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a b s t r a c t

Numerous Image Quality Measures (IQMs) have been proposed in the literature with
different degrees of success. While some IQMs are more efficient for particular artifacts,
they are inefficient for others. The researchers in this field agree that there is no
universal IQM which can efficiently estimate image quality across all degradations. In
this paper, we overcome this limitation by proposing a new approach based on a
degradation classification scheme allowing the selection of the ‘‘most appropriate’’ IQM
for each type of degradation. To achieve this, each degradation type is considered here
as a particular class and the problem is then formulated as a pattern recognition task.
The classification of different degradations is performed using simple Linear Discrimi-
nant Analysis (LDA). The proposed system is developed to cover a very large set of
possible degradations commonly found in practical applications. The proposed method
is evaluated in terms of recognition accuracy of degradation type and overall image
quality assessment with excellent results compared to traditional approaches. An
improvement of around 15% (in terms of correlation with subjective measures) is
achieved across different databases.

& 2012 Published by Elsevier B.V.

1. Introduction

During the last decade, we have witnessed an increasing
demand for quality multimedia material. This is essentially
due to the development of advanced image/video produc-
tion technologies. Indeed, the progress achieved in these
domains is unprecedented. Despite such a progress, quanti-
fying and reducing image degradation continues to be a
challenging problem. A typical example is that of image
degradation due to blocking effects in JPEG compression and
ringing effect in JPEG2000 compression [1]. These artifacts
are among the most limiting factors in compression.

In recent years, substantial research efforts in image
quality have led to the development of a number of Image
Quality Measures (IQMs) [2,3]. These quality assessment

methods are broadly classified into three categories, Full
Reference (FR), Reduced-Reference (RR) and No-Reference
(NR) metrics. In the first class, both the original image and its
distorted version are available. In the case of RR methods,
the image quality is estimated using some features extracted
from the original and the degraded image. When neither the
reference image nor any of its features is known, NR or blind
methods are used. It is worth noting that most of the
currently known methods, especially the universal ones,
use the whole original image (FR methods). Furthermore,
most NR techniques are not universal and respond effec-
tively only to one or two types of distortions (e.g. block
effects in JPEG and/or image blurring). To test the proposed
algorithm across the largest range of possible distortions, we
opted to focus on FR methods.

The most common FR measure is the traditional Peak
Signal to Noise Ratio (PSNR). Unfortunately, PSNR pro-
vides poor results in terms of correlation with subjective
measures such as the Mean Opinion Score (MOS) [4].
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Some methods, such as the PSNR-HVS, have been pro-
posed to improve the PSNR by taking into account some
Human Visual System (HVS) characteristics [5]. Such
measures exploit the limitations of the HVS in discerning
fine details and textures in an image. This limitation is
expressed as a filtering process modeled though a band-
pass filter called Contrast Sensitivity Function (CSF) [6]. A
more recent version of the PSNR-HVS has been developed
by taking into account masking effects in the DCT domain
[7,8].

Many others HVS-inspired image quality measures
have been proposed in the literature (see Refs. [9,10] for
an overview of IQMs). The Visible Differences Predictor,
proposed by Daly is one of the earliest and most popular
IQMs based on HVS characteristics discussed in the
literature [11]. However, the computational complexity
of this IQM makes it less attractive than other simpler and
more efficient measures. Other image quality measures,
such as the SSIM [12], use local structural characteristics,
or mutual information concepts [13] to quantify image
quality.

Despite all these available IQMs, there is no universal
or unique IQM that can predict or measure image quality
across all degradations. Indeed, the efficiency of a given
IQM may be very high for a given type of degradation but
inefficient for others. This is essentially due to the fact
that generally Full Reference (FR) IQMs cannot take into
account the particular type of visual distortion contained
in a given image. Moreover, it is worth noting that images,
in real setups, may be subjected, simultaneously, to a
multitude of degradations.

In this work, we adopt a new strategy for quantifying
image quality. We start from the point of view that image
quality is rather a multidimensional problem as already
noted in [14,15]. To overcome the limitations of different
IQMs, we propose to identity first the degradation type
contained in an image then measure the quality of that
image, using the most appropriate IQM for that specific
degradation. Here, we do not focus on the particular
artifacts such as blocking effects or ringing effects, but
use a statistical framework that covers a large set of
common degradations.

The paper is organized as follows: In Section 2, we first
discuss the importance of the a priori knowledge of the
degradation type, we then describe the image database
used for our experimental setup, and the features used
for distortion classification. The experimental results
are discussed in Section 3 followed by some concluding
remarks in Section 4.

2. The proposed method

2.1. The distortion-IQM correlation

The efficiency of existing IQMs depends highly on the
type of degradation contained in a given image. For a given
degradation, some IQMs are more adapted to subjective
judgments than others. The idea developed here is to exploit
this limitation to better estimate the quality of a given
image. We propose to detect the type of degradation
contained in a given degraded image before quantifying
the quality of such an image using an appropriate distortion-
based IQM (D-IQM).

