
An Intersection Cache Based on Frequent Itemset

Mining in Large Scale Search Engines

Wanwan Zhou, Ruixuan Li, Xinhua Dong

School of Computer Science and Technology

Huazhong University of Science and Technology

Wuhan, P.R.China

E-mail: {zhouwanwan, rxli, xhdong}@hust.edu.cn

Zhiyong Xu

Department of Mathematics and Computer Science

Suffolk University

Boston, USA

E-mail: zxu@suffolk.edu

Weijun Xiao

Department of Electrical and Computer Engineering

Virginia Commonwealth University

Richmond, USA

E-mail: wxiao@vcu.edu

Abstract—Caching is an effective optimization in large scale

web search engines, which is to reduce the underlying I/O burden

of storage systems as far as possible by leveraging cache localities.

Result cache and posting list cache are popular used approaches.

However, they cannot perform well with long queries. The

policies used in intersection cache are inefficient with poor

flexibility for different applications. In this paper, we analyze the

characteristics of query term intersections in typical search

engines, and present a novel three-level cache architecture, called

TLMCA, which combines the intersection cache, result cache,

and posting list cache in memory. In TLMCA, we introduce an

intersection cache data selection policy based on the Top-N

frequent itemset mining, and design an intersection cache data

replacement policy based on incremental frequent itemset mining.

The experimental results demonstrate that the proposed

intersection cache selection and replacement policies used in

TLMCA can improve the retrieval performance by up to 27%

compared to the two-level cache.

Keywords—search engine; cache; intersection cache; frequent

itemset mining.

I. INTRODUCTION

With the explosive growth of data on the Internet, efficient
data storage and retrieval strategies are becoming more and
more important for search engines since they are one of the
most important applications on the Internet. Hard disk is used
as the major media to store the massive data for many large
scale search engines. The low disk I/O access speed has
become the major bottleneck for data retrieval operations. Data
caching mechanism can effectively improve the retrieval
performance. Different caching algorithms have recently been
developed, such as result cache, intersection cache, projection
cache, posting list cache, snippet cache, and document cache.

Result cache and posting list cache are the most studied
caches so far. However, result cache only performs very well
on single-term and two-term queries while posting list cache
needs extra calculations to return the final result. Intersection
cache happens to play a complementary role for the previous
two caches. However, in practice, the number of terms is
considerable numerous, the combinations of multiple terms are
tremendously huge. It becomes very difficult to choose which

intersection should be kept in the cache. Thus, the existing
intersection cache cannot achieve the satisfactory caching
performance. It consumes a large amount of disk space to keep
the information and only a very low hit rate can be reached.
Furthermore, the low speed disk I/O accesses also reduce its
effectiveness. In this paper, we design a novel 3-layer cache
architecture called TLMCA to address this issue through
keeping the most suitable intersection data in the memory to
improve retrieval performance. Especially for longer queries,
intersection cache could hit high-frequency term combinations,
which makes up for result cache. Meanwhile, it saves inverted
lists intersection computation, which makes up for posting list
cache. In addition, we propose new intersection cache selection
and replacement policies, which include intersection cache data
selection policy based on Top-N frequent itemset mining
(FIMI) and intersection cache data replacement policy based
on incremental frequent itemset mining (IFIMI). To the best of
our knowledge, our work is the first to integrate frequent
itemset mining technology into the intersection cache.

The contributions of this paper are as follows.

 First, we analyze the characteristics of query term
combinations that lay foundation for cache strategies.

 Second, we propose TLMCA, a novel three-level cache
architecture, and integrate frequent itemset mining
algorithms with intersection cache to improve the
efficiency and flexibility.

 Third, we conduct extensive simulation experiments to
evaluate TLMCA performance. The results show
significant benefits of retrieval performance for
TLMCA compared to other strategies.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III analyzes the
characteristics of dataset and query log in large scale search
engines. Section IV describes the system design of TLMCA,
the three-level cache architecture. Section V presents the
intersection cache data selection and replacement policies
based on frequent itemset mining. Section VI demonstrates the
experimental results. Finally, Section VII concludes the paper
and briefly discusses the future research directions.

II. RELATED WORK

A. Search Engine Cache

The most common cache in search engine is the single level
cache, which can be further categorized as result cache, score
cache, intersection cache, projection cache, posting list cache,
snippet cache, and document cache.

1) Result cache (RC): RC preserves the most frequently

queried results in the cache. Its management is simple.

