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ABSTRACT
Finding balanced S-boxes with high nonlinearity and low
transparency order is a difficult problem. The property of
transparency order is important since it specifies the re-
silience of an S-box against differential power analysis. Bet-
ter values for transparency order and hence improved side-
channel security often imply less in terms of nonlinearity.
Therefore, it is impossible to find an S-box with all optimal
values. Currently, there are no algebraic procedures that
can give the preferred and complete set of properties for an
S-box. In this paper, we employ evolutionary algorithms to
find S-boxes with desired cryptographic properties. Specifi-
cally, we conduct experiments for the 8×8 S-box case as used
in the AES standard. The results of our experiments proved
the feasibility of finding S-boxes with the desired proper-
ties in the case of AES. In addition, we show preliminary
results of side-channel experiments on different versions of
“improved” S-boxes.

Categories and Subject Descriptors
D.4 [Operating Systems]: Miscellaneous; D.4.6 [Software
Engineering]: Security and Protection—Cryptographic con-
trols

General Terms
Security, Experimentation

Keywords
Block Ciphers, S-Box, Transparency Order, Genetic Algo-
rithms, Side-channel Analysis
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1. INTRODUCTION
Block cipher algorithms are vulnerable to various kinds of

cryptanalysis. Besides more traditional linear [1] and differ-
ential cryptanalysis [2], the most popular attacks today be-
long to side-channel analysis (SCA) targeting actual imple-
mentations of cryptography in software or hardware. SCA
relies on the physical leakages from the actual implementa-
tion and its efficiency is much greater than the one of linear
or differential cryptanalysis [3]. Through various counter-
measures such as numerous masking and hiding schemes [4]
it is possible to make the algorithm more resilient to SCA.
However, this comes with a substantial cost increase due to
the increase of memory requirements and the decrease of
performance of the algorithm implemented.

In the design process of block ciphers one usually follows
principles of diffusion and confusion as introduced by Shan-
non [5]. The amount of confusion in an algorithm is mea-
sured with the nonlinearity property of nonlinear parts of
algorithm e.g. Boolean functions and S-boxes. Consider-
ing side-channel security, Prouff [6] defines the transparency
order property that characterizes the resistance of S-boxes
to the SCA or more precisely to differential power analysis
(DPA) [7]. However, there are still no algebraic methods
available to design S-boxes that have good transparency or-
der and adequately high nonlinearity. Since the worst trans-
parency order is obtained in the case when bent functions
are used (as bent functions obtain maximal nonlinearity [8])
it implies the fact that nonlinearity and transparency order
are conflicting criteria.

When random generation is used for S-boxes, the resulting
S-boxes have reduced nonlinearity when compared to many
specially constructed S-boxes. Therefore, random genera-
tion does not present a viable choice in the generation of
S-boxes with good transparency order.

In this paper we follow this intuition but we also do better
in terms of making good trade-offs among all the proper-
ties. We use evolutionary computation techniques to evolve
S-boxes with good transparency order and acceptable non-
linearity values. More precisely, this work makes the first
step in using this powerful method on a very practical cryp-
tographic problem. We aim at finding better alternatives for
S-boxes, as used in block ciphers or other symmetric cryp-



tographic primitives, in terms of improving their resistance
against side-channel analysis without too much deteriorat-
ing the security of S-boxes. Our general goal is to come
up with an evolutionary computation framework for finding
“proper” S-boxes that is both, effective and efficient. Natu-
rally, a design method that does not favour special methods
(e.g. algebraic based) also has several downsides. The most
obvious bottleneck is the inability to store S-box in a for-
mat different from a lookup table. From that perspective
it is unlikely that the new S-boxes can be used in every en-
vironment. However, on platforms with sufficient area for
the lookup tables and where resilience against SCA is of
great importance, we are confident that our method can be
a viable alternative. In this case, as table lookups are also
susceptible to cache attacks, a cache-timing resistant lookup
table could be used e.g. as presented by Bernstein [9].

1.1 Related Work
We divide relevant work in two categories: first one con-

cerning previous usages of evolutionary computation in evolv-
ing S-boxes and second one covering results concerning trans-
parency order property.

Evolving S-boxes. There are many successful applica-
tions of evolutionary computation when evolving Boolean
functions or S-boxes. Relevant works include the papers of
Millan et al. [10] and Jacob et al. [11].