Before describing the proposed method, we will dis-
cuss the importance of knowing the type of distortion
contained in an image through the following simple
experiment. In this example, we analyze the performance
of some FR-IQMs across three common degradations,
namely: JPEG, JPEG2000 lossy compression artifacts, and
common blur distortion.

In JPEG compression, blocking effects appear quite
significantly at low bit rates. Such annoying artifacts
appear generally at block edges as artificial horizontal
and vertical contours. This is mainly due to the fact that
the blocks are transformed and quantized independently.
The effect of such blocking effects depends highly upon
the spatial intensity distribution in the image and its
frequency content. Moreover, the Human Visual System
(HVS) enhances the perceived contrast between adjacent
regions. Furthermore, these artificial block transitions are
accentuated by the Mach phenomena [16]. An example of
an image and its JPEG compressed version exhibiting
compression distortion is presented in Fig. 1.

Another type of distortion commonly encountered in
real applications is blur. This distortion mostly affects
salient features such as contours which correspond to high
frequencies components in the image. The lossy compres-
sion operation acts as a low pass filter on these components
leading to contrast attenuation around region transitions
such as object contours (see Fig. 2).

The more recent JPEG 2000 compression standard has
been shown to offer better performance than JPEG in
many aspects. However, still, other annoying artifacts
such as ringing effects, which commonly appear around
edges, limit the performance of this compression method
at very low bit rates (see Fig. 3). These artefacts result
from the decimation and the quantization processes [1].
This phenomenon has traditionally been known as the
Gibbs phenomenon.

Fig. 1. JPEG compression distortions: (a) original image, (b) JPEG blocking effect, (c) zoomed version of image (b).
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Many of the experiments we carried revealed that for a
given image subjected to various degradations with the
same level of image quality (as quantified by objective
measures), the perceptual appearance of the image can
clearly differ from one distortion to another. This obser-
vation confirms that the use of a single IQM for quantify-
ing different distortions cannot yield consistent results.
Therefore, it would be inappropriate to use the same IQM
for all types of distortions. For this reason, we started our
experiments by considering different classes of distortion
separately. For each type of distortion, we ranked the
different IQMs using the Pearson’s Correlation Coefficient
(PCC) between the IQM indices and the Mean Opinion
Score (MOS). For our experiments, we selected the most
commonly used IQMs, namely: VIF, VIFP [13], PSNR-HVS
(PSNRH) [5], PSNRHVS-M (PSNRM) [8], SSIM [12], UQI
[17], IFC [18], WSNR [16], VSNR [20], XYZ [21] and PSNR
(these measures will be briefly discussed in Section 2.3).

For the sake of completeness, the expression of the PCC
is given below:

CORRij ¼
PK

k ¼ 1ðIQMðkÞij$IQMij Þ:ðMOSðkÞi$MOSi ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k ¼ 1 ðIQMðkÞij$IQMij Þ

2
q

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k ¼ 1 ðMOSðkÞi$MOSi Þ
2

q

ð1Þ

where i and j stand for the ith degradation and the jth
IQM, respectively. The index k stands for the kth image,
and K is the total number of images considered in the
experiment.

In our experiments, we used the Tampere Image Data-
base [22]. We first started by ranking the different FR-IQMs
for the 3 considered distortions. Table 1 summarizes the

obtained results. It is important to note that the ranking
changes across the three types of degradations. Indeed, the
best IQM for blur is the VIFP, while PSNRH appears as the
most appropriate IQM for JPEG and JPEG 2000 compression
artifacts.

The estimated PCCs obtained for VIFP and PSNRH under
each of the degradations above, are given in Table 2.

The results above prompted us to investigate the
effects of different distortions on quantifying image qual-
ity in more details. More specifically, we postulate here
that one should first identify the distortion type before
selecting the most appropriate IQM for quantifying image
quality [23]. A relatively similar scenario for no reference

Fig. 2. Blur distortion: (a) original image and (b) its blurred version.

Fig. 3. JPEG2000 compression distortions: (a) original image, (b) ringing and blur effects, (c) zoomed version of (b).

Table 1
IQM ranking for blur, JPEG and JPEG2000 distortions.

IQM
ranking

Degradation type

Blur (Class 8) JPEG (Class 10) JPEG2000 (Class 11)

1 VIFP PSNRH PSNRH
2 VIF PSNRM PSNRM
3 WSNR VIF NQM
4 VSNR WSNR WSNR
5 PSNRM NQM VIFP
6 PSNRH VIFP VSNR
7 SSIM VSNR UQI
8 UQI SSIM VIF
9 NQM PSNR PSNR

10 IFC XYZ SSIM
11 PSNR UQI IFC
12 XYZ IFC XYZ
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IQM estimation was independently proposed by Moorthy
and Bovik in [24].