However, it is coarse-grained, and its hit rate decreases very

fast as the data volume increases.
Markatos [1] analyzed the EXCITE query log, and showed

that static query result caching is a good choice only for small
cache sizes, while dynamic caching is better for large cache
sizes. Fagni [2] proposed an SDC policy that divides the cache
into two parts and one part is reserved for static caching and
the other one is used for dynamic caching. Ozcan et al. [3]
introduced a model based on the stability of frequency and
cost-aware result caching policies. Similarly, Gan et al. [4]
proposed and evaluated a set of feature-based result cache
eviction policies to achieve significant improvements. Wang et
al. [5] analyzed several result cache policies of search engine.
Recently, researchers are focusing on the update strategy in
result cache to improve the performance [6, 7]. Namely, the
retrieval system should always return the latest results to the
user in dynamic environment.

2) Posting list cache (PLC): The hit ratio in PLC is

relatively higher than result cache because it uses a fine-

grained approach. However, it needs substantial calculation to

return the final result, and its management is more complex.
Zhang et al. [8] evaluated several state-of-the-art inverted

list compression methods and different list caching policies.
Baeza-Yates et al. [9,] proposed a new algorithm for static
caching of posting lists that outperforms previous static
caching algorithms as well as dynamic algorithms. Various
posting list selection and replacement policies, such as LRU,
LFU, a strategy based on frequency and the ratio of frequency
to the size (FreqSize), have been developed. Currently, the
research focuses on inverted index are index structure, clipping
and compression algorithms.

3) Intersection cache (IC): IC is the intersection of posting

lists of several terms that appear together in one query. It can

improve the retrieval performance and can be applied as a

complementary method for the aforementioned two caches. A

drawback is that the amount of terms’ combinations could be

too large to keep in the memory. Thus, it has to consume a lot

of disk space. Therefore, it is difficult to choose which

intersection data should be stored in the cache.
Long et al. [10] proposed a three-level cache system. They

placed the projection cache on top, and use the hard disk as the
basis of the two-level cache (RC and PLC). Ozcan et al. [11]
proposed a five-level static cache architecture. Feuerstein et al.
[12] proposed and evaluated static, dynamic cost-aware
policies and hybrid policies for IC with inverted index residing
on disk and in main memory. Later, they proposed and
evaluated a static cache that works simultaneously as list and
intersection cache [13]. Wang et al. [14] found that posting list

intersection is the bottleneck in SSD-based search engines and
exploited full-term-ranking-cache (FTRC) and two-term-
intersection-cache (TTIC) to mitigate list intersection overhead.

There are also some researches on snippet caching [15] and
document caching [16]. Some studies aimed to integrate
multiple types of caches [10, 11]. In this paper, we focus on the
intersection cache, and will discuss it in the next section.

B. Frequent itemset mining

The most popular frequent itemset mining (FIMI)
algorithms are Apriori and FP-Growth. The Apriori algorithm
was proposed by Agrawal [17] in 1994. However, it has to
scan the data set repeatedly and produces a large number of
candidate itemsets. Han et al. [18] proposed FP-Growth which
does not generate candidate frequent itemsets. It only needs to
scan the database twice and avoids the generation of a large
number of candidate itemsets. Various algorithms such as
maximal FIMI, closed FIMI, Top-N FIMI, incremental FIMI
were developed based on Apriori and FP-Growth.

Top-N FIMI algorithm [19,20] needs to set the number of
frequent itemsets N rather than the minimum support. It
produces a backtracking problem so that the space and time
complexity becomes very high. Traditional FIMI algorithms
are based on the static data sets. However, data sets in reality
mostly are dynamic, which has addition, deletion and
modification, and they lead to some existing frequent itemsets
become invalid and some other previous non-frequent itemsets
turn to be frequent. Completely mining again towards the new
data will bring too much overhead. Thus, incremental FIMI
algorithms arise. They always divide the dynamic data set into
landmark window, attenuation window and sliding window for
processing. The data structures, such as bit table, binary vector,
matrix and the prefix tree, are often used.

In summary, the result cache and posting list cache cannot
perform well for multi-term queries. The previous intersection
cache selection policies are not very efficient, and they only
consider term pairs. Our objective is to explore a simple and
efficient intersection cache solution with good retrieval
performance.

