
A scalable adaptive method for complex
reasoning over semantic data streams

Thu-Le Pham

National University of Ireland Galway
thule.pham@insight-centre.org

Abstract. Data streams are the infinite sequences of data elements that
are being generated by companies, social network, mobile phones, smart
homes, public transport vehicles and other modern infrastructures. Cur-
rent stream processing solutions can handle streams of data to timely
produce new results but they lack the complex reasoning capacities that
are required to go from data to actionable knowledge. Conversely, engines
that can perform such complex reasoning tasks, are mostly designed to
work on static data. The main aim of my research proposal is to provide a
solution to perform complex reasoning on dynamic semantic information
in a scalable way. At its core, this requires a solution which combines
advantages of both stream processing and reasoning research areas, and
has flexible heuristics for adaptation of the stream reasoning processes
in order to enhance scalability.

Keywords: stream reasoning, stream processing, non-monotonic rea-
soning, multi-context systems

1 Introduction

The ever growing advance of the Internet and Sensor technology has brought
new challenges evoked by the explosion of highly dynamic data. Large volumes
of data are continuously produced from various sources, and published at a speed
which exceeds by far our current methods and infrastructure for processing it.
An infographic from analytics software provider Domo 1, attempts to quantify
just how much data is generated in one minute online. It has been estimated
that in 2013 every minute on the Internet 200 million emails were sent, 4 million
queries were submitted in Google, and 2.5 million pieces of content were posted
on Facebook.These numbers do not include the volumes of data coming from
sensors and Internet of Things (IoT) devices. We refer to each of these dynamic
data flows as a data stream.

More specifically, data streams are defined as sequences of time-varying data
elements [4]. They occur in various modern applications such as environment
monitoring, traffic management, space situational awareness, and so on. These
real applications face several challenges because the data they need to process

1http://www.domo.com/learn/data-never-sleeps-2

2 Thu-Le Pham

is massive, ordered, can be incomplete, heterogeneous, and noisy. In addition
to that, they have to provide timely response, therefore time delay becomes a
key evaluation metric. Advances on Semantic Web & Linked Data research and
standards have already provided formats and technologies for representing and
sharing knowledge on the Web. In the last few years, Semantic Web technologies
such as RDF, OWL, SPARQL have provided mechanisms for processing seman-
tic data streams. However these solutions can not exhibit complex reasoning
capabilities such as the ability of managing defaults, common-sense, preferences,
recursion, and non-determinism. Conversely, logic-based non-monotonic reason-
ers can perform such tasks but are suitable for data that changes in low volumes
at low frequency. Therefore, there is a clear need for design and implementation
of new approaches to enable complex reasoning for web data streams.

The concept of ”stream reasoning”, as defined in [13], is considered as the ap-
plication of reasoning techniques to data streams. Stream reasoning is described
as “an unexplored yet high- impact research area and a new multidisciplinary
approach that can provide the abstractions, foundations, methods, and tools
required to integrate data streams, the Semantic Web, and reasoning systems”
[13]. A variety of concrete applications highlight clearly the important need for
stream reasoning technologies, such as Urban Computing [4] (i.e., the application
of pervasive computing to urban environment), Smart Cities (i.e., the applica-
tion of processing and understanding the information relevant for the life of a
city and use it to make the city run better, faster, and cheaper) [11], and so on.
Stream reasoning is definitely considered as a research area that can have a huge
impact on quality of life.

From the analysis of several application scenarios, the authors in [11] ex-
tracted the key challenges for stream reasoning systems. These are challenges
that we will consider in our approach on stream reasoning for the Semantic
Web:

– Integration: data in most scenarios comes from multiple sources with vari-
ous data types. This raises issues of representing and combining heteroge-
neous data under processing. Moreover, stream reasoning systems also use
domain knowledge in reasoning. This background knowledge is mainly static
and time-independent. This integration is challenging because retrieving and
analysing large volumes of dynamic data and static knowledge during stream
reasoning can be particularly expensive with current technologies.

