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Abstract—Data are crucial to support decision making. If data
have low veracity, decisions are not likely to be sound. Internet of
Things (IoT) generates big data with inaccuracy, inconsistency,
incompleteness, deception, and model approximation. Enhancing
data veracity is important to address these challenges. In this
article, we summarize the key characteristics and challenges of
IoT, which influence data processing and decision making. We
review the landscape of measuring and enhancing data veracity
and mining uncertain data streams. Moreover, we propose
five recommendations for future development of veracious big
IoT data analytics that are related to the heterogeneous and
distributed nature of IoT data, autonomous decision-making,
context-aware and domain-optimized methodologies, data clean-
ing and processing techniques for IoT edge devices, and privacy
preserving, personalized, and secure data management.

I. INTRODUCTION

As Internet of Things (IoT) expands into various industry
areas and our everyday life, we are observing the generation of
big IoT data. The big data have become the new oil of digital
economy that need to be harnessed to reveal trends, unseen
patterns, and hidden correlations, which will enable automated
IoT systems to create new knowledge and to perform efficient
and correct decision making.

One of the biggest problems in IoT data analytics and
knowledge creation is that the data generated by IoT devices
is often noisy, incomplete, imprecise, and even misleading.
This leads to challenges in data cleaning, mining, contextual-
ization and knowledge discovery. For example, sensor data
are normally expected to have noise due to inaccuracy in
data measurement, transmission, and possible power failures
of sensor devices, which will jeopardize high quality decision
making. Therefore, it is critical to both make the data as
correct, accurate and truthful as possible, and to have a
credible measure for the correctness that can be used in the
decision making process.

Veracity, the fourth V of big data, is a term used in data
analytics research to cover the topics including data quality,
accuracy, correctness, and truthfulness [1]. Early research [2]
[3] already states the importance of data veracity and the
affect of low quality data on the validity of the results.
Many proposals for addressing big data veracity have been
introduced [4] [5]. However, several factors characterizing
IoT systems, including short latencies, scalability, constrained

resources, and heterogeneity of IoT data models, make the data
veracity in IoT a unique research challenge when compared
to the traditional big data systems such as governmental
services, media systems, and healthcare. Moreover, as IoT
systems directly interact with the physical world and the
decision-making is performed mainly by machines, the data
veracity plays even a bigger role, and is thus crucial for user
engagement and acceptance of IoT services.

In this paper, we discuss the impact of data veracity in
decision making processes, identify challenges of handling
big data from the IoT viewpoint, and survey the state-of-
the-art solutions and techniques for modelling and enhancing
data veracity and mining data streams. Finally, we propose
recommendations for future development for understanding
the level of veracity and improving the veracity of data for
big data analytics in IoT based systems.

The remainder of this article is organized as follows: Section
II introduces definition and principles of IoT data veracity,
discusses opportunities for business improvement based on ve-
racious big data in decision making, and examines challenges
for processing big data from IoT perspective. In Section III, we
discuss, in more depth, techniques for measuring and enhanc-
ing veracious big data and for mining uncertain data streams.
We enumerate recommendations for future development of
veracious big data analytics in Section IV and conclude the
paper in Section V.

II. VERACIOUS BIG IOT DATA AND DECISION MAKING

In this section, we introduce the definition of data veracity,
discuss opportunities for business improvement based on big
veracious data and IoT, and examine the challenges of typical
IoT systems, such as smart city and smart health.

A. Data Veracity

Krotofil et al. define veracity as a property that an assertion
truthfully reflects the aspect it makes a statement about [6].
In the IoT context, data veracity often refers to the problem
associated with data usability and quality. Considering an IoT
device that is producing and delivering data at some discrete
intervals, it may malfunction during some time intervals.
Moreover, the data could be corrupted or lost due to noise
or as a defect in the communication mechanism. To enhance



the usability of IoT applications and services, it is important
to know what information can be calculated instead of the
missing data, and how does the missing information affect the
actions produced by the IoT decision-making algorithms. In
general, it is about how truly the measurement reflects the
measurand. Being able to assess the level of veracity of data
provides the foundation for trustworthy measurements and is
crucial to make sound decisions. Vivek Kale introduces a 6-c
characteristics for data and meta-data, including correct, clear,
consistent, complete, certain, and confirm [7].

