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Abstract— The widely applied Advanced Encryption Standard (AES) encryp-
tion algorithm is critical in secure big-data storage. Data oriented applications have
imposed high throughput and low power, i.e., energy efficiency (J/bit), requirements
when applying AES encryption. This paper explores an in-memory AES encryption
using the newly introduced domain-wall nanowire. We show that all AES operations
can be fully mapped to a logic-in-memory architecture by non-volatile domain-wall
nanowire, called DW-AES. The experimental results show that DW-AES can achieve
the best energy efficiency of 24 pJ/bit, which is 9X and 6.5X times better than CMOS
ASIC and memristive CMOL implementations, respectively. Under the same area
budget, the proposed DW-AES exhibits 6.4X higher throughput and 29% power
saving compared to a CMOS ASIC implementation; 1.7X higher throughput and
74% power reduction compared to a memristive CMOL implementation.

I. INTRODUCTION

Due to instant-on power-up and ultra-low leakage power,
the newly introduced nano-scale non-volatile memory (NVM)
such as ReRAM [1] and STT-RAM [2] has shown great
potential for future big-data storage. However, the sensitive
data will not be lost during reboot or suspension and hence
is susceptible to attack. Further, large volume of data must
be encrypted with high throughput and low power. Traditional
memory-logic integration based design incurs large overhead
when performing encryption by logic through I/Os. Therefore,
in-memory encryption would be preferred to achieve high
energy efficiency during data protection.

Various CMOS-based hardware implementations for AES
have been presented [3]. In scenarios where energy efficiency
is critical, CMOS-based ASIC implementations tend to incur
significant leakage power in current deep sub-micron regime
with limited throughput. In [4], a memristive CMOL imple-
mentation by hybrid CMOS and ReRAM design is introduced
to facilitate AES application. However, while the ReRAM
serves as reconfigurable interconnection, it is not used for in-
memory computation based encryption.

As spintronic devices have shown great scalability, it is
promising to build big-data storage with in-memory logic
based computing such as encryption. Domain-wall nanowire
[5], [6], or racetrack memory, is a newly introduced spintronic
NVM device. It has not only potential for high density and
high performance memory design, but also interesting in-
memory computing capability [7], [8] compared to other
emerging NVM technologies. In this work, we propose a full
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domain-wall nanowire device based in-memory AES comput-
ing, called DW-AES. The non-volatile domain-wall nanowire
devices are both used as storage element and deployed for
logic computing in AES encryption. Experimental results show
that the proposed DW-AES outperforms both CMOS-based
ASIC and the hybrid CMOS/ReRAM based AES computing
for data storage. Respectively, energy efficiency is improved
by 9X and 6.5X, and throughput improves by 6.4X and 1.7X.

The rest of the paper is organized as follows. Section II
details how all AES transformations can be implemented by
the domain-wall nanowire. Experiment results are presented
in Section III with conclusion in Section IV.

II. DOMAIN-WALL NANOWIRE BASED AES COMPUTING

In-memory encryption offers two major advantages over ex-
isting approaches. Firstly, all domain-wall based AES ciphers
(DW-AES) can be integrated inside the memory, and AES
encryption is performed directly on target data stored in non-
volatile domain-wall memory. This is significantly different
from the conventional memory-logic architecture in which
the non-volatile storage data to process must be loaded into
volatile main memory, processed by logic, and written back af-
terwards. Secondly, the DW-AES cipher is implemented purely
by domain-wall nanowire devices, which are identical to the
storage elements. This provides good integration compatibility
between DW-AES ciphers and the memory elements, as well
as the ability to reuse peripheral circuits like decoders and
sense amplifiers. In this section, the detailed domain-wall
nanowire based in-memory encryption will be discussed.