III. QUERY LOG ANALYSIS

The dataset used in our experiments is an English data set
enwiki downloaded from Wikipedia with about 5 million
documents included. The compression index file is 5.2GB. The
query log comes from the AOL search engine, containing
approximately 3519003 queries in total. Among them, there are
1197567 different queries, 580116 different query terms, and
6535327 different intersections. The average length of a query
is 2.23, and the longest query contains 132 terms. We analyze
the search engine query log, and find that it has some obvious
query term combination characteristics.

(1) As shown in Fig. 1, the query, query term, and
intersection all follow the power-law distribution with α being
0.73, 1.1, and 0.76, respectively. (2) The majority of the
queries have a length less than or equal to 3. However, queries
need to occupy 80% of the total workload in search engine
whose length is more than 3 [6]. (3) With the increase of k, the

(a) Query frequency distribution

(b) Term frequency distribution

(c) Intersection frequency distribution

Fig. 1. Frequency distribution of the query data set

support of k-itemset is in non-ascending order. (4) The number
of hit counts of the intersection is relatively low, which is one
or two in most cases. (5) Users’ queries meet the closure
properties of frequent itemsets.

The result cache and posting list cache make good use of
the query’s and term’s localities. They have very good
performance on queries whose length is less than 3.
Nevertheless, queries whose length is larger than 3 often need
to consume more I/O and computing resources. From the
above discussions, we can observe that the intersection cache
can be used to alleviate this problem. Thus, in our TLMCA
design, we integrate all of them together to achieve optimal
performance.

IV. THREE-LEVEL CACHE ARCHITECTURE

In TLMCA design, we add an intersection cache on top of
the common two-level cache (RC and PLC) in the memory.
The caching system architecture is shown in Fig. 2.

As described in the previous section, in TLMCA, result
cache and posting list cache adopt the relatively simple
selection policy based on frequency, and the commonly used
replacement policy of result cache and posting list cache, such
as LRU, LFU, FreqSize etc, can be applied. However, the
intersection cache data selection policy is designed based on
the Top-N frequent itemset mining. We propose a new
replacement policy with the incremental frequent itemset
mining based on sliding window to deal with dynamic
intersection cache, which will be introduced in detail shortly.

When the search engine receives a user's query with n
terms (t1, t2, … , tn), the first query process step s1 is to detect
the result cache. The second step s2 is to check intersection
cache. The system extracts all k-itemsets (2≤ k ≤m, m is the
maximum length of the IC), matches the intersection cache
from the longest to the shortest depending on the length, and
returns an intersection’s posting list immediately when hitting
an item, say I(t1, t2, t3). The third step s3 is to review the
posting list cache with the last remaining terms (t4, t5, …, tn). It
will take out term t4’s posting list from the cache, and fetch
(PL(t5), …, PL(tn)) by accessing the hard disk at last. The

fourth step s4 is that Index Servers return the result (r1, r2, …,

rk) to the Web Server after the operations of intersection (I(t1,

t2, t3)∩PL(t4)∩PL(t5)∩…∩PL(tn)), page ranking and snippet

generation and so on. The Web Server receives partial results
from each Index Server. Finally, the fifth step s5 is to generate
a new top-k query result (r1’, r2’, ... , rk ') after summary, forms
a final result page, and returns it to the user.

V. AN INTERSECTION CACHE DATA STRATEGY BASED ON

FREQUENT ITEMSET MINING

In TLMCA, we design a Top-N frequent itemset mining
algorithm based on FP-Growth for our purpose. It treats the
query log as a transaction database D, terms are considered as
the items in D. We introduce several parameters, including the
number of frequent itemset mining (N=300,000) and the
maximum length of the intersection cache (maxLength=3).
Algorithm 1 shows the detail procedure of intersection cache
selection strategy based on the frequent itemset mining
(ICSS_FIMI).

Algorithm 1. ICSS_FIMI

1 Input: maxLength, N, query log on hard disk

2 Output: a list of Top-N intersections

3 while (the term in the query log)

4 Calculate the support of the term

5 end while

6 Sort terms in descending order according to their support

7 while (the query in the query log)

8 Reorder terms in descend according their support

9 end while

10Build a complete frequent prefix tree (FP-Tree)

11 using the processed queries

12 while (the term pair in the query log)

13 Calculate the support of the term pair

14 end while

15 Sort term pairs in descending order according to

16 their support

17 Supmin = the support of the Nth term pair

18 while (node on the FP-Tree)

19 if (Supmin>the support of the node)