As the other most important aspect of data veracity, Data
Quality (DQ) refers to how well data meets the requirements
of data consumers. Based on this definition, data quality
measurement can be subjective or objective; the first one is
based on qualitative evaluations by data administrators and
users and the second is based on quantitative metrics [8].
Regarding to subjective measurement, the level of quality of
data represents the degree to which data meet the expectations
of data consumers, based on their intended usage of the data.
Thus, DQ is directly related to the perceived or established
purposes of the data. Regarding to objective measurement,
Klein et al. [9] defined five dimensions for assessing the
quality of sensor data streams, including accuracy, confidence,
completeness, data volume, and timeliness. Additional DQ
dimensions for IoT cover ease of access, access security,
representativeness, and interpretability of data.

B. Opportunities for business improvement based on vera-
cious big data and IoT

Industrial decision making is based on the information
gathered from the operational environment. For example in
manufacturing industry, different sensors and measurement
devices are widely deployed in industry processes. The ad-
vance of manufacturing technologies is based on information,
but effective decisions do not depend only on reasoning
techniques, but also on the quality and quantity of data [10]. To
support numerous types of decision making of a manufacturing
enterprise, complex systems require real-time data collected
from machines, processes, and business environments. The
veracity of the data plays an important role when ensuring the
correctness of the supporting services. Furthermore, automated
data processing and pre-processing become a necessity when
the allowed time between data collection and decision making
shortens.

Increasing agility is one alternative for manufacturers to
address the challenges related to globalization and rapidly
changing environments. In order to adapt and respond to
changing environments, the industry needs a flexible network
of independent units linked by information technology to share
the knowledge. Data themselves do not have value, if they are
not refined to information or knowledge. During this refine-
ment, the importance of data veracity increases respectively
(Fig. 1). Currently, the industry generally utilizes extensively
only information for quality variability reduction and process
optimization. To achieve higher levels (knowledge or even
wisdom), new solutions for intelligent data pre-processing and

Fig. 1. Importance of the data veracity increases with refining data to
knowledge..

analytics are required. Data pre-processing is an essential stage
for data analytics and provides correct and useful data sets
for applying data mining algorithms, which is an important
step for enhancing data veracity. The increasing number of
uncertain data sources needs to be taken into consideration
in decision-making to ensure data veracity. Therefore, data
veracity should be captured and presented to the user. Thus,
there is a demand for new methods for veracity measurement
and enhancement in data processing.

C. Challenges for processing veracious big IoT data

We summarize the key characteristics of IoT and the chal-
lenges for processing veracious IoT data in seven dimensions.

Big IoT Data stream processing: The challenge is to access
data from a big amount of IoT devices, to prepare data and
then to perform rich analytics. The methods and algorithms
for processing big data need to have high performance for
real-time analytics. The rate of generating data is high and
often the data exhibit smooth variations, i.e. a small variation
occurs between two consecutive time stamps. Data produced
from monitoring various physical phenomena are continuous.
Sampling is often used for achieving energy efficiency. More-
over, the sensor data related to various phenomena may present
an inherent periodic pattern where the same values occur at
specific intervals.

Data Processing Latency: Timely generation of information
before it becomes outdated is critical for some IoT systems, for
instance localization and navigation. IoT data are generated in
real-time and allowed data processing time is short to produce
useful information and to make the right decisions. Hence,
the main challenge here is the development of efficient data
pre-processing and analytics methods for different level of re-
finement, from simple to rich analytics based on requirements
of use cases. Especially, lightweight data processing methods
with low computation effort are required.