A. Data Organization of State Matrix

In AES, the standard input length is 16 bytes (128 bits),
which are internally organized as a two-dimensional four rows
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Fig. 1: The flow chart of AES algorithm with gate utilization analysis



by four columns array, called state matrix. During the AES al-
gorithm, a sequence of transformations are applied to the state
matrix, after which the input block is considered encrypted and
then output. The flow chart of the AES algorithm is shown in
Figure 1. Because in-memory encryption is performed directly
on data cells, the data needs to be organized in certain fashion
to facilitate the AES algorithm.

As domain-wall nanowires only support serial access, the
data needs to be distributed into separate nanowires so that
multiple bits can be operated concurrently within one cycle.
In AES algorithm, the basic processing unit is each byte
in the state matrix. Therefore, the state matrix is split into
eight 4 × 4 arrays, as illustrated in Figure 2, where each
entry of each array becomes one bit instead of one byte. By
distributing the bytes and operating eight arrays together, the
byte access requirement in AES algorithm is satisfied. More-
over, to facilitate the ShiftRows transformation by exploiting
the shift property of domain-wall nanowire, each row of an
array needs to be stored within one domain-wall nanowire.
In this case, each array is composed of four nanowires, and
within each nanowire, the four bits data are kept along with
some redundant bits used for efficient circular shift. Details
regarding redundant bits will be discussed later in ShiftRows
transformation. By organizing each 16 bytes of data in the
above manner, the AES algorithm can be applied efficiently.

B. AddRoundKey

In the AddRoundKey step, each byte in the state array will
be updated by bit-wise XOR with corresponding key byte.
As the dominant operation in this step is XOR, shown in
Figure 1, we propose a nanowire based XOR logic (DW-XOR)
for leakage free computing. As the GMR-effect in the two
magnetic layers structure can be interpreted as the bitwise-
XOR operation of the magnetization directions of two thin
magnetic layers, where the output is denoted by high or low
resistance. In a GMR-based MTJ structure, however, the XOR-
logic will fail as there is only one operand as variable since
magnetization in the fixed layer is constant. This problem is
overcome by the unique domain-wall shift-operation in the
domain-wall nanowire device, which enables DW-XOR for
computing.

The AddRoundKey with bitwise-XOR logic implemented
by two domain-wall nanowires is shown in Figure 3. The
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Fig. 2: Data organization of state matrix by domain-wall nanowire devices in
distributed manner
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Fig. 3: AddRoundKey step with XOR logic achieved by domain-wall nanowire

proposed bitwise DW-XOR logic is performed by constructing
a new read-only-port, where two free layers and one insulator
layer are stacked. The two free layers each have the size of one
magnetization domain and are from two respective nanowires.
Thus, the two operands, representing the magnetization di-
rection in each free layer, can both be variables with values
assigned through the MTJs of their own nanowire. These
assigned values are then shifted to the operating port such
that the XOR can be performed by detecting the resistance.

C. SubBytes

In this step, each byte in the state matrix will undergo
an invertible non-linear transformation. This transformation is
commonly implemented as a look-up table (LUT), called sub-
stitution box (S-box). S-box LUT, essentially a pre-configured
memory array, takes 8 bit input as a binary address, finds
target cells that contain 8 bit result through decoders, and
finally outputs correspondingly by sense amplifiers. With 28

possible input scenarios, and each scenario having 8 bit result,
the LUT size can be determined as 28 ·8 = 2048 bits. The LUT
is conventionally implemented by SRAM cells, which in this
size will incur significant leakage power. Readily implemented
by domain wall nanowire device, the DW-LUT will enable
significant leakage reduction, In addition, the memory and
DW-LUT can share decoders and sense amplifiers, which leads
to further power and area savings.

D. ShiftRows

The ShiftRows transformation can be efficiently achieved by
exploiting the unique shift property of domain-wall nanowire.
Due to the distributed data organization, in the ShiftRows
transformation, the second row needs to be left shifted cycli-
cally by one bit, the third by two bits, and the fourth row
by three bits, while the top row remains unshifted. In order to
accomplish the circular shift in an elegant manner, i.e. without
writing back the most significant bits to the least significant
bits, redundant bits are used to form a virtual circle on the
nanowire, as illustrated in Figure 4.