– Scalability: the scalability is typically evaluated on two aspects. They are
computational complexity (i.e., the ability to perform more complex tasks)
and input size (i.e., the ability to process a larger input). It is essential that
the reasoning process is scalable regarding both aspects.

– Expressivity: all scenarios aim at deriving high level knowledge from large
volumes of low level knowledge. Expressivity of a reasoner is known to be
inversely related to its performance - the more expressive reasoner is, the
longer it takes to perform reasoning.

The overall purpose of this PhD proposal is to critically investigate how to
perform complex reasoning on data streams maintaining scalability. We refer to

Method for complex reasoning over semantic data streams 3

scalability as to the ability to provide answers in an acceptable time when the
throughput increases and the reasoning gets computationally intensive. We will
explore a heuristic-based stream reasoning approach for the (dynamic) web of
data, where query processing and non-monotonic reasoning can be adapted to
continuously improve the expressivity versus scalability trade-off.

The combination is based on the principle of having a 2-tier approach (Fig. 1)
where:

– Query processing is used to filter semantic data elements. We plan to use
RDF stream query processing engines such as C-SPARQL [2], CQELS [10].

– Non-monotonic reasoning is used for computationally intensive tasks. In this
proposal, we use Answer Set Programming (ASP) [9] over non-ground pro-
grams for the reasoning component.

ASP
reasoning

Query
processing

Streams Filtered data Answers

Fig. 1. 2-tier approach

2 State of the Art

There are various existing approaches aiming to perform reasoning over data
streams [5]. In stream processing, the existing solutions are divided into two cat-
egories: (1) Data Stream Management Systems and (2) Complex Event Process-
ing [11]. The former approach has some well-known engines such as CQELS and
C-SPARQL that have ability to process continuously low-level data streams at
high rate. The later approach considers observable raw data as primitive events
and expresses composite events by some specific operators. These approaches
do not manage incomplete information and do not perform complex reasoning
tasks.

In the knowledge representation and reasoning community, recent works have
been proposed, which attempt toward scalable reasoning using the MapReduce
framework. The authors in [1] focus on distributed methods for non-monotonic
rule-based reasoning. Their current works perform parallel defeasible reasoning
under the assumption of stratification which imposed a severe limitation con-
sidering the range of allowed rule set and ASP is still beyond this work. Other
attempts focus on extending the well established declarative complex reasoning
framework of ASP with dynamic data. M. Gebser et al [9] proposed modeling

4 Thu-Le Pham

approaches for continuous stream reasoning based on reactive ASP, utilizing
time-decaying logic programs to capture sliding window data in a natural way.
This is a first step towards gearing ASP to continuous reasoning tasks. However,
these approaches still mainly process on low changing data and relatively smaller
data sizes. Do et al [6] also utilize ASP in their stream reasoning system and
the approach is based on the DLV system [8], which does not deal with con-
tinuous and window-based reasoning over data stream within the reasoner. A
similar approach is proposed in [12], where the authors present the StreamRule
framework, which combines a stream processing engine and a non-monotonic
reasoner. Despite some preliminary investigations, no detailed evaluation is cur-
rently available to assess the performance of StreamRule.

3 Problem Statement and Contributions

Most of the real-time applications mentioned in Section 1 require dealing with
incomplete and noisy input streams, inconsistency, defaults, qualitative prefer-
ences, and non-determinism. These forms of reasoning are computationally in-
tensive. ASP over non-ground programs makes it possible to address these cases
in offline scenarios. However, state-of-the-art ASP reasoners can not cope with
huge and very dynamic input data in streaming scenarios. In this research, we
intend to focus on enriching the ability of reasoning over data streams while still
keeping the solution scalable by leveraging existing engines from both stream
processing and non-monotonic reasoning research areas.

