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A filter bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) (FBMC/OQAM) is considered to be one
of the physical layer technologies in future communication systems, and it is also a wireless transmission technology that supports
the applications of Internet of Things (IoT). However, efficient channel parameter estimation is one of the difficulties in realization
of highly available FBMC systems. In this paper, the Bayesian compressive sensing (BCS) channel estimation approach for
FBMC/OQAM systems is investigated and the performance in a multiple-input multiple-output (MIMO) scenario is also
analyzed. An iterative fast Bayesian matching pursuit algorithm is proposed for high channel estimation. Bayesian channel
estimation is first presented by exploring the prior statistical information of a sparse channel model. It is indicated that the BCS
channel estimation scheme can effectively estimate the channel impulse response. Then, a modified FBMP algorithm is
proposed by optimizing the iterative termination conditions. The simulation results indicate that the proposed method provides
better mean square error (MSE) and bit error rate (BER) performance than conventional compressive sensing methods.

1. Introduction

To date, the application of mobile communication systems in
the field of Internet of Things (IoT) is not in-depth [1, 2].
Although Fourth Generation (4G) has greatly improved the
network speed, there is still much room for improvement
in network reliability and latency. Fifth Generation (5G) sys-
tems [3-8] are now being deployed which can well meet the
demands of IoT, such as low latency, high reliability network,
and large bandwidth. The full opening of the 5G era is accel-
erating the application and popularization of IoT, artificial
intelligence (AI), and other technologies [9-12]. However,
the development of IoT requires suitable infrastructure
[13, 14] including sensors for data acquisition and wireless
communication technology. Currently, multicarrier modula-
tion has been widely used in wireless communication systems.
The filter bank multicarrier (FBMC) with offset quadrature

amplitude modulation (OQAM), denoted as FBMC/OQAM,
has captured significant attention [15, 16], due to its potential
as an option to orthogonal frequency division multiplexing
(OFDM). Although the Third Generation Partnership Project
(3GPP) has indicated that filtered OFDM will be utilized in 5G
systems, interest in FBMC for future mobile communication
systems has not declined [17, 18].

FBMC technology employs a good time-frequency proto-
type filter, which has many features such as low spectral side
lobes, high spectrum efficiency, and robustness to frequency
offset [19]. However, the nonstrict orthogonality of the
system leads to the existence of imaginary interference. This
interference can be mitigated during channel estimation
(CE), but this requires that the channel coefficients be esti-
mated in the complex domain. Interference reduction is chal-
lenging in FBMC systems, particularly when multiple-input
multiple-output (MIMO) communications are involved.
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There has been significant effort to overcome this problem,
and both preamble-based [20-27] and compressive sensing-
(CS-) based approaches have been proposed [28-33].

Numerous preamble-based schemes have been proposed
for CE. The interference approximation method (IAM) [20]
and interference cancellation method (ICM) [21] are two
well-known algorithms for interference mitigation. They
reduce the imaginary interference or exploit this interference
to improve CE performance. Combined with these methods,
a novel preamble structure for FBMC systems was proposed
in [22]. Because more channel coefficients need to be deter-
mined, CE in MIMO systems is more complicated than in
single-input single-output (SISO) systems. In addition, imag-
inary interference from multiple antennas makes CE in
MIMO-FBMC systems difficult. Thus, there has been signif-
icant research on CE for MIMO systems. In [23], IAM
preamble variants were investigated and the characteristic
due to the extension to MIMO systems was studied. An opti-
mized preamble for a frequency division multiplexing
MIMO system was proposed in [24]. In [25], an interference
elimination MIMO preamble structure was proposed to
improve CE performance. In addition, an efficient sequence
design for a MIMO-FBMC system was proposed in [26].
However, the use of a preamble reduces spectrum efficiency,
and it is difficult to remove the intrinsic interference. There is
consensus [27] that preamble-based CE for MIMO systems
is inefhicient.