20 Delete the node from the FP-Tree

21 end if

22 end while

23 Create a list

24 while(node on the FP-Tree)

25 Build the frequent conditional pattern base (FCPB)

Web

Servers

Intersection

Cache

Posting List

Cache

Result

Cache

Inverted Index

Index

Servers

query(t1,t2,...tn) results(title,url,snippet)

miss

miss

Documents

List Intersection

hit

I(t1,t2,t3)

hit

PL(t4)

t4,...tn

t5,...tn

PL(t5)...PL(tn)

d1,d2...← I(t1,t2,t3)∩PL(t4)∩...∩PL(tn)

d1,d2...dk← ranking(k,d1,d2...)

Fetch document,Snippet generation
form results:r1,r2...rk

...

form final results:r1',r2'...rk’

Intersection

Cache

Posting List

Cache

Inverted Index

miss

miss

Documents

List Intersection

hit

I(t2,t3)

hit

PL(t1)

t1,t4,...tn

t4,...tn

PL(t4)...PL(tn)

Fetch document,Snippet generation

d1,d2...← I(t2,t3)∩PL(t1)∩PL(t4)∩...∩PL(tn)

d1,d2...dk← ranking(k,d1,d2...)

form results:r1,r2...rk

miss miss

Fig. 2. Caching system architecture in search engine

26 of the node

27 if(2<=the size of intersection<=maxLength)

28 if(the support of the intersection >= Supmin)

29 Add it and its support to the list

30 end if

31 end if

32 end while

33 Sort all the intersections in the list according to their

34 support

35 while(the intersection in the list)

36 if(N<=the intersection’s index)

37 Remove the intersection

38 end if

39 end while

40 return L

As shown in Algorithm 1, it mainly takes advantage of the
third characteristic of the query log. The space and time
overhead is relatively low when using FP-Growth algorithm to
mine out the Top-N frequent itemsets. The algorithm’s time
complexity is F=O(M2*logM +M*T). Since the time overhead
mainly depends on term pairs’ sorting and searching the
condition pattern base, where M is the number of different
query term and T is the number of query. In TLMCA, we filter
out queries whose length is too long because these queries are
seldom, they will seriously affect the performance of the
algorithm but have little improvement on the intersection data
to be mined out.

In TLMCA, we adopt a periodical global replacement
strategy for intersection cache to maintain intersection cache
data’s time-effectiveness. However, the data structure of FP-

Tree strongly depends on the support of each item and the
minimum support. It leads to the release and rebuilding of FP-
Tree in memory and re-mine out frequent patterns again.
Therefore, we introduce the Trie-Tree data structure to provide
efficient intersection cache data replacement strategy based on
incremental frequent itemsets mining (ICRS_IFIMI).

VI. PERFORMANCE EVALUATION

TABLE 1 summarizes the hardware and software
environment settings. Our simulative search engine is based on
Lucene3.0.0. For simplicity, we use one single search node
instead of distributed search cluster. In our experiments, we use
the last one hundred thousand queries as test data and the
previous queries as training data. Our experiments test with
AND query semantics and other logical operators will be added
in the future. We test with longer data set in the experiments,
and the result is similar. Our evaluation compares the retrieval
performance of result cache and posting list cache, and
examines the efficiency of intersection cache data strategies.

A. Retrieval Performance with Different Architecture Levels

The retrieval performance comparison and analysis are
among one-level cache (1LC), two-level cache (2LC) and
three-level cache (3LC). At the same time, we also compare
the response time of existing intersection caching policy, and
explore the characteristics of intersection cache data itself. The
memory cache size ranges from 0 to 400MB in all experiments.

1) One-level Cache: Fig. 3(a) shows the average response

time of the one-level cache. “RC” and “PLC” are the dynamic

result cache and the posting list cache, “IC_static” is the static

intersection cache and “IC_dynamic” is the dynamic intersection

(a) The performance of 1LC (b) The performance of 2LC (c) The performance of 3LC

Fig. 3. Retrieval performance with different architecture levels

(a) The performance of different strategies (b) The performance of different makLengths (c) Selection efficiency of intersection cache

Fig. 4. Performance comparison over different strageties

TABLE 1. HARDWARE AND SOFTWARE ENVIRONMENT SETTINGS

Test-plat form Environment

IR Tool Lucene 3.0.0

Data set Enwiki-20090805-pages-articles.xml

Query log AOL-user-ct-collection

CPU/RAM Intel Core2DuoP8600(2.40GHz\1066MHz\3072KB)/4GB

OS Window 7/ Ubuntu 10.04

HDD HITACHI HTS545025B9A300 250GB

cache. All the dynamic caches apply the simple LRU

replacement policies. As we can see from the figure, the

dynamic IC performs the worst. IC itself can bring retrieval

performance improvement to some extent. However, it is not

as prominent as the RC and PLC.