We will extend the approach in [12], which combines CQELS in stream query
processing for data on the Web with ASP-based engines. We rely on the follow-
ing assumptions: i) that not all dynamic data streams are relevant for complex
reasoning tasks, ii) we consider semantically annotated RDF streams as input,
iii) the dynamic stream is dynamically changing in size, rate, and accuracy. The
query processing engine will be used for filtering and aggregating input data in
order to provide less amount of higher-level data for the reasoner. However, we
want to have a better way to integrate these two components than as a pipeline.
Therefore, the questions we want to target are the followings:

a. Is there a correlation between streaming rate, reasoning complexity, and win-
dow size which can help designing heuristics to increase the performance of
a 2-tier stream reasoning framework?
We observed that current implementation of StreamRule as a pipeline can
cause a bottleneck for the reasoning component. Therefore, the non-monotonic
reasoner needs to return results faster than the inputs arrive from the stream
query component. We want to study the relationship between streaming rate,
reasoning complexity, and window size which can be used to design heuris-
tics that improve the performance of the stream reasoning system.

b. How can we integrate the semantic of stream processing with the semantic
of answer set programming?

Method for complex reasoning over semantic data streams 5

We can bridge the gap between stream processing and reasoning by inte-
grating latest advances from both these research areas. Combining them as
a pipeline is a simple way to have a stream reasoning system which can
deal with complex reasoning tasks on top of query processing. However, this
method can not help in managing the information flow between two different
semantics. Therefore, it requires an expressive framework which can help to
combine them in a better way.

c. How can we resolve inconsistency raised in a heterogeneous distributed sys-
tem?
One of the issues which arises easily in heterogeneous and distributed sys-
tems is inconsistency. The heterogeneous and distributed data coming from
noisy streams can cause conflicts within a knowledge domain. Moreover,
inconsistency may happen when the system exchanges information across
different knowledge domains. This makes it necessary to develop a method
for handling inconsistency.

4 Research Methodology and Approach

In order to answer the above research questions, our approach unfolds in the
following phases:

a. Correlation between streaming rate, reasoning complexity, and window size:
Steaming rate, reasoning complexity, and window size are among the main
features which can affect the performance of our stream reasoning system.
This step deals with the identification of relationships between these features.
For example, a correlation exists between logical window size and streaming
rate: faster streams are more likely to produce query matches, so they require
smaller window sizes, unless the speed of the reasoning process is increased
by faster hardware. In order to discover such correlations, we intend to follow
these steps:

– Identify classes of reasoning tasks and their complexity, including a qual-
itative and quantitative analysis where possible.

– For each reasoning task, we conduct experiments on StreamRule to ob-
serve the behaviour of each component in the system. This observation
can be help to discover the correlation which then can be translated into
a heuristic.

– Study how different combinations of heuristics can affect the performance
of the system.

The contribution of this work in stream reasoning is to help designing an
adaptation mechanism for enhancing the scalability of the system. In other
words, it can help to address the trade-off between complexity and scalabil-
ity in dynamic environment.

6 Thu-Le Pham

b. Integration of the semantics of stream processing with the semantics of An-
swer Set Programming:
Given the latest advances of both stream processing and reasoning research
areas, this step aims to find an expressive representation which can capture
different logics (standard RDF/SPARQL semantics for stream processing
and Stable Model semantics for ASP reasoning) in a system. We intend to
consider an instance of Multi-Context System (MSC) [3] for this task. MCS
is a powerful method for many application scenarios where heterogeneity of
logics and inter-contextual information exchange are essential. The basic idea
is to leave the diverse logics and knowledge bases (called contexts or nodes)
untouched, and to equip each context with a collection of so-called bridge
rules in order to model the necessary information flow among contexts. The
contexts themselves may be heterogeneous in the sense that they can use
different logical languages and different inference systems. Moreover, MCS
are capable of integrating ”typical” monotonic knowledge representation log-
ics like description logics or temporal logics, and non-monotonic logics like
default logic and ASP. From this view point, we consider our state-of-the-art
stream processing engine and reasoner as contexts, namely:
– A query processing context: this context connects the whole system to

the real world by receiving data streams and reduces the enormous vol-
ume of data via stream query pattern matching.