Many works had been devoted to improve the CE perfor-
mance in FBMC systems. In [34], the authors proposed a
blind CE method by utilizing spatial diversity to introduce
data redundancy. However, the method could not provide
satisfactory CE performance. By utilizing the sparse channel
characteristics, the CS approach is explored to promote the
CE performance. Most works [35-37] were reported on CE
in OFDM systems. Only few studies can be found for FBMC
systems. In [28], a traditional orthogonal matching pursuit
(OMP) method was utilized for CE. The results obtained
showed that compared with the traditional preamble struc-
ture scheme, this approach could significantly improve the
CE performance. In [29], a sparse adaptive CS algorithm
was put forward for high CE. This algorithm is based on
the compressive sampling matching pursuit (CoSaMP)
and sparsity adaptive matching pursuit (SAMP) methods.
Besides, a scattered pilot CE method based on CS for FBMC
was proposed in [30] by utilizing the wireless channel sparsity.
In [31], the authors developed two distinctive compressive
sensing algorithms to estimate channel frequency response
in FBMC systems. Simulations verified the superiority of the
two algorithms. In [32], an effective CS-based CE method
was given for MIMO systems. A sparse adaptive scheme for
CE in MIMO systems was proposed in [33]. However, no
work has been reported on Bayesian compressive sensing
(BCS) for CE in FBMC systems. As a special CS method,
BCS, which utilizes statistical information of sparse channels
as prior knowledge, can achieve better recovery effect than
traditional CS methods in many applications [38, 39].

Motivated by those above, in this paper, we explore the
statistical information of sparse channels for CE. The main
contributions of this paper are listed as follows:
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(1) Based on Bayesian CS approach, we propose an
iterative fast Bayesian matching pursuit approach
for high channel estimation in FBMC and its MIMO
scenario. As far as we know, the Bayesian approach
for high CE in FBMC systems has not yet been
investigated

(2) To evaluate the performance of the proposed
Bayesian approach, well-known CS methods and
the least square (LS) method are utilized for compar-
ison. Moreover, mean square error (MSE) and bit
error rate (BER) are adopted to assess the CE perfor-
mance. Simulations verify that the Bayesian approach
can offer better both MSE and BER performance than
other well-known CS approaches

The rest of this paper is organized as follows. Section 2
presents the system model, including FBMC and MIMO-
FBMC systems. Section 3 reviews the CS-based channel esti-
mation method. In Section 4, a fast Bayesian matching pur-
suit channel estimation approach is proposed. In Section 5,
the simulation comparisons are carried out and the results
are analyzed. Finally, Section 6 gives the conclusions.

2. System Model

2.1. FBMC System. The FBMC signal can be expressed as

-1

N
S(t) = Z dm,ngm,n(t)’ (1)

=0

where N denotes the number of subcarriers, g,, ,(t) repre-
sents the time-frequency prototype filter, and d,, , represents
the real-valued OQAM symbol. The (.),, ,» in which m repre-
sents the subcarrier index and # represents the symbol time
index, denotes the (m, n)th frequency-time (FT) point.

The filter functions g, , are orthogonal in the real
domain with

R{ {9

o) | = m{ggm,nu)g;o,%(t)} =By, Sy

where R(-) represents the real part of a complex number and
0 is the Kronecker delta function with §,,,, =1, if m=m,
and §,,,, =0. Note that even without channel distortion,
there is still imaginary intercarrier interference at the out-
put of the filter bank. The weight of the interference is
given by

(9 =~ G| Gy, ) (3)

where (g,,,!9,, ,,) denotes an imaginary term for (m,n)
# (my,ny). The values of interference weights can be
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calculated based on the prototype filter g, and thus, for
all m, the interference weights are given by

(-1)"e 0 —(-1)"
-n"s -p  (-1)"6,
"y (1), @)
(-1)™"8 (-1)"8,
(-1)"e 0 —(-1)"e

Generally, 3, y > 4. In simulation, y = 0.5004, 3 = 0.3183,
8 =0.2501, and € = 0 for the design of g.
Then, the received signal is given by

K-1

= Y s(t=k)h(t) + w(t), (5)
k

where K is the number of channel taps, w(t) is the additive
white Gaussian noise (AWGN), and h(t) is the time domain
impulse response of the multipath channel. The channel can
be described as

K-1
Zak (T—14), (6)
k=0

where a,(t) denotes the complex amplitude of the kth path,
&(-) is the Kronecker delta, and 7, represents the delay of
the kth path. It is assumed that it is a complex Gaussian pro-
cess of wide-sensing stationary (WSS), and the channel paths
are independent. Assuming that the length of channel

impulse response is L, and the channel h = [k, h,---h; ]".

2.2. MIMO-FBMC System. For a N, x N,(N,<N,) spatial
multiplexing MIMO system, the baseband signal on the n,
th branch can be expressed as

N-1

= ) Y Gan(D), (7)

m=0 n

where n, =[1,2,---,N,] and d}!  is the real-valued FBMC/-
OQAM symbol on the n,th transmit antenna conveyed by
subcarrier m during symbol time n. N is the number of
subcarriers, and

G (t) = g(t = 7y )2 Fol o, ®)

where g(t) is a symmetric real-valued pulse filter, F,, is the
subcarrier spacing with Fy=1/T;=1/27;, and ¢, is an
additional phase term. T, is the OFDM symbol duration,
and 7, denotes the time offset between the real and imaginary
parts of an FBMC/OQAM symbol.

