shows the hardware requirements, obtained as a result of logic synthesis of a few selected
configurations of the QC-LDPC decoder. It can be observed that as the data bus size increases,
the hardware utilization for ALM units and memory bits also increases. Meanwhile, the normalization
choice, including the proposed non-linear variant (“Proposal”), has no impact on the decoder hardware
utilization. Therefore, the Proposal can be applied without any implementation overhead.

Table 1. Hardware utilization for selected versions of the QC-LDPC decoder.

Hardware Utilization

Bus size, algorithm ALM  Memory bits
3-bits, Min-Sum 8071 28,312
4-bits, Min-Sum 13,531 35,864
5-bits, Min-Sum 16,464 43,416
4-bits, Normalized Min-Sum « = 0.625 13,557 35,864
4-bits, Normalized Min-Sum « = 0.6875 13,561 35,864

4-bits, Normalized Min-Sum « = 0.75 13,572 35,864
4-bits, Normalized Min-Sum « = 0.8125 13,564 35,864
4-bits, Normalized Min-Sum Proposal 13,572 35,864

Figure 12 shows the observed error correction performance of the QC-LDPC decoder implemented
in the Cyclone V (FPGA), illustrating dependence on the message (belief) precision. The Bit Error Rate
(BER) and Frame Error Rate (FER) curves for the 3-bit data reflect very poor correction performance
for the presented SNR range. Meanwhile, the 4-bit and 5-bit precision decoders correct errors with
effectiveness increasing with SNR. Differences in BER and FER curves between 4- and 5-bit cases
depend somewhat on the SNR, but they are not very significant. Therefore, in general a 4-bit bus
is recommended, because of its better correction properties than the 3-bit solution and less hardware
utilization in relation to the 5-bit solution. All tests were performed for the parity check matrix H
shown in Figure 2 and the maximum number of iterations of 15. Figure 12 as a reference provides
the corresponding BER and FER curves obtained from computer a simulation with the floating-point
precision BP decoding.
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Figure 12. BER and FER chart for QC-LDPC decoder depending on data bus size.

The next simulation results provide an experimental insight into the normalization method of
the NMS algorithm. Figure 13 presents the BER and FER results in the examined SNR range for the
Min-Sum algorithm (¢ = 1) and a range of variants of the NMS algorithm, with the recommended
4-bit precision. It can be observed that in general, the Min-Sum algorithm has performance inferior to
the NMS algorithm with optimized «, with & = 0.8125 being the optimal value in this case. Meanwhile,
Min-Sum outperforms NMS with some other values of «.

However, it can be also observed that the use of the “Proposed” solution gives correction
performance even better than NMS with the best « = 0.8125. The proposed nonlinear normalization
method makes it possible to achieve to achieve significantly improved correction performance than the
optimized NMS. Meanwhile, it can be well fitted into FPGA resources, with nonlinear normalization
still implemented in a single LUTs. Therefore, we achieved a modified NMS algorithm implementation,
well suited for implementation in FPGAs without any hardware overhead, but with an improved
correction performance.
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Figure 13. BER and FER chart of the QC-LDPC decoder for the Min-Sum algorithm and variants
of the Normalized Min-Sum algorithm.

5. Conclusions

The article presents a hardware (FPGA) implementation of the irregular QC-LDPC decoder. A few
variants of decoding algorithm and precisions have been investigated. It is shown that it is beneficial
to use a 4-bit precision, characterized by a better correction performance in comparison with the 3-bit
precision, and hardware resources savings in comparison with 5-bit precision. The use of 4-bit buses
does not lead to a significant deterioration in the correction performance in comparison with the
decoder with 5-bit buses.

The novel idea presented in this article is a method of implementing the normalization of the NMS
algorithm, enabling effective technological mapping into FPGA structures. The proposed method
of nonlinear normalization with a selected logic function makes it possible to obtain a better correction
performance in comparison to standard, well-known NMS solutions. A comparison of the hardware
resources used for the different decoder variants indicates a slight increase in the number of ALM units
used for the NMS algorithm and the proposed algorithm in comparison with the Min-Sum algorithm.

Particularly noteworthy is the interdisciplinary nature of the work presented. The use
of the capabilities of a personal computer, a microcontroller and an FPGA system perfectly fits
the idea of Cyber-Physical Systems, which combine issues in the fields of electronics, computer
science and telecommunications. The developed test environment not only allows for automating
many activities (e.g., generating new decoders, carry out tests) but also significantly expands
the research capabilities. The use of a distributed control system allows for significant simplification of
the construction of the QC-LDPC decoder as well as the control system itself.
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Future work will focus on optimizing the developed systems in terms of energy consumption.
The idea of a distributed control system provides many new possibilities, including an introduction
of Clock Gating for different parts of the decoder, which will also be a further direction of work. It seems
that it is possible to develop a decoder which, while ensuring the assumed correction parameters, can
become more energy-efficient. The essence of these ideas is to reduce the dynamic power consumption
by using Clock Gating methods in a way that best suits QC-LDPC decoders.
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