– A non-monotonic reasoning context: this context analyses information
obtained from the query processing context, extracts high level knowl-
edge, and performs complex reasoning.

These two contexts can exchange information via a set of bridge rules. The
efficient query processing context can reduce the irrelevant data from input
streams and the bridge rules can control the useful information flow from the
stream processing context to the reasoning context. Moreover, in order to
enable the ability of adaptation of the system, we will add a context which
is called ”control context” to the framework (see (Fig. 2)). This element
contains meta-knowledge about query processing and reasoning context and
controls their behaviour. The heuristics designed in step (a) can help to de-
velop this control component.

c. A mechanism for managing consistency in reasoning:
MCS can enable integration at a general level between different formalisms.
However, due to its distributed nature, information exchange can have un-
foreseen effects, and in particular cause a system to be inconsistent. To tackle
this issue, we aim to analyse inconsistencies in our system, in order to un-
derstand where and why such inconsistencies occur, and how they can be
managed. This will allow to specify how to handle inconsistencies and to
extend the system with a consistency management mechanism. This mech-
anism can be improved by:
– Extending the definition of equilibrium of MCS for capturing the dy-

namic property of data streams.
– Exploiting the relationships between SPARQL 1.1. and ASP.

Method for complex reasoning over semantic data streams 7

– Imposing different kinds of preferences on the notions of diagnosis and
explanation introduced in [7].

– Establishing concrete consistency management procedures for analysis.

Revision rules

Bridge rules

Revision rules

Bridge rules

Query
processing

context

Complex
Reasoning

Context

Control
context

Bridge rules

Data streams

Solutions

Fig. 2. Conceptual Framework

5 Initial Investigation

In our initial investigation, we have conducted an experiment for better un-
derstanding the nature of the correlation between (event-based) window size
and streaming rate (research question a). This experiment mainly focused on
the performance of ASP reasoning with different streaming rates. We used the
state-of-the-art ASP reasoner clingo 4.3.0 2 and Java 7. The experiment were
conducted on a machine running Debian GNU/Linux 6.0.10, containing 8-cores
of 2.13 GHz processor and 64 GB RAM.

The ASP rule set we used for this experiment includes 10 rules which have 2
negation-as-failure rules. We executed the ASP reasoner with various amount of
input data (events) from 100 to 50000. The trend line of the processing time is
illustrated in (Fig. 3). This type of trend line shows that given a unit of time, for
some of certain streaming rates, there is a corresponding (event-based) window
size which can help to reduce the processing time of the system to less than the
unit of time. For example, given a unit of time is 1 second and a streaming rate
20000 events/second, if we feed all 20000 events to the reasoner, it will take 1232
milliseconds for processing. However, if we divide 20000 events into 10 groups of
2000 events and stream these groups to the reasoner, it will take 720 milliseconds
for processing whole 20000 events.

Based on the above experiment, we can find an optimal window size for a
given streaming rate for a particular ASP program for reducing the processing
time of the system. However, this conclusion holds iff there is no dependency
between input events for the reasoning component. This assumption can not be
applied for many real scenarios and move investigation is required to understand
how we can relax this assumption. Therefore, the next steps will be: i) study how

2http://sourceforge.net/projects/potassco/files/clingo/4.3. 0/

8 Thu-Le Pham

to relax this assumption to still find an optimal window for a given streaming
rate, ii) investigate correlation with different windows and complexity levels of
reasoning.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10000 20000 30000 40000 50000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of events

Fig. 3. Offline processing time

6 Evaluation Plan

An evaluation plan is an important step to observe the efficiency of our stream
reasoning approach and compare it with similar solutions. At this very initial
stage of my PhD, I foresee to conduct two evaluations:

– System Evaluation: In order to evaluate our system, we will provide the
formal proof of soundness and completeness of the formalism using MCS,
including the consistency check for the theoretical evaluation. In the exper-
imental evaluation, we consider these following metrics:

• Complexity, expressed in the number of rules and types of rules within
a logic program.