Scalability: Large IoT systems can be expected to have
millions of devices producing data. Against this, most current
data processing solutions are designed for centralized systems



and do not offer the required flexibility and scalability for large
scale deployments. Hence, the relevant challenges are about
distributed automatic data processing in IoT architectures. For
example, when IoT devices are being automatically connected,
the main challenges are to decide where to place the veracious
big data processing components and which algorithms to use
to process the data. For another, it is critical to avoid the
cumulation of low accuracy (such as data error), which may
leads large scale analytics unusable.

Completeness: Completeness refers to the exhaustiveness
of the descriptions available for the IoT data, i.e. covering
all the required aspects mentioned in the hyper-dimension
sources, i.e. sources, data as well as the level of details of
descriptions. The completeness and interpretability assessment
of data should be covered for the evaluation at the input stage
but also for the subsequent stages (throughput and output).
Essentially, evaluation of this dimension will help to determine
if veracity information is available about the data that may be
critical at any subsequent stage.

Data Accuracy: The accuracy of information is the degree
to which the information correctly describes the phenomena
it is designed to measure [11]. It is usually characterized
in terms of error in statistical estimates and is traditionally
decomposed into bias (systematic error) and variance (random
error) components. It may also be described in terms of the
major sources of errors that potentially cause inaccuracy (e.g.,
coverage, sampling, non-response and response). A detailed
survey on error sources is desirable when analyzing the
accuracy of a potential dataset in regard to statistical analytics.

Complexity of IoT data models: Complexity of the data
models and data formats means that IoT devices generate
data with various structures, from simple and lightweight
structures to complex and verbose structures. Data correlations
reflect the extent of hierarchies, nested structures, and other
possible correlations in the data. This makes non-uniformity
and inconsistency big challenges when handling IoT data. This
challenge covers the complexity of data structure, data format,
data correlation, and data itself.

Privacy, consent, and security: Existing security and pri-
vacy solutions cannot provide complete security in big IoT
data scenarios. When the number of sensors providing input
increases, the possible attack surfaces for the system increase.
Current solutions are mostly designed for static data sets,
whereas IoT data streams are highly dynamic. Meanwhile,
enhancing veracity often requires more information, which
might pose a threat to privacy.

In a nutshell, big data have to be processed in real-time
in order to obtain valid and useful information and to make
the right decisions. These seven dimensions set big challenges
to judge the data quality and handle veracity of data within
reasonable amount of time as data volume is significant. The
diversity of the data sources brings abundant data types and
complex data structures, which increase the difficulty of data
integration.

Fig. 2. A general process to assess the data veracity.

III. ASSESSMENT AND ENHANCEMENT OF DATA VERACITY

In this section, we survey the state-of-the-art techniques for
assessing and enhancing big data veracity and algorithms for
mining uncertain data streams. Figure 2 presents a general
process for the assessment of data veracity. IoT devices
generate a large volume of data with varying structures and
high velocity. The sensor data quality needs to be guaranteed
for the further data processing, and it requires to be measured
according to the DQ specifications. Evaluation results can be
described by DQ indicators, which are further utilized in data
processing. Intelligent pre-processing enables the automated
enhancement of the DQ, thus, the data can be distributed to
different users according to their specifications for further data
mining.

A. Methodologies for data assessment

Many factors need to be taken into consideration for build-
ing the DQ models, such as phases and steps, dimensions and
metrics, data types, cost types, information systems, processes,
and services [8]. Quality categories, criteria, indicators, and
measures mainly characterize the DQ model. Each category
can be associated with a particular property of data and
each criterion can be associated to one or more indicators
accordingly. A given indicator may correspond to a measure
or a set of measures related to several quality criteria.

Assessment of data veracity denotes the quality of data
collections on the relevant DQ dimensions, compared to the
reference values and enables a diagnosis of quality. The
assessment process commonly includes data analytics, DQ
requirement analysis, identification of critical areas, and mea-
surement of quality. DQ information can be stored in metadata,
which provides complementary information on data.