The received signal can be expressed as

N, N-1
Y H () G (1) + (D), (9)
n=1m=0 n
with
T max .
0= [ e o)
0

where k7' (t, 7) denotes the channel impulse response; 7,
and 7, denote the receive and transmit antennas, respec-
tively; 7 (¢) is the channel noise; and H;,' (¢) is the complex
channel response at time t. We assume a slowly varying
channel, so we omit t for brevity giving Hyiy' (t) = Hpin'

3. CS-Based Channel Estimation

Classical CS theory indicated that a K-spare signal h could be
stably reestablished as

y=0h+uw, (11)

with the precondition that @ should meet the Restricted
Isometry Property (RIP), @ is a matrix with M rows and N
columns, M <« N, and w is noise.

Equation (5) in matrix form can be expressed as

R=XH+W, (12)

with R=[r(0),7(1), -, 7(N = 1)]", X = diag (x(0), x(1), -,
x(N—=1)), W represents a N x N dimension noise matrix
with zero mean and ¢ variance, and H = Fy; h is the channel
frequency response, with Fy; being an L-row discrete
Fourier transform matrix, and L denotes the channel length.

Let P be the number of pilot signals and ¢ the P x N pilot
matrix with ¢ = (e , e, , -, ¢, ). For the N subcarriers, ¢ is
used to select the position of the pilot, and s;(i=1,2, -+, P)
represents the position of the ith pilot. Then, equation (12)
can be written as follows:

Rp = XpF,h+ W), (13)

where R, denotes the LS estimation channel value, Rp = @R,

and Wp,=¢W. X, denotes a diagonal matrix, with X, =

¢X¢T, and the diagonal elements are pilot values, Fp, = Fy;.
Convert (13) to

Rp=Fh+ W), (14)

where F=X,Fp, R, and F are available during transmis-
sion, and h represents the multipath channel impulse
response. Then, the CS recovery algorithm can be used
to recover h.



Similarly, in MIMO systems, the CS method is also based
on the above analysis. The received signal in (7) can be
written as

R = X" H"™" + 1", (15)

where H"™ is the channel frequency response given by
H"" = Fy "™, X" =diag (x'(0), x*(1), ---, x™ (N - 1)),
R = [r1(0), 72(1), -+, " (N = 1)]", Fy, is the N x L discrete
Fourier transform matrix, and #™ is an N x N noise matrix
with zero mean and variance o

Letting P be the number of pilot signals, equation (15)
can be rewritten as

Ry = Xy F,h""™ + 1y, (16)

where Ry’ = R™ is the received pilot signals, Ry is the LS
estimated channel values, 7, = g™, X}’ is a diagonal matrix
with Xj = X", and the pilot values are Fp=¢Fy;.
Equation (16) can be expressed as

Ry = "™ + 11, (17)

where F = X F, and ™" is the channel impulse response. If

Ry and F are available, then """ can be employed in the CS
reconstruction algorithm.

Considering all receive antennas, equation (17) can be
written as

R=Xh+n, (18)
where X =1Iy ®|[diag (x')Fy;, diag (x*) Fy;,---, diag (x™)

Fu R=[R)' (B &, 4=l ()"

T
()7
hl,l h1,2 hl,N[
h2,1 h2,2 . hZ,Nt
h= _ _ . . . (19)
th,l th,Z hN,,N,

4. Proposed Bayesian Matching Pursuit Method

It is considered that h is a Gaussian mixture process, the
parametric vector z is introduced to reflect the sparsity of h,
and the position of nonzero elements is the same as that of
h. h[n] is defined as the nth element of vector h, and z[#]
€{0,1} is used to express whether h[n] is a nonzero ele-
ment, since h[n] is a Gaussian process with a mean of 0
and a variance of 0%

h[n)|{z]n] = q} ~ CN(o, a;), (20)

where z[n]=0, 0520, h[n]=0, z[n]=1, h[n]#0, and
plz[n}=1)=p, and p(z[n]=0)=1-p,.
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The vector form of equation (20) can be expressed as
follows:

hjz~ CN(0,R,,), (21)

with R, = E{zz"}.
Using Bayesian rule,

p(y,h,z)

e p(y|z h)p(hjz) = p(y[h)p(hz),

(22)

p(y-hjz) =

if h is given, z can be completely determined, then p(y|z, h)
=p(y/h.z) = p(y[h).
> , (23)

[Y] |z= ~CN <0,
h
where ¢(z) = OR,, 0" + o*1,.