In summary, the flowchart of the proposed algorithm is
presented in Fig. 4. First, some characterizing features are
extracted from the original image and its degraded version.
Then, after projecting these features onto a new space, the
type of degradation is determined by using a simple mini-
mum distance criterion. The new space is obtained using
Linear Discriminant Analysis (LDA) projection.

Once the specific type of distortion is identified, the most
appropriate IQM will then be used to quantify the quality of
the distorted image. This will be discussed in more details.

Next, we briefly present the image database used in
our experiments. Then, we introduce the feature extrac-
tion process and distortion classification followed by the
final IQM estimation stage.

2.2. The Tampere Image Database (TID 2008)

In order to evaluate the performance of the proposed
approach, we need a comprehensive database that covers
the widest range of possible distortions. A number of
image databases are available in the literature for testing
IQM algorithms including the LIVE database [25], the IVC
database [26], the Cornel database [27], and so on. In this
work, we opted to use the TID 2008 image database [22].
This database consists of 17 types of degradations with
100 images per distortion from 25 reference images (i.e. 4
distortion levels per image and per degradation). Fig. 5
shows some reference images taken from the TID 2008
database. Table 3 lists the degradation types available in
the database. We note that the database covers a wide
range of possible distortions: compression artifacts such
as JPEG and JPEG2000, blur, noise, and others. The MOS
values for all the observed images are also available for
this database.

Table 2
PCC for blur, JPEG and JPEG2000 distortions.

Degradation type Pearson Correlation Coefficient

VIFP PSNRHVS

Blur 0.94 0.91
JPEG 0.91 0.95
Ringing 0.94 0.95

Classifier

Image Quality

Assessment

using the most

appropriate

IQM

Feature

Extraction

IQMs

Original
Image

Degraded
Image

Data
Projection

(new space)

Data
Learning
(offline)

Distance
Computation

Degradation
Type

Fig. 4. Flowchart of the proposed system.

Fig. 5. Sample images from the TID2008 database.
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2.3. Features extraction for distortion identification

In order to identify the type of distortion affecting
a certain image, some characterizing features need to be
extracted from both the original image and its degraded
version. Numerous features can be used for this purpose
such as contrast, homogeneity and textured descriptors.
Here, we propose to use directly the different IQMs as
features. We consider that for a given degradation type,
each FR-IQM exhibits a specific response. In other words,
the FR-IQMs are used to discriminate between different
degradations.

In the following, and for the sake of completeness, we
describe the IQMs cited previously and considered here as
features to be associated with the appropriate distortions.
Note that in this study, we assume that we have access to
both the original and the degraded images (i.e. Full
Reference Measures are thus considered). We selected a
range of IQMs commonly used in this research area. While
some of the selected IQMs are HVS-based (such as the
PSNRHVS), others are based on pixel-wise differences
(MSE-based metrics), or local structural information such
as the SSIM.

2.3.1. Peak Signal to Noise Rate (PSNR)
The Peak Signal to Noise Rate (PSNR) is the most

commonly used measure for quantifying signal distortion
[4]. In the absence of a well-accepted IQM, it is still in use
in many applications and especially for real-time perfor-
mance evaluation of some video and image processing
systems.

2.3.2. Universal Image Quality Index
The Universal image Quality Index (UQI) [17] is based

on a local analysis of the image. This measure represents
structural information obtained by extracting some local
statistical parameters from non-overlapping blocks.

This IQM has been shown to adapt well for measuring
artifacts due to blur. Indeed, blur tends to decrease the
gray-levels scatter around the mean of pixels of a given
block in an image. However, this measure is unstable over

homogeneous regions where the standard deviation is
close to zero. Furthermore, it has recently been shown
that this measure is directly related to the conventional,
and often unreliable, mean squared error [28].

2.3.3. Structural SIMilarity and its multi-scale version
Another improved version of the UQI, called the

Structural SIMilarity image quality index (SSIM), is a
measure based on local structural information [39]. The
SSIM measure is a function of three terms: luminance (l),
contrast (c), and structure (s) factors. In [12], a multi-scale
version of the SSIM was proposed. The same features (l, c
and s) are extracted. However, l is derived from the last
level of decomposition, whereas, c and s are computed at
each level of decomposition. The overall image quality
index is finally obtained by multiplying l, the sum of c,
and the sum of s. Similarly to the UQI, blur degradation is
well quantified by this measure. Note that both the SSIM
and the MSSIM can be seen as improved versions of the
UQI [17].

2.3.4. PSNRHVS and PSNRHVS-M
In [5], a perceptually motivated PSNR called PSNR-HVS

index quality was proposed. The main rationale was to
improve the performance of the PNSR by integrating some
characteristics of the HVS. To achieve this, the authors
incorporated the CSF model in the DCT domain.