2) Two-level Cache: Fig. 3(b) shows that the retrieval

performance of two-level cache. “RC+IC_10:0” means that

only result cache occupies the memory, and “PLC+RC_8:2”

means that the proportion of memory space allocation for

posting list cache and result cache is 8:2. We can observe that

all two level cache policies perform better than one-level

cache. From a series of experiments, the retrieval performance

of two-level cache is better when the memory space

proportion of RC and PLC, RC and IC, PLC and IC are 2:8,

8:2 and 8:2, respectively.

3) Three-level Cache: We use a small amount of memory

to store intersection cache besides the result cache and posting

list cache, which forms a three-level cache. The result is

shown in Fig. 3(c). From the figure we can see that all three-

level cache strategies perform better than two-level cache ones.

The average performance improvement is 27%. When the

memory space proportion of RC, PLC and IC is 2:7:1, the

system has the least response time. This is mainly because the

small intersection cache hit the frequently accessed query term

combinations. It not only reduces the disk I/O accesses, but

also reduces the index intersection computation overhead.

B. Performance Comparison over Different Strategies

To investigate the performance of different strategies, we
carry out experiments to compare with the offline Greedy
strategy and the online Landlord strategy proposed in [6]. The
result is shown in Fig. 4(a), where “RC+PLC +PC_Online” is
the three-level cache of projection online Landlord strategy,
“RC+PLC+PC_Offline” is its projection offline Greedy
strategy, and “RC+PLC+IC_Offline” is our strategy. As shown
in the figure, the online method has the worst performance.
The offline Greedy strategy performs much better for small
caches. With the increase of the cache capacity, our strategy
performs roughly the same as the offline Greedy strategy.
However, the projection selection efficiency is very low. We
will discuss it in Section VI(C).

On the other hand, we further investigate the optimum
maximum length (maxLength) of the intersection. The retrieval
performance is the best when the maximum length of
intersection is 3. The result is shown in Fig. 4(b). The optimal
length can be adjusted according to different characteristics of
query in our intersection cache data selection strategy. Hence,
our strategy is more flexible.

C. Selection Efficiency of Intersection Cache

In this experiment, we study the efficiency of different
intersection strategies. Fig. 4(c) shows the efficiency of the
offline projection selection and our intersection selection. In
the process of offline selection of the intersection data, the
offline Greedy strategy needs to consume a tremendous long
time for a large amount of training data though the analysis is
off-line. The analysis time means the time to mine top three
hundred thousand intersections from the training data while the
training window ranges from ten thousand to five hundred
thousand. The offline Greedy strategy uses about 4 days when
the training queries are five hundred thousand. Thus, it is not
acceptable in practice. Our FIMI strategy runs much faster, it
only needs about 65 minutes due to the adoption of FP-Tree
structure. It can improve the time and space overhead in the
analysis process. In addition, our strategy is more flexible and
space-saving to set the maximal length of the intersection
according to the query characteristics.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyze the search engine query log
characteristics and then propose TLMCA, a three-level cache
architecture in which we add a static intersection cache on the
basis of result cache and posting list cache in the memory. The
intersection cache selection strategy is based on the Top-N
FIMI of high efficient FP-Growth and the intersection cache
replacement strategy is based on the incremental frequent
itemset mining of Trie-Tree. The retrieval performance has
been improved significantly. With the novel design, TLMCA
system not only reduces the number of random disk I/O
accesses, but also reduces the CPU computational overhead.
Furthermore, we also explore the property of the intersection
cache itself and its effect on result cache and posting list cache.

Overall, this paper is the first to use FIMI strategy to select
intersection cache data for search engines. There are several
issues need further explorations. First, in this work, we assume
that the index files stored on HDD are static. However, the
dynamic scenario should be considered. Second, along with the
gradual rise of in-memory computing in recent years, the
optimization of the cache and index structures in memory
could be considered to further improve the retrieval
performance.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science
Foundation of China under grants 61173170, 61300222,
61433006 and U1401258, Innovation Fund of Huazhong
University of Science and Technology under grants
2015TS069 and 2015TS071, and Science and Technology
Support Program of Hubei Province under grant 2014BCH270.