According to the description of the above model, the
selection of the support set for h can be simplified to the
selection of the support set for z. Using the Bayesian rule,
the posterior probability could be written as

o(z) DR,
R,®7 R

ylz
h|z

77

PYP(2) )

Zz’eAP(Y’Z’)POZ,) ,

where A € {0,1}". p(z|y) can be obtained by solving p(y|z)
p(z); considering that A has a relatively large value, it is still
difficult to solve p(y|z)p(z). If one can find a smaller set A*
to approximate A, the amount of calculation could be
reduced. In order to choose A", we first take the logarithm

of p(y|z)p(2),

p(zly) =

L
v(z) £In p(y|z)p(z) =In p(y|z) +In Hp<zn)
=In p(y|z) + ||z||, In p, + (N =[]/ In (1 - p)),
(25)

where 1In p(y|z) =—(L/2) In 27 — (1/2) In det (¢(z)) — (1/2)
y7¢(z) 'y and v(z) is the selection criterion for A*. Then,
an effective way is taken to estimate z by utilizing v(z), and
we call this method as the fast Bayesian matching pursuit
(FBMP) [32].

More specifically, suppose z, means that the vector is
the same as the vector z except for the nth element, with
z,[n] =1,2z[n] =0. Then, calculate the gain of v(z,), with
A,(z,) =v(z,) - v(z). According to (23), ¢(0)=0%I,.
Notice the initialization state of z; when z =0, v(0) = —(L/2)
In27-Mlno, - (1720%)|y|3+LIn (1-p,). In order to
get the gain of v(z,), we first calculate

¢(Zn) = (’DRznzn(DH + UiIM = (D(Rzz + A)(DH + 0;211M

=¢(z) + O'%CD ol

n=n?

(26)
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where A is an L x L matrix; it has zero elements except for
Aln, n],and A[n, n] = 02, = 03. @, represents the nth column
of matrix @. Then, according to the principle of matrix
transpose

9(z,) " =p(2)" —9(2) D, (Dlg(z) D, + 07%) Dlip(z) .
(27)

Define that b, 2 ¢(z) '@, and B, 2 0>(1 + a?®Hb,) ™.
Then, equation (27) can be rewritten as

9(z,)" =(z)" - B,b,b)/. (28)

Through calculation, we can finally get that

1 1
An(zn) = V(Zn) - V(Z) = E In (%) + Eﬁn|yan|2 +In 1611) X
1 1
(29)

where A,(z,) is the gain of z after changing at the nth
position.

According to the above method, the main support set A*
can be found. The steps of the algorithm are shown below:

Initialization: Q= &, 2= 0, R,, =0, and v(0). Use (23) to
obtain ¢(z), and use (26) to initialize b,, n=1,2,--+, L,
and S,.

First, starting with z=0, use (29) to calculate A, (z,),
n=1:L, find the location element with the largest
v(z,) =v(0) + A, (z,), n=1": L, and record it as n'V); add it
to the set Q = QU {nM}, then update ¥ = {1,2, ---, L}/ Q.

Then, update b, and f,, use (29) to calculate A, (z,),
n=1:L, find the location element with the largest
v(z,)=v(z) + A, (z,), n=1: L, and record it as n?,

Until the number of elements in the selection (2 reaches
K, set K to be slightly greater than the expected position of
nonzero elements, with E{||z||,} =Lp,. Therefore, the
probability that the actual sparsity is greater than the esti-

mated sparsity K is lower, and Py=p(||z|l, > I?) = (1/2) erfc
((IA< - Lp,)/\/2Np,(1 - p,)); K could be calculated
asK = [erfc™ (2p)\/2Lp, (1 - p,) +Lp,].

In the proposed algorithm, by giving the value of P, use
the above formula to calculate K, until the number of ele-

ments in Q reaches K. By optimizing the number of loops,
the iteration will be stopped until the requirements are met.

After estimating the parameter vector z, the estimated
channel is given as

h =Y E{hly, 2}p(zly) (30)

where {hly,z} =R,,®"®(z,)"'y. Figure 1 shows the flow-
chart of the proposed algorithm.