A more recent version, named PSNRHVS-M, has also
been proposed in [8] where a masking model was incor-
porated. It is worth noting that blocking effect can be well
estimated using these measures for DCT-based com-
pressed images. This is mainly due to the fact that these
measures themselves are based on a block analysis and
the DCT transform.

2.3.5. Weighted Signal to Noise Ratio (WSNR)
Contrary to the previous measures, the WSNR index is

based on a frequency domain analysis [19]. The measure is
basically a perceptually weighted signal-to-noise ratio. It is
expressed as the ratio of the CSF-weighted Fourier spectrum
of the original image over that of the distorted image.

2.3.6. Information Fidelity Criterion (IFC)
In [18], an IQM, based on some concepts from informa-

tion theory, was proposed. This measure, called Information
Fidelity Criterion (IFC) is computed using a source (C) and a
distortion (D) model for some selected subbands in the
wavelet domain. The wavelet coefficients of the different
subbands are modeled using a Gaussian Mixture model.

2.3.7. Visual Information Fidelity (VIF)
An extension of the IFC measure, called Visual Infor-

mation Fidelity (VIF), was proposed in [13]. The main
difference is the incorporation of some characteristics of
the HVS. Another version of VIF in spatial domain, called
VIFP, was also proposed.

Table 3
Types of degradation in the TID 2008 image database.

Degradation Type

1 Additive Gaussian noise
2 Additive noise in color components
3 Spatially correlated noise
4 Masked noise
5 High frequency noise
6 Impulse noise
7 Quantization noise
8 Gaussian blur
9 Image denoising

10 JPEG compression
11 JPEG2000 compression
12 JPEG transmission errors
13 JPEG2000 transmission errors
14 Non eccentricity pattern noise
15 Local block-wise distortions of different intensity
16 Mean shift (intensity shift)
17 Contrast change
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2.4. Distortion classification using Linear Discriminant
Analysis (LDA)

To identify the type of distortion affecting a given image,
we propose here to use a simple classifier based on Linear
Discriminant Analysis (LDA). Under this framework, we
consider the different IQMs as features extracted from the
test image [29]. Each degradation is considered as a class
among a set of M classes (here M¼17). The IQMs estimated
from a given image are concatenated as feature vectors of
dimension n (here n¼12).

Instead of dealing with all the extracted IQMs indivi-
dually, and since many IQMs may exhibit large correla-
tions as noted in [24], we propose to project these
‘‘feature’’ vectors onto an orthogonal space. The concept
of data projection is not new and has been used in
mathematics quite frequently. Linear subspace projection,
in particular, has been used in numerous signal proces-
sing applications. Three popular approaches generally
used under this class are: Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA) and Indepen-
dent Component Analysis. The PCA’s basic concept is to
find a set of the most representative projections such that
the projected samples retain most information about the
original samples and account for the most variance in the
data. LDA, on the other hand, uses class information and
finds as set of projection vectors that maximize the
between-class scatter while minimizing the within-class
scatter. Finally, ICA captures higher order statistics and
projects data onto the basis vectors that are as statistically
independent as possible.

While there were numerous attempts to compare the
three approaches (ICA, PC, LDA), there has never been a
consent of which one of the three performs best. One of the
earliest attempts was discussed by Martinez and Kak [31] in
which they say that even though LDA is seen a more
appropriate approach for classification, PCA may outperform
LDA when the number samples/class is small or when
training data non-uniformly sample the underlying distri-
bution. Moghaddam [33], on the other hand, showed that
there was no significant difference between PCA and LDA.
Eleyan and Demirel [34] carried an extensive analysis in
which they analyze PCA and LDA both as classifiers and as
preprocessing stages for a Neural Network (NN) classifier.
They showed that LDA and NN-LDA consistently outperform
PCA and NN-PCA for a medium to large number of images
per class. Given that, in our application, we have a reason-
able number of images for each class (distortion type), we
opted to use the LDA approach.

As introduced above, Linear Discriminant Analysis (LDA)
is a popular method for dimensionality reduction and
classification that projects high-dimensional data onto a
low dimensional space where the data achieves maximum
class separability. The projection matrix or transformation is
obtained by minimizing the within-class variability and
maximizing the between-class distance simultaneously,
hence achieving maximum class discrimination. It has been
used successfully in many applications including face recog-
nition, microarray gene expression data analysis [36–38].
The optimal transformation is readily computed by solving a
generalized eigenvalue problem.

The original LDA formulation, known as the Fisher
Linear Discriminant Analysis dealt with binary-class clas-
sifications. The key idea was to find a projection direction
that separates the class means efficiently (when projected
onto that direction) while achieving a small variance
around these means. Discriminant Analysis is generally
used to find a subspace with M"1 dimensions for multi-
class problems, where M is the number of classes in the
training dataset.