Rodrı́guez et al. [12] propose an approach for monitoring
applications by providing users with important DQ infor-
mation. They focus on qualifying sensor data, instead of
correcting or improving it. They present DQ assessment task in
three steps, including specification of the information quality
sources, estimation of the sensor DQ, and management of
the DQ information. DQ information indicates the quality
properties of data that are evaluated, such as criteria, measure,



and indicator. A set of criteria is selected to estimate the
quality of raw sensor data at the acquisition layer, which allows
users to estimate the quality of data sources, the context of
acquisition and the transmission to the data management and
processing center. The internal category is related to quality
criteria such as consistency, currency, and volatility. The goal
is to avoid inconsistent information and to maintain the tempo-
rality of sensor data at a processing level. The usage category
is related to DQ criteria such as timeliness, availability and
adequacy. The assessment of sensor DQ implies a strong
correlation between sensor data and the information about
dynamic changes of quality values. In this approach, quality
information is considered as the complementary information
describing the uncertainty of sensor data and helpful to under-
stand sensor data. Metadata are data related to sensor behavior,
the specificities of monitoring context and to DQ information.
Batini et al. [8] summarize techniques to assess and improve
the quality of data, compare thirteen DQ methodologies from
several perspectives.

B. Data processing for enhancing data veracity

The sensor DQ can be enhanced by improving sensor in-
frastructures and behaviors, qualifying and maintaining sensor
resources, using data pre-processing and uncertainty reason-
ing techniques. Commonly, data-driven and process-driven
strategies can be used for improving DQ. Acquisition of new
data, record linkage, error localization and correction, etc, are
techniques used in data-driven strategy. Process control and
process redesign are primary techniques used in process-driven
strategy to improve DQ. Generally, process-driven techniques
outperform data driven techniques from a long-term view [8].

Data preparation and data reduction are two main techniques
used in data pre-processing. Data preparation includes data in-
tegration, cleaning, normalization and transformation. Data re-
duction is used to reduce the complexity of the data by feature
selection, feature extraction, and instance selection [13]. There
are several available techniques for data pre-processing. Pyle
presents a proven approach for preparing the data [14]. Garcı́a
et al. [15] summarize the most influential data pre-processing
algorithms covering missing values imputation, noise filtering,
dimensionality reduction, instance reduction, discretization,
and treatment of data for imbalanced pre-processing. They also
discuss the characteristics and performance of the algorithms.

For missing value imputation, it is critical to differentiate
between missing and empty values. In most cases, there is high
information in noting the patterns of variables that are missing.
The probability function of the data can be formulated by
taking into account the mechanisms that induce missingness.
Approximate probabilistic models can be sampled to fill the
missing values by using maximum likelihood procedures [16].
Garcı́a et al. [13] investigate the current development of big
data pre-processing techniques, and they find that current
development mainly focuses on feature selection and treatment
of imbalanced data, while little work has been proposed for
dealing the missing data in big data systems. A parallel data
cleaning algorithm is designed by Chen et al. [17] for system

data with missing information. Zhang et al. [18] use the rough
set theory and introduce three different parallel matrix-based
methods for processing large-scale incomplete data. A Stream-
ing K-Nearest-Neighbors Imputation Framework (SKIF) is
proposed to handle drifting large volume data streams [19].
It summarizes historical statistical information of complete
records in some micro-resources and maintains these in a
candidate pool as benchmark data. SKIF uses a novel hyprid-
K-Nearest Neighbors imputation method to estimate the up-
to-date incomplete records. In [20], a method is proposed for
adaptive cleaning RFID data. It models the unreliability of
RFID readings by viewing RFID streams as a statistical sample
of tags in the physical world, and exploits techniques grounded
in sampling theory to drive its cleaning processes. Through the
use of tools such as binomial sampling and Π-estimators, the
Statistical sMoothing for Unreliable RFid data (SMURF) filter
continuously adapts the smoothing window size in a principled
manner to provide accurate RFID data to applications.