Since each row has predetermined shift operation, the num-
ber of redundant bits of each row can be readily determined:
one redundant bit is required for second row, two bits for
third row, and three bits for last row, all attached to the least
significant bit from right side In order to achieve all shifts in
one cycle, shift currents of different amplitude are applied to
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Fig. 4: ShiftRows transformation by domain-wall nanowire shift operations

each row according to the linear current-velocity relationship
of shift operation [9]. In other words, the third row and fourth
row are applied shift current that is twice and three times the
amplitude applied to the second row. Consider the equivalent
operations in circular shift with four bits: LS1 def

== RS3, LS2
def
== RS2, LS3 def

== RS1, where LS and RS indicate left and right
shift, the number denotes the length to shift. This means in last
row, instead of shifting 3 bits leftward, only right shift 1 bit
needs to be performed. This helps to reduce the redundant data
from 3 bits to 1 bit, as well as reduce the applied shift current
to one third of previously required amplitude. The bits in same
color indicate that they are synchronized bits. To ensure correct
circular shift, the redundant bits need to be synchronized with
their counterparts. As a result, during changes in the matrix
state the redundant bits must also be updated. In contrast with
conventional computing flow, in which data needs to be moved
to computing units for execution and written back to memory
afterwards, the ShiftRows transformation is done directly on
the stored data by in-memory computing fashion.

E. MixColumns

The MixColumns transformation can be expressed as the
state matrix multiplied by the known matrix shown in Figure
1. The operations needed are multiplication by two (xtime-
2), multiplication by three (xtime-3), and addition defined as
bit-wise XOR. The xtime-2 is defined by left shift by 1 bit,
and bit-wise XOR with 0x1B if the most significant bit is
1; The xtime-3 is defined as xtime-2 result XOR with its
original value. Therefore, there are only two de-facto atomic
operations: 1) bit-wise XOR, executed by proposed DW-XOR,
and 2) xtime-2. Although xtime-2 can be implemented by in-
memory shift together with additional DW-XOR, it is more
efficient to use 8-bit input 8-bit output DW-LUT due to its
branch operations depending on its most significant bit. As
such, the MixColumns transformation can be purely performed
by DW-LUT and DW-XOR.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

To evaluate DW-AES cipher, the following design platform
has been set up. Firstly at device level, the transient simulation

of MTJ read and write operations are performed within NVM-
SPICE [10], [11], [12], [13], [14] to obtain accurate opera-
tion energy and timing for domain-wall nanowire. The shift-
operation energy is modeled as the Joule heat dissipated on
the nanowire when shift-current is applied. The shift-current
density and shift-velocity relationship are based on [9]. The
area of one domain-wall nanowire is calculated by its dimen-
sion parameters. Specifically, the technology node of 32nm is
assumed with width of 32nm, length of 64nm per domain, and
thickness of 2.2nm for one domain-wall nanowire; the Roff

is set at 2600Ω, the Ron at 1000 Ω, the writing current at
100µA, and the current density at 6 × 108A/cm2 for shift-
operation. Secondly at circuit level, the memory modeling
tool CACTI [15] is modified with name as DW-CACTI. It
can provide accurate power and area information for domain-
wall nanowire memory peripheral circuits such as decoders
and sense amplifiers (SAs). Together with the device level
performance data, the DW-XOR as well as the DW-LUT
can be evaluated at circuit level. The additional sequential
controller of DW-AES is described by Verilog HDL, which
is synthesized with area and power profiles. Finally at system
level, an AES behavioral simulator is developed to emulate
the AES cipher, as well as to explore the trade-offs among
power, area, and speed.