Contrary to Principal Component Analysis (PCA) which
considers each observation vector as a class on its own,
LDA achieves dimensionality reduction while preserving
as much of the class discriminatory information as possi-
ble [30,31] and takes into account the fact that several
observations may come from the same class. Linear
Discriminant Analysis searches for those vectors in the
underlying space that best discriminate between classes
(rather than those that best describe the data as in PCA).

Mathematically speaking, for all the samples of all
classes we define two measures: (i) one called within-class
scatter matrix, as given by

Sw ¼
XM

J ¼ 1

XNi

i ¼ 1

ðxj
i"ljÞðx

j
i"ljÞ

T ð11Þ

where xj
i (dimension n%1) is the ith sample vector of

class j, ljis the mean of class j, M is the number of classes,
and Ni is the number of samples in class j. The second
measure (ii) is called the between-class scatter matrix
defined as

Sb ¼
XM

j ¼ 1

ðlj"lÞðlj"lÞT ð12Þ

where l is mean vector of all classes.
The goal is to find a linear transformation expressed

through the matrix W, that maximizes the between-class
measure while minimizing the within-class measure. One
way to do this is to maximize the ratio det(Sb)/det(Sw).
The advantage of using this ratio is that it has been proven
that if Sw is a non-singular matrix then this ratio is
maximized when the column vectors of the projection
matrix, W, are the eigenvectors of Sw

"1
.Sb. It should be

noted that: (i) there are at most M"1 nonzero generalized
eigenvectors, and so an upper bound on reduced dimen-
sion is M"1, and (ii) we require at least n(size of original
feature vectors)þM samples to guarantee that Sw does not
become singular.

Note however that the dimension in the projection
space does not have to be M"1 as the number of
important eigenvalues (in the energy sense) may be much
smaller than M"1.

3. Experimental results

To evaluate the performance of the proposed method
for degradation classification and quality evaluation, sev-
eral experiments were carried covering over 400 natural
images (different from those used during the learning
stage). The experimental procedure is quite simple and
requires the original and distorted images. Fig. 6 shows
the Global Image Quality Assessment System for a JPEG
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compressed image. We list below the main steps of the
algorithm:

1. All features vectors (of dimension 12!1) are extracted
from the different images in the training set.

2. The features vectors from the training stage are used to
find the LDA transformation.

3. Using the transformation from (2), the feature vectors
in step 1 are projected into the new subspace. These
vectors will be called Reduced Feature Vectors from
Training (RFVTR vectors).

4. For a given pair of images (original and its degraded
version), the 12!1 feature vector is obtained. This
vector is then projected onto the new space to get the
Reduced Feature Vector from TeSting (RFVTS vector).

5. Using the Euclidean or Mahalanobis distance, find the
RFVTR vector that is close to the RFVTS vector.

6. The class to which belongs the selected RFVTR vector
is declared as the unknown degradation type corre-
sponding to the test image.

For the sake of simplicity, the Euclidian distance was
used in our implementation. The results using the Eucli-
dian and the Mahanalobis distances were very compar-
able. Note that some of the references comparing LDA,
PCA, and ICA did discuss the issue of most appropriate
metrics for classification and showed that L1, L2, and
Cosine distances all provide very comparable results [31].

We first evaluated the performance of our method in
terms of accuracy in identifying the type of degradation
contained in different test images. Fig. 7 displays the
classification accuracy for each type of degradation. Note
that for all types of distortions, a classification accuracy of
more than 90%, is achieved with an average classification
accuracy of 98.11%.

To better visualize our results, the confusion matrix for
different classes was computed and is shown in Fig. 8. Note
that the lowest performance was obtained for classes 9, 12
and 13 corresponding to 92% classification accuracy.

We noticed from the experimental results that misclassi-
fication occurred only for some types of degradations with
similar visual appearance or when the image contains a
mixture of distortions such as blur and ringing (this may
occur in JPEG2000 compression). An example of such confu-
sion is illustrated in Fig. 9, denoising (degradation number 9)
is identified as JPEG and JPEG2000 compression distortions.

To further analyze the performance of the proposed
system, we used some images from the IVC database (see
Fig. 10). With this database, we achieved an overall
classification accuracy of 81.05% for JPEG2000 and JPEG
distortions. Furthermore, we also tested our algorithm
using selected images from the LIVE image database. The
percentages in classification accuracy obtained for these
types of degradations were 82% and 76%, respectively.

Finally, we tested our system with distortions of
unknown nature. For this purpose, some LAR (Locally
Adaptive Resolution) [32] compressed images were used
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Fig. 9. Classification errors: confusion between degradations 9 and 11 (left), and degradations 9 and 10 (right).
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Fig. 10. A sample of reference images taken from the IVC image database.

Fig. 11. LAR compressed images.

Fig. 12. Classification results for LAR compressed images.
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(see Fig. 11). The distortions generated using LAR are
generally very similar to common conventional blurring
effect and blocking artifacts.