Noise sometimes is present in the input attributes, which
might affects the output attribute. We can leave the noise
in, correct it or filter it out. Data polishing methods enable
labeling of an instance and repair the values to appropriate
ones. Noisy instances in the training data can be identified
and removed the by noise filters without modifying the data
mining techniques [21].

C. Mining uncertain data streams

Three main research areas concerning uncertain data are
modeling, management, and mining of uncertain data. The
major methods for handling the uncertainty include probability
analysis, fuzzy analysis, bayesian analysis, soft computing
technique (fuzzy logic, neural networks, and probabilistic
reasoning) and rule based classification technique [22]. The
general model for uncertain data is the possible world model.
Graphical models are more sophisticated and can be used to
model complex dependency. We need to choose the best model
depending on the applications while considering the tradeoff
between usability and expressiveness. Aggarwal et al. [23] [24]
explore various uncertain data algorithms for data mining and
management applications.

Research on mining data streams mainly focuses on clas-
sification, clustering and association rules extraction. It is a
challenge for mining data streams as data streams suffer from
many problems, such as bounded memory, single-pass, real-
time response and so on. Single classifier based approach
and ensemble based approach are two main approaches for
data stream classification. Two well known algorithms for
data stream classification are Very Fast Decision Tree learner
(VFDT) and Concept-adapting Very Fast Decision Tree learner
(CVFDT) [25]. CVFDT is an extension of VFDT for dealing
with concept drift. Many methods are available for cluster-
ing data streams, such as STREAM, CluStream, E-stream,
and ClusTree. Compared to traditional clustering techniques,
clustering data stream methods are adapted using incremental
learning or two-phase learning combined with different win-
dows (Landmark, Sliding, Fading and Titled-time) [26].



In some use cases, sensor networks collect a large amount of
uncertain data with high speed which requires to be processed
in real-time. The methods for processing data streams need to
be re-designed in order to take the uncertainty into account.
Diao et al. [27] present a space and time efficient probabilis-
tic modeling and inference based method for high-volume
stream processing. First, they utilize graphical modeling to
capture how a sensor produces data from the true phenomenon
with various types of noise. Then they employ probabilistic
inference to transform observed data into data of interest
based on the data generation model. Advanced approximation
techniques are explored in coping with high volume streams.
They also present a Probabilistic Data Stream System (PODS)
that supports relational query processing under uncertain data
streams using continuous random variable [28]. PODS utilizes
a unique data model based on Gaussian Mixture distribution,
which is flexible and efficient. The widely used techniques
for continuous random variables are multivariate integral and
Monte Carlo simulation.

Aggarwal and Yu [29] propose a general method for clus-
tering data streams where they assume only a few statistical
measures of the uncertainty (such as the standard error) are
available. They develop the UMicro algorithm with use of
micro-clustering model, which was first proposed for large
data sets, and subsequently adapted for deterministic data
streams. Compared to a purely deterministic method, their
approach is more effective and can greatly improve the quality
of the underlying result even using modest information during
the mining process.

Pan et al. [30] present two ensemble based algorithms,
Static Classifier Ensemble and Dynamic Classifier Ensemble
for data stream classification. Only class value of the sample
is assumed to be uncertain, while attributes value is precise.
Liang et al. [25] propose a Uncertainty-handling and Concept-
adapting Very Fast Decision Tree algorithm (UCVFDT) for
classifying high speed uncertain data streams. UCVFDT is
based on Decision Tree Classification on Uncertain Data
(DTU) and CVFDT. DTU is an extension of a well known
classification algorithm C4.5 and is a well performance deci-
sion tree on static uncertain data sets. CVFDT is a data stream
decision tree algorithm without considering uncertainty.

IV. FUTURE RESEARCH DIRECTIONS IN VERACIOUS IOT
DATA ANALYTICS

We propose following five important future research direc-
tions for veracious data analytics in IoT:

Direction 1. Data cleaning and veracity management
technologies for heterogeneous and distributed IoT data:
The data in IoT systems are often collected from distributed
and heterogenous sources. There is a need for automated data
cleaning and processing techniques for veracious IoT data that
are able to take into account heterogeneity of data sources.
Moreover, data cleaning and veracity management solutions
are needed for managing veracity of data that are integrated
from various heterogeneous sources. Finally, the proposed
techniques should be able to handle different variables of

interests to fulfill IoT applications’ requirements which will
likely provide complex services based on multiple parameters.