• Dataset size, expressed in the number of facts in the input.

• Latency, as the time required from receiving input data in the stream
query processor to providing the output as answer sets.

We will analyse a list of reasoning tasks which are in different complexity lev-
els. This step can be based on real scenarios from the EU project CityPulse

Method for complex reasoning over semantic data streams 9

3. Moreover, we can collect real data streams from this project for design-
ing evaluation. We will conduct experiments with different combinations of
heuristics for testing the performance of our system.

– Comparison: It is important to provide the baseline for comparing our
system with existing systems. We want to set up a benchmark which should
be sufficiently generic for a fair comparison. Three mentioned metrics and
the benchmark can be used to enable the comparison with other methods.

7 Conclusion

In this paper, we have described the emerging challenges of stream reasoning
for the web of data, identified questions in this area we want to tackle, and also
proposed a methodology and an approach to target them. We also have presented
the initial investigation of the correlation between streaming rate and window-
size, and a tentative evaluation plan for testing our approach. The goal of my
PhD is to enable complex reasoning on data streams so that we can bridge the
gap between stream processing and stream reasoning and enable a new market of
applications to be built on Semantic Web streams. In relation to this work, we are
aware of relate activities on RDF stream processing standards 4 and ASP-based
stream reasoning 5,6. This work is partially supported by “CityPulse: real-time
IoT stream processing and large-scale analytics for smart city applications”.

References

1. Antoniou, G., Batsakis, S., Tachmazidis, I.: Large-scale reasoning with (semantic)
data. In: Proceedings of the 4th International Conference on Web Intelligence,
Mining and Semantics (WIMS14). p. 1. ACM (2014)

2. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for
c-sparql queries. In: Proceedings of the 13th International Conference on Extending
Database Technology. pp. 441–452. ACM (2010)

3. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive rea-
soning in dynamic environments. In: Proceedings of the International Workshop on
Reactive Concepts in Knowledge Representation (ReactKnow). pp. 23–30 (2014)

4. Della Valle, E., Ceri, S., Barbieri, D., Braga, D., Campi, A.: A first step towards
stream reasoning. Future Internet–FIS 2008 pp. 72–81 (2009)

5. Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.:
Order matters! harnessing a world of orderings for reasoning over massive data.
Semantic Web 4(2), 219–231 (2013)

6. Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning. In:
Advances in Artificial Intelligence, pp. 104–109. Springer (2011)

7. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in multi-context systems. Artificial Intelligence 216, 233–274 (2014)

3http://www.ict-citypulse.eu/
4https://www.w3.org/
5http://www.kr.tuwien.ac.at/research/projects/dhsr/
6http://potassco.sourceforge.net

10 Thu-Le Pham

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Dlv-hex: Dealing with semantic
web under answer-set programming. In: Proc. of ISWC (2005)

9. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Answer set programming for stream reasoning. CoRR, abs/1301.1392 (2013)

10. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: The Semantic
Web–ISWC 2011, pp. 370–388. Springer (2011)

11. Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: Reasoning
over dynamic data. Web Semantics: Science, Services and Agents on the World
Wide Web 25, 24–44 (2014)

12. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: Streamrule: a non-
monotonic stream reasoning system for the semantic web. In: Web Reasoning and
Rule Systems, pp. 247–252. Springer (2013)

13. Valle, E.D., Ceri, S., Harmelen, F.v., Fensel, D.: It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intelligent Systems 24(6), 83–89 (2009)