With the 40 distorted images used in the test, most
were classified as JPEG2000 compressed images (class 11),
see Fig. 12.

Table 4
Criteria commonly used to compare IQMs.

Criterion Computation Description

Logistic
function

MOSp¼
A

ð1þexpðGnIndex Quality$DmÞÞ
þB Where A, G, Dm and B are adjusted during the

fitting process

RMSE
RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i ¼ 1

Qerror½i'

vuut
With Qerror[i]¼MOS[i]$MOSp[i] and N is the
number of images

Outlier ratio OR¼
ðnumber of outliersÞ

N
With

number of outliers¼ Qerror½i'
"" ""42nserrorMOS½i'

Fig. 13. MOS vs. predicted MOS for Gaussian blur: (a) SSIM index, (b) VIFP index (Best IQM for this degradation).

Fig. 14. MOS vs. predicted MOS for JPEG compression: (a) SSIM index, (b) PSNR-HVS index (Best IQM for this degradation).
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The proposed method has been successfully evaluated
on a large number of images taken from a range of
applications. As explained earlier, once the degradation
type is identified, the quality of a given image can be
better measured using the most appropriate IQM (Section 2).
Table 7 summarizes the results obtained for 17 types of
degradations. The best IQM for each of the considered
degradations (using only the selected IQMs) and its
corresponding PCC are given. Here, we limited the study
to a selected set of IQMs but other objective image quality
measures can be considered. Note that, the consistency of
these IQMs with subjective evaluation can also be ana-
lyzed using some objective functions.

Indeed, in [35], numerous criteria have been used
including curve fitting using the logistic function and the
RMSE between the MOS and the predicted MOS (MOSp), to
mention few. Some of these measures are listed in Table 4.
Figs. 13 and 14 show that the distribution of the SSIM
measure exhibits a more scattered behavior than the best
metrics (VIFP for Gaussian blur, and PSNR-HVS for JPEG
compression degradations). These results are further con-
firmed in Tables 5 and 6. Across all correlation coefficients,

the best selected IQM for the given degradation type
consistently outperforms the SSIM measure.

In this study, the best metric for each degradation type is
selected according to the PCC, computed using the logistic
function. This criterion is generally used to evaluate the
performance of IQMs. Table 7 provides a comprehensive
summary showing that the proposed degradation-based
IQM consistently outperforms one of the most commonly
used IQM, namely the SSIM. For example, for class 11
(JPEG2000 compression), while the SSIM achieves only
0.84 in correlation (with the MOS), using PSNRHSV, we
reach a PCC value of 0.96. The results show that using the
‘‘optimal’’ IQM for each type of degradation leads to an
‘‘optimal’’ quality assessment measure. The average correla-
tion gain is around 14% for the considered distortions. To
consider the variations in types of distortions, we also
carried a number of experiments by varying the number
of considered distortions between 8 and 17. The overall
improvement in correlation was consistently above 10%.

To further analyze the performance of the proposed
approach, we also tested it on a set of selected images
from the LIVE image database. Table 8 summarizes our
results. An improvement in correlation was achieved
across 5 typical degradation types. The best result was
obtained for Gaussian blur.

All of the results across different databases and differ-
ent sets of distortions showed a consistent improvement
in terms of PCC when the proposed algorithm is used.
We display in Fig. 15 our overall hybrid system for

Table 5
Correlation coefficients obtained for Gaussian blur degration.

Metric Pearson
correlation

Spearman
correlation

Kendall
correlation

SSIM 0.90 0.94 0.78
VIFP 0.94 0.94 0.79

Table 6
Correlation coefficients obtained for JPEG compression degration.

Metric Pearson
correlation

Spearman
correlation

Kendall
correlation

SSIM 0.90 0.90 0.71
PSNR-HVS 0.97 0.96 0.82

Table 7
TID 2008 image database: best IQM for each considered degradation using Pearson Correlation Coefficient (PCC).

Degradation type PCC for SSIM PCC for Best IQM Gain (%)

1: Additive Gaussian noise 0.78 PSNRHVS (0.94) 21
2: Additive noise in color components 0.80 PSNR (0.92) 15
3: Spatially correlated noise 0.80 PSNR (0.95) 19
4: Masked noise 0.81 VIF (0.89) 10
5: High frequency noise 0.86 PSNRHVS (0.97) 13
6: Impulse noise 0.73 PSNR (0.90) 24
7: Quantization noise 0.78 PSNR (0.89) 15
8: Gaussian blur 0.90 VIFP (0.94) 5
9: Image denoising 0.89 PSNRHVS-M (0.96) 8
10: JPEG compression 0.90 PSNRHVS (0.97) 8
11: JPEG2000 compression 0.84 PSNRHVS (0.96) 15
12: JPEG transmission errors 0.81 VIF (0.87) 8
13: JPEG2000 transmission errors 0.81 PSNRHVS (0.92) 14
14: Non eccentricity pattern noise 0.65 IFC (0.84) 30
15: Local blockwise distortions of different intensity 0.89 SSIM (0.89) 0
16: Mean shift (intensity shift) 0.72 WSNR (0.73) 2
17: Contrast change 0.67 VIF (0.88) 32

Table 8
LIVE image database: best IQM for each considered degradation using
Pearson Correlation Coefficient (PCC).