Direction 2. Approaches to support autonomous decision-
making with veracity metadata: A key concept of IoT is
that devices are able to execute complex tasks and make
decisions without human intervention. In order to develop
dependable and robust IoT systems, it is vital to design com-
mon approaches for integrating the veracity information into
the decision-making process. There is a need for approaches
to represent the veracity at different levels of abstraction
(i.e. data, information, knowledge, and wisdom) and encode
this metadata in a machine interpretable semantic format.
Moreover, there is a need for common IoT agent design
patterns to manage data veracity within the system control
logic in a dependable and transparent way.

Direction 3. Context-aware and domain-optimized method-
ologies for enhancing data veracity: IoT systems rely on
domain-knowledge provided by domain experts and often
represented as facts and rules within a knowledge base. IoT
systems need context-awareness to produce actions that match
the situations. Because IoT systems already store a large
amount of domain-specific knowledge and context data, it is
natural to study how this knowledge could be used to enhance
data veracity at different levels of abstraction. The context
and domain knowledge can be also used to optimize data
cleaning and pre-processing so that, for example, resources
are not wasted in situations where high data veracity is not
required.

Direction 4. Lightweight data cleaning and processing
techniques for IoT edge devices: Implementing DQ control in
“things” level would make the data processing and cleaning ar-
chitecture capable of scaling and evolving with the same pace
as IoT itself. IoT devices often have constrained resources.
Deploying data cleaning and processing techniques on IoT
devices require novel design of lightweight solutions that could
be embedded in smart devices.

Direction 5. Privacy preserving, personalized, and secure
veracious data management: As data veracity is often sub-
jective, data consumers should be able to define their tradeoff
of privacy and veracity based on their own requirements.
DQ could be intentionally reduced to preserve privacy. Data
consumers need to be able to manage their data veracity
efficiently based on their own specifications and requirements.
Moreover, there is a lack of solutions for security. We suggest
to design and implement 1) an open ecosystem with standard
APIs to avoid interoperability and reliability problems, and 2)
the best security practices for IoT devices to protect against
common security and privacy threats.

V. CONCLUSION

IoT presents challenges related to improving veracity in
processing big data. Most current research of data veracity
has been focused on and limited to DQ and data uncertainty
so far, such as precision, plausibility, and timeliness. In
this paper, we identify the challenges of handling veracity
of big data from IoT viewpoint, perform a survey about



assessing and enhancing veracity by doing data pre-processing
and mining uncertain data streams. Furthermore, we iden-
tify five research directions for future development of vera-
cious big data analytics, including data cleaning and veracity
management technologies for heterogeneous and distributed
IoT data, approaches to support autonomous decision-making
with veracity metadata, context-aware and domain-optimized
methodologies for enhancing data veracity, lightweight data
cleaning and processing techniques for IoT edge devices, and
privacy preserving, personalized, and secure veracious data
management.

Some standardization efforts have been done also in this
area. For example, ISO 8000-8:2015 describes fundamental
concepts of information and DQ, and how these concepts apply
to quality management processes and quality management
systems. Moreover, it specifies prerequisites for measuring in-
formation and DQ when executed within quality management
processes and quality management systems.

In the future, our research will focus on 1) lightweight and
real-time data stream pre-processing which can implement DQ
control in “things” level; and 2) minimizing the latency in IoT
stream pre-processing with developing automatic approaches
for adding metadata as semantic annotations. With these
approaches, rich information can be automatically added as
metadata to veracious big data to enhance performance and
scalability of IoT systems. Finally, we are interested in devel-
opment of privacy-preserving big data processing frameworks
based on General Data Protection Regulation [31].
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