Obtain ¢ Z, b, and 3,

v

Start with Z = 0, calculate A,,(Z,)) find the location
element with the largest V(Z,), record it

.

Update b, and f3,,

Until the number of elements in the
selection reaches K and set K to be
slightly greater than the expected position of
non-zero elements

By giving the value of P, use the above
formula to calculate K; we can estimate
the parameter vector Z

v

Finally, the estimated channel is given as

h=2 E {hly,z} p (zly)
A*

FIGURE 1: The flowchart of the proposed algorithm.

5. Simulation Results

In this section, we consider FBMC systems using N =512
subcarriers. A square root-raised cosine filter is adopted for
the pulse filter. The LS approach adopts the IAM preamble
structure. The length of the channel is L =240, the number
of nonzero elements K =6, K is also expressed as sparsity,
and set Py =0.01. It is clearly that p, =0.025. The number
of iterations is 5. MSE and BER are used to evaluate the CE
performance. Conventional LS, OMP, and regularized OMP
(ROMP) methods are used to compare with the proposed
method, where the OMP and ROMP are the two well-
known CS recovery algorithms.

Figures 2 and 3 give the MSE and BER with five methods
for a SISO-FBMC system. These results show that the pro-
posed scheme outperforms the other four schemes in terms
of both the MSE and BER. The CS-based approaches pro-
vide significant MSE performance improvement over the
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MSE

102 : T
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-o— OMP
—&— ROMP

SNR (dB)

—— FBMP
—~ Proposed

F1GURE 2: MSE with five methods for a SISO system.

100

10-2

—— LS
-o- OMP
—&- ROMP

6 8 10 12

SNR (dB)

—— FBMP
—~ Proposed

F1GURE 3: BER with five methods for a SISO system.

conventional LS method. Due to the change of iteration
conditions, the proposed method is significantly better than
the conventional FBMP method.

Figure 2 depicts the MSE performance curves for five
channel estimation methods. The results show that our pro-
posed algorithm exhibits a better MSE performance than
the other four methods. The conventional FBMP method
outperforms the LS method but is worse than the traditional

CS method. The MSE performance for CE can be signifi-
cantly improved by the proposed method.

In Figure 3, the BER performance curves for five channel
estimation methods are given. It is obvious that the proposed
method gives the best BER values among the five methods.
More specifically, our proposed approach improves the
BER performance of the OMP, ROMP, and FBMP by 0.5,
0.8, and 1.2 dB, respectively, when BER=10"" is considered.
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MSE

102

—— LS
-o— OMP
—&— ROMP

5 6 7 8 9 10

SNR (dB)

—— FBMP
—+— Proposed

FIGURE 4: MSE with five methods for a 2 x 2 MIMO system.

100

102

—— LS
-0 OMP
—&— ROMP

SNR (dB)

—— FBMP
—+— Proposed

FiGure 5: BER with five methods for a 2 x 2 MIMO system.

We also study the CE performance of a MIMO-FBMC
system. Figures 4 and 5 give the MSE and BER of the five
methods for a 2 x 2 MIMO-FBMC system. Compared with
the SISO system, the performance of all methods in the
MIMO system is decreased. And these results also demon-
strate that the proposed method outperforms the other four
schemes in terms of both the MSE and BER in a MIMO case.

Figure 4 gives the MSE performance curves for five chan-
nel estimation methods in a MIMO case. Compared with the

performance in Figure 2, the OMP method offers slightly bet-
ter MSE values than the FBMP method in Figure 4. The error
floor of the CS-based approaches is due to the inherent inter-
ference from the MIMO-FBMC system.

Figure 5 shows that the CS approach outperforms the
conventional LS scheme in terms of the BER, and the
proposed method provides the best performance. More
specifically, the proposed approach improves the BER
performance of the OMP, ROMP, and FBMP by 1.1,



2.6, and 3.6 dB, respectively, when BER = 107! is considered.
The BER performance improvement of the proposed method
in a MIMO system is better than that in a SISO system.

6. Conclusions

In this paper, we had studied the FBMP algorithm for chan-
nel estimation. A modified FBMP algorithm was proposed by
optimizing the iterative termination conditions for FBMC
sparse channel estimation. The proposed algorithm was
compared with the LS, OMP, ROMP, and FBMP methods.
The simulation results obtained showed that our proposed
approach achieved better MSE and BER performance than
LS and the other well-known CS-based approaches. How-
ever, the shortcoming is that the computational complexity
of the proposed method is increased. In the future, low-
complexity Bayesian sparse CE approach for FBMC systems
will be studied.
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