B. AES Performance Comparison

The proposed DW-AES cipher is compared with both
CMOS-based ASIC design [3] and hybrid CMOS/ReRAM
(CMOL) design [4]. For these implementations, performance
data is extracted from the reported results in [3], [4] with
necessary technology scaling. C-code based software imple-
mentation that runs on a general purpose processor (GPP) is
also compared. Evaluation of the AES software implemen-
tation is done in two steps. Firstly, gem5 [16] simulator is
employed to take AES binary, compiled from C-code obtained
from [17], which generates the runtime utilization rate of core
components. Next, the generated statistics are taken by McPAT
[18], which provides core power and area model. All hardware
implementations run at the clock-rate of 3MHz, while the pro-
cessor is operated at 2GHz for the software implementation.
Table I compares the different implementations of AES cipher,
and the results are discussed as follows.

TABLE I: AES for 128 bits encryption performance comparisons

Implementation leakage total power area cycles
(µW) power(µW) (µm2)

C code [17] on GPP 1.3e+6 4e+5 2.5e+6 2309
CMOS ASIC [3] 120.54 154.74 953.05 534

memristive CMOL [4] 102.35 119.04 251.5 534
DW-AES 14.602 21.568 78.121 1022

As expected, the DW-AES cipher has the smallest leakage
power due to the use of non-volatile domain-wall nanowire
devices. The remaining small leakage power is introduced by
its CMOS peripheral circuits, i.e. decoders, sense amplifiers,
as well as simple sequential controllers. Specifically, DW-AES
cipher achieves a leakage power reduction of 88% and 86%
compared to the CMOS ASIC and memristive CMOL designs,
respectively. The leakage power can be further reduced if the
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Fig. 5: In-memory encryption throughput, power and energy efficiency comparisons between different AES platforms

decoders and SAs of the memory can be reused by the DW-
AES ciphers.

The tradeoff made in the DW-AES cipher is a larger number
of cycles required compared to other hardware implementa-
tions. This is caused by the multiple-cycle operations of DW-
XOR and its DW-LUT, where the shift-operation needs to be
performed first in order to align the target cell with MTJ to
operate. Note that while small latency between the raw data
in and the encrypted data out is critical in real-time systems,
in big-data applications the most significant figures of merit
are throughput and energy efficiency.

C. Throughput and Energy Efficiency Comparison

In the following, the proposed in-memory DW-AES is
compared with other implementations at the system level.
For each AES computing platform, the number of AES units
is maximized subject to a given 10mm2 area constraint.
All AES units are encrypting input data stream concurrently
due to the high data parallelism. With the exception of the
proposed in-memory DW-AES, all platforms will incur I/O
energy overhead of 3.7nJ per memory access. For memory, a
capacity of 1GB and buswidth of 128 bits are assumed.

Figure 5 compares throughput, power, and energy efficiency
of different AES computing platforms. All AES hardware
implementations have several orders of magnitude throughput
and energy efficiency improvement compared to the software
implementation on general purpose processor, as expected.
Among all the hardware implementations, the proposed DW-
AES computing platform provides the highest throughput
of 5.6 GB/s. This throughput is 6.4X higher than that of
the CMOS ASIC based platform with a power saving of
29%; 2.5X higher than that of the pipelined CMOS ASIC
platform with 30% power reduction; and 1.7X times higher
than that of memristive CMOL based platform with 74%
power saving. Due to the in-memory encryption computing
and non-volatility, the proposed DW-AES computing platform
can achieve the best energy efficiency of 24pJ/bit, which is
9X, 3.6X, 6.5X times higher than its counterpart: the CMOS
ASIC, pipelined CMOS ASIC, and memristive CMOL based
platforms, respectively.

IV. CONCLUSION

The domain-wall nanowire based AES (DW-AES) is in-
troduced in this paper. All AES operations can be fully

mapped to exploit the unique properties of this emerging
technology. For example, the DW-XOR logic is proposed
for the dominant XOR operation; the domain-wall shift is
exploited for the row-shift operation; and the DW-LUT is
utilized for the S-box operation. The experiment results show
that, the proposed DW-AES exhibits the best energy efficiency
(24 pJ/bit). Respectively, it is 9X and 6.5X better than CMOS
ASIC and memristive CMOL based platforms.
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