REFERENCES

[1] E P. Markatos. “On caching search engine query results”, Computer

Communications, 2nd ed, vol 24, 2001, pp. 137-143.

[2] T. Fagni, R. Perego, and F. Silvestri, “Boosting the performance of web
search engines: Caching and prefetching query results by exploiting
historical usage data”, ACM Transactions on Information Systems, 1st ed,
vol 24, 2006, pp. 51-78.

[3] R. Ozcan, I S. Altingovde, and Ö. Ulusoy, “Cost-aware strategies for
query result caching in web search engines”, ACM Transactions on the
Web, 2nd ed, vol 5, 2011, pp. 1-25.

[4] Q. Gan, T. Suel, “Improved techniques for result caching in web search
engines”, The 18th International Conference on World Wide Web, Madrid,
Spain, 2009, pp. 431-440.

[5] J. Wang, E. Lo, M L. Yiu, et al. “The impact of Solid State Drive on
Search Engine Cache Management”, The 36th International ACM SIGIR
conference on research and development in Information Retrieval, Dublin,
2013, pp. 693-702.

[6] F B. Sazoglu, B B. Cambazoglu, R. Ozcan, et al. “Strategies for setting
time-to-live values in result caches”. The 22nd ACM International
Conference on Information and Knowledge Management, SanFrancisco,
CA, USA, 2013, pp. 1881-1884.

[7] R. Blanco, E. Bortnikov, F. Junqueira, et al. “Caching Search Engine
Results over Incremental Indices”. The 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
Geneva, Switzerland, 2010, pp.82-89.

[8] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted list
caching in search engines”, The 17th International Conference on World
Wide Web, Beijing, China, 2008, pp. 387-396.

[9] R. Baeza-Yates, A. Gionis, and F. Junqueira, “The impact of caching on
search engines”, The 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Amsterdam,
Netherlands, 2007, pp. 183-190.

[10] X. Long, T. Suel, “Three-level caching for efficient query processing in
large web search engines”, The 14th International Conference on World
Wide Web, Chiba, Japan, 2005, pp. 369-395.

[11] R. Ozcan, I S. Altingovde, and B B. Cambazoglu, “A five-level static
cache architecture for web search engines”, Information Processing and
Management, 5th ed, vol 48, 2012, pp. 828-840.

[12] E. Feuerstein and G. Tolosa. “Cost-aware intersection caching and
processing strategies for in-memory inverted indexes”. In Proc. of 11th
Workshop on Large-scale and Distributed Systems for Information
Retrieval. New York, 2014, pp. 413-440.

[13] G. Tolosa, L. Becchetti, E. Feuerstein, et al. “Performance Improvements
for Search Systems Using an Integrated Cache of Lists+Intersections”.
The 21st International Symposium on String Processing and Information
Retrieval, Ouro Preto, Brazil, 2014, pp. 227-235.

[14] J. Wang, E. Lo, M L. Yiu. et al. “Cache Design of SSD-based Search
Engine Architectures: An Experimental Study”. ACM Transactions on
Information System, 4th ed, vol 32, 2014, pp. 1-26.

[15] D. Ceccarelli, C. Lucchese, and S. Orlando, “Caching query-biased
snippets for efficient retrieval”, 14th International Conference on
Extending Database Technology, Uppsala, Sweden, 2011, pp. 93-104.

[16] A. Turpin, Y. Tsegay, and D. Hawking, “Fast generation of result
snippets in web search”, Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Amsterdam, The Netherlands, 2007, pp. 127-134.

[17] R. AgrawaI, R. Srikant, “Fast algorithms for mining association for
mining association rules”, The 20th international Conference on very
large database, Santiage de Chile, Chile, 1994, pp. 487 - 499.

[18] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate
Generation”, The 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, 2000, pp. 1 - 12.

[19] Y. Cheung, A W. Fu, “Mining Frequent Itemsets without Support
Threshold: With and without Item Constraints”, IEEE Transactions on
Knowledge and Data Engineering, 6th ed, vol 16, 2004, pp. 1052-1069.

[20] J. Lee, C W. Clifton. “Top-k frequent itemsets via differentially private
FP-trees”. The 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, New York, NY, USA, 2014, pp.
931-940.