Degradation type PCC for SSIM Gain (%)

1: JPEG2000 compression 0.91 2
2: JPEG compression 0.84 10
3: White noise 0.95 3
4: Gaussian blur 0.84 14
5: Fast fading 0.90 0
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degradation classification and image quality evaluation.
For a given degraded image, we get at the output: the
degradation type, the best corresponding IQM, and its
value. To the best knowledge of the authors, the proposed
system presented here is the only one able to provide
such a comprehensive description of image distortion
identification and estimation.

4. Conclusions

We propose in this paper a new framework for estimating
and predicting image quality. In particular, we present an
LDA-based technique for classifying degradations before
estimating image quality. The classification stage uses the
different IQMs estimated from the given image (original and
its degraded version) as features. Our experimental results
show that the type of degradation can be estimated with
more than 90% accuracy. Such knowledge is crucial in
determining the types of IQMs that need to be used for
evaluating quality. The proposed system not only evaluates
quality but also identifies the type of distortion the test
image was subjected to.

In future works, we will complete the system by taking
into account additionally IQMs and by introducing a feature
selection method for choosing the more appropriate fea-
tures (IQMs) for the classification step. Other degradation
types will be also considered, and particularly color degra-
dations, such as color bleeding and false color artifacts.
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and King Fahd University of Petroleum & Minerals, Saudi
Arabia, for supporting the work presented in this paper.

References

[1] D. Taubman, M. Marcellin, JPEG2000: Image Compression Funda-
mentals, Standards and Practice, Kluwer Academic Publishers,
Boston, 2001.

[2] L.J. Karam, T. Ebrahimi, S. Hemami, T. Pappas, R. Safranek, Z. Wang,
A.B. Watson, Introduction to the special issue on visual media
quality assessment, IEEE Journal on Special Topics in Signal Proces-
sing, Special Issue on Visual Media Quality Assessment 3 (2) (2009)
189–192.

[3] W. Lin, C.-C. Jay Kuo, Perceptual visual quality metrics: a survey,
Journal of Visual Communication and Image Representation 22 (4)
(2011) 297–312.

[4] Z. Wang, A.C. Bovik, Mean squared error: love it or leave it?—A new
look at signal fidelity measures, IEEE Signal Processing Magazine 26
(2009) 98–117.

[5] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, M.
Carli, New full-reference quality metrics based on HVS, in: Proceed-
ings of the Second International Workshop on Video Processing
and Quality Metrics, USA, 2006.

[6] A.B. Watson, H.B. Barlow, J.G. Robson, What does the eye see best?
Nature 302 (1983) 419–422.

[7] G. Legge, J. Foley, Contrast masking in human vision, Journal of
Optical Society of America 70 (1980) 1458–4471.

[8] N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, V.
Lukin, On between-coefficient contrast masking of DCT basis
functions, in: Proceedings of the International Workshop on Video
Processing and Quality Metrics, 2007.

[9] A.B. Watson, Digital Images and Human Vision, MIT Press, 1993.

Features
Extraction

DEG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LDA CLASSIFIER

Original Image 

Degraded Image 

Best

Image

Quality

Estimation

PSNRHVS

PSNRHVS

VIFP

PSNRHVS

IFC

SSIM

WSNR

VIF

PSNR

PSNR

VIF

PSNRHVS

PSNR

PSNR

VIFP

PSNRHVS-M

PSNRHVS

Fig. 15. Proposed global IQM system.

A. Chetouani et al. / Signal Processing: Image Communication 27 (2012) 948–960 959



[10] M. Pedersen, J.Y. Hardeberg, Survey of Full-Reference Image Quality
Metrics, Høgskolen i Gjøviks rapportserie ISSN: 1890-19520X,
2009.

[11] S. Daly, The Visible Differences Predictor: An Algorithm for the
Assessment of Image Fidelity, Digital Images and Human Vision,
MIT Press, 1993 (Chapter14, pp. 179–206).

[12] Z. Wang, E.P. Simoncelli, A.C. Bovik, Multi-scale structural similar-
ity for image quality assessment, in: Proceedings of the Asilomar
Conference on Signals, Systems and Computers, vol. 2, 2003,
pp. 1398–1402.

[13] H.R. Sheikh, A.C. Bovik, Image information and visual quality, IEEE
Transactions on Image Processing 15 (2006) 430–444.