Transparency order. Mazumdar et al. construct ro-
tation symmetric S-boxes with high nonlinearity and DPA
resistance [14]. Furthermore, they employ those S-boxes
in several hardware implementations and show that their
S-boxes have better DPA resistance than the AES S-box.
Same authors also use constrained random search to find
S-boxes with better than AES transparency order [15].

Our work is the first one to use the techniques of evo-
lutionary computation in finding cryptographically strong
S-boxes that feature also improved side-channel resilience.
More details on our contributions are given below.

1.2 Our Contribution
When using evolutionary computation techniques a spe-

cial caution is required as evolutionary algorithms are not
magic-solvers for any kind of problem. They can help in
finding viable solutions but to have something feasible or
in this case suitable for real-life applications, all the condi-
tions have to be taken into account and treated specifically.
Wolpert and Macready introduce the “No Free Lunch” the-
orem and prove that there is no single best algorithm for
every problem [16]. Of course, this theorem is only appli-
cable when we possess no knowledge about the problem at
hand. With a careful choice of evolutionary computation
technique and with adequate settings, evolutionary compu-
tation can be used to solve various real-world problems.

Here we need to reiterate that evolutionary computation
should not be regarded as the best possible method for solv-
ing this problem (or any problem).

In this paper, we use evolutionary computation technique,
specifically genetic algorithm, to evolve S-boxes with low
transparency order and relatively high nonlinearity values.
To be able to do that, we experiment with several versions
of evolutionary computation techniques to find the best one.
Also we present simple, yet effective fitness function we use
to find new S-boxes. The experiments prove that evolution-
ary algorithms are a viable option in evolving S-boxes with

low transparency order and high nonlinearity. In addition,
we show the results of practical experiments that confirm our
findings. For this purpose, we use power consumption traces
derived from a programmable smart card on which our new
improved S-boxes are implemented. More precisely, we con-
duct two different types of the experiments. The first type
are experiments to evolve S-boxes, and the second type are
the experiments to evaluate the resistance of evolved S-boxes
to DPA attacks. To avoid the confusion, for the former ex-
periments we use the name evolutionary experiments and
for the latter side-channel experiments.

The remainder of this paper is organized as follows: In
Sect. 2 we survey necessary information about evolutionary
computation and cryptographic properties of S-boxes. In
Sect. 3 our evolutionary computation experimental setup
and the results are presented. Sect. 4 contains a discussion
about the implementation of evolved S-boxes and our first
results from side-channel analysis. Finally, in Sect. 5 we
conclude the paper.

2. PRELIMINARIES
Here we give necessary information about side-channel

analysis, cryptographic properties of S-boxes and evolution-
ary computation.

2.1 Side-channel Analysis and DPA
Small cryptographic devices, such as smart cards, RFID

tags etc. have become pervasive in our lives and lots of our
security and privacy-sensitive data is stored on those con-
strained platforms. These devices provide unintentional out-
put channels, often called side channels. Sometimes, these
types of information leakages may be linked either to the
types of operations that the cryptographic algorithm is per-
forming, or to the data, i.e., the keys being processed. This
makes the leakages explorable by the adversary trying to
extract the secret key as she is always looking for shortcuts
in cryptanalysis. Considering the physical information ex-
plored there are several side channels possible. The best
known and most commonly used side-channel is power con-
sumption. as introduced in the first academic publications
by Kocher et al. [7, 17]. Different sources of side-channel
data, such as electromagnetic emanation [18], timing [17],
sound, and temperature have been used for successful side-
channel attacks (for a general overview see e.g. [4]).

2.2 Cryptographic Properties of S-boxes
Here we present the properties that are used in evalua-

tion of S-boxes by evolutionary algorithms. Other relevant
cryptographic properties are calculated a posteriori and pre-
sented in Sect. 3.3.
The addition modulo 2 is denoted as “ ⊕ ”. The inner
product of vectors ā and b̄ is denoted as ā · b̄ and equals
ā · b̄ = ⊕ni=1aibi.
An (n,m)-function is any mapping F from Fn2 to Fm2 [6].
Such a function F is called S-box or vectorial Boolean func-
tion. If m equals 1 then the function is called Boolean func-
tion. Boolean functions fi, where i ∈ {1, ...,m} are coordi-
nate functions of F and every Boolean function has n vari-
ables. Hamming weight HW of a vector ā, where ā ∈ Fn2 , is
the number of non-zero positions in the vector.