[14] J. Ahumada, J. Albert, C.H. Null, Image quality: a multidimensional
problem, digital images and human vision, MIT Press, 1993
(pp. 141–148).

[15] J.B. Martens, Multidimensional modeling of image quality, in
Proceedings of the IEEE 2002, vol. 90, pp. 133–153.

[16] T.N. Cornsweet, Visual Perception, Academic Press, NY, 1970.
[17] Z. Wang, A.C. Bovik, A universal image quality index, IEEE Signal

Processing Letters 9 (2002) 81–84.
[18] H.R. Sheikh, A.C. Bovik, G. de Veciana, An information fidelity

criterion for image quality assessment using natural scene statis-
tics, IEEE Transactions on Image Processing 14 (2005) 2117–2128.

[19] T. Mitsa, K. Varkur, Evaluation of contrast sensitivity functions for
the formulation of quality measures incorporated in halftoning
algorithms, in; Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 1993, pp. 301–304.

[20] D.M. Chandler, S.S. Hemami, VSNR: a wavelet-based visual signal-
to-noise ratio for natural images, IEEE Transactions on Image
Processing 16 (2007) 2284–2298.

[21] B.W. Kolpatzik, C.A. Bouman, Optimized universal color palette
design for error diffusion, Journal Electronic Imaging 4 (1995)
131–143.

[22] N. Ponomarenko, M. Carli, V. Lukin, K. Egiazarian, J. Astola, F.
Battisti, Color image database for evaluation of image quality
metrics, in: Proceedings of the International Workshop on Multi-
media Signal Processing, Australia, 2008, pp. 403–408.

[23] A. Chetouani, A. Beghdadid, M. Deriche, Classification of image
degradation using multiple image quality metrics and linear dis-
criminant analysis, in: Proceedings of the European Signal Proces-
sing Conference, 2010, pp. 319–322.

[24] A.K. Moorthy, A.C. Bovik, A two-step framework for constructing
blind image quality indices, IEEE Signal Processing Letters 17
(2010) 513–516.

[25] H.R. Sheikh, Z. Wang, L. Cormack, A.C. Bovik, Live Image Quality
Assessment Database, /http://live.ece.utexas.eduesearch/qualityS,
2006.

[26] P. Le Callet, F. Autrusseau, Subjective Quality Assessment IRCCyN/
IVC Database, /http://www.irccyn.ec-nantes.fr/ivcdb/S, 2005.

[27] D. Chandler, S. Hemami, Subjective Image database, /http://foulard.
ece.cornell.edu/dmc27/vsnr/vsnr.htmlS, 2007.

[28] R. Dosselman, X.D. Yang, A comprehensive assessment of the
structural similarity index, Signal, Image and Video Processing
5 (1) (2011) 81–91.

[29] G.J. Mclachlan, E. Kuh, R.E. Welsch, Discriminant Analysis and
Statistical Pattern Recognition, Wiley Series in Probability and
Statistics, 2004.

[30] N. Peter, J. Belhumeur, P. Hespanha, D. Kriegman, Eigenfaces vs.
fisherfaces: recognition using class specific linear projection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 19 (7)
(1997) 711–720.

[31] A.M. Martinez, A.C. Kak, PCA versus LDA, IEEE Transactions on
Pattern Analysis and Machine Intelligence 23 (2001) 228–233.

[32] O. Deforges, J. Ronsin, Locally adaptive resolution method for
progressive still image coding, IEEE International Symposium on
Signal Processing and Its Applications 2 (1999) 825–829.

[33] B. Moghaddam, Principal manifolds and probabilistic subspaces for
visual recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 24 (6) (2002) 780–788.

[34] A. Eleyan, H. Demirel, PCA and LDA Based Neural Networks for
Human Face Recognition, Face Recognition, Kresimir Delac and
Mislav Grgic (Eds.), 978-3-902613-03-5, InTech, 2007.

[35] N. Seshadrinathan, R. Soundararajan, A. Bovik, L. Cormack, Study of
subjective and objective quality assessment of video, IEEE Transac-
tions on Image Processing 19 (N6) (2010).

[36] H. Yu, J. Yang, A direct LDA algorithm for high-dimensional data
with application to face recognition, Pattern Recognition 34 (10)
(2001) 2067–2069.

[37] F. Yue, K. Wang, W. Zuo. Informative gene selection and tumor
classification by null space LDA for microarray data, in: Proceedings
of ESCAPE’07, Lecture Notes in Computer Science, vol. 4614, 2007,
pp. 435–446.

[38] K.K. Paliwal, A. Sharma, Improved direct LDA and its application to
DNA microarray gene expression data, Pattern Recognition Letters
31 (2010) 2489–2492.

[39] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assess-
ment: from error visibility to structural similarity, IEEE Transac-
tions on Image Processing 13 (4) (2004) 600–612.

A. Chetouani et al. / Signal Processing: Image Communication 27 (2012) 948–960960