An (n,m)-function is called balanced if it takes every value
of Fm2 the same number 2n−m of times [19]. Balanced (n, n)-
functions are permutations on Fn2 .



Nonlinearity NF of an (n,m)-function F equals minimum
nonlinearity of all non-zero linear combinations b̄ · F , where
b̄ 6= 0, of its coordinate functions fi [3].

NF = 2n−1 − 1

2
max ā ∈ Fn2

v̄ ∈ Fm∗
2

|WF (ā, v̄)| (1)

Here, WF (ā, v̄) represents Walsh transform of F [6].

WF (ā, v̄) =
∑
x̄∈Fn2

(−1)v̄·F (x̄)⊕ā·x̄ (2)

In 2005, Prouff introduced a new cryptographic property
of S-boxes: transparency order [6] which can be defined for
a (n,m)-function as follows.

TF = maxβ̄∈Fm2 (|m− 2HW (β̄)| − 1

22n − 2n∑
ā∈Fn∗

2

|
∑

v̄ ∈ Fm2
HW (v̄) = 1

(−1)v̄·β̄WDaF (0̄, v̄)|). (3)

Here, WDaF represents Walsh transform of the derivative of
F with respect to a vector a ∈ Fn2 .

This property is unlike the ones known up to that time
(with the exception of SNR (DPA) (F) property [20]) since
it is related with the resistance of the S-boxes to the DPA
attacks. According to Prouff, transparency order has an
upper bound of m for an (n,m)-function. This bound is
achieved if every coordinate function fi is bent function. In
the case F is an affine function, then the transparency order
is zero. The higher the transparency order value is, the
lower is the S-box resistance to the DPA attacks [6]. Since
bent functions have maximum nonlinearity, we can see that
high nonlinearity and low transparency order are conflicting
criteria. Carlet also showed that some S-boxes with very
high nonlinearity have very bad transparency orders [3].

2.3 Genetic Algorithms
Genetic algorithms (GAs) are a subclass of evolutionary

algorithms where the elements of the search space S are
arrays of elementary types [21]. Today, genetic algorithms
represent evolutionary technique that has been successfully
applied to various optimization problems. To be able to
produce new individuals (solutions) GA uses variation op-
erators where the usual ones are mutation and crossover
(recombination) operators. Mutation operators are opera-
tors that use one parent to create one child by applying
randomised changes to parent. Mutation depends on the
mutation rate pm which determines the probability that a
change will occur within individual. Recombination opera-
tors work on two or more parents to create offspring from
the information contained within parent solutions. Recom-
bination is usually applied probabilistically according to a
crossover rate pc. Besides variation operators, it is necessary
to decide about selection method. Today, the k-tournament
selection method is widely used for this purpose [21].

3. EXPERIMENTAL SETTINGS AND RE-
SULTS

In all our evolutionary experiments we use the genetic al-
gorithm as presented in [22]. For evolutionary algorithms
test suite we use the Evolutionary Computation Framework

(ECF) [?]. ECF is a C++ framework intended for the ap-
plication of any type of the evolutionary computation, de-
veloped at the University of Zagreb.

The goal is to evolve balanced bijective S-boxes with high
nonlinearity and low transparency order. We experiment
with the 8×8 size S-box as this is the size of AES S-box
which represents the standard for block ciphers.

3.1 Fitness Function and Representation
Maximization of the value of a fitness function is the ob-

jective in all evolutionary experiments. Fitness function rep-
resents definition of the problem to solve with evolutionary
algorithm. For fitness function we use a combination of bal-
ancedness, nonlinearity and transparency order properties.
Since we require that the solutions are balanced, we do not
add balancedness to the fitness function. Rather, we set it as
a constraint that needs to be fulfilled to evaluate the fitness
value of an individual.

Our fitness function equals the sum of nonlinearity (NF )
and transparency order (TF ) properties values. Since the
transparency order value should be as low as possible, we
subtract the value obtained from the upper bound value for
transparency order.

This fitness function can be easily extended to contain
more properties that are of relevance to the evolutionary
experiments.

fitness = NF + (m− TF ) (4)

We also experimented with the weighted fitness formula
but the results were similar. This is due to the fact that
algorithm finds some nonlinearity level and while remaining
at the same level looks for the best transparency order value.
If we add more weight to the transparency order than it arti-
ficially adds the importance of transparency order for lower
values of nonlinearity but still achieves same transparency
order values for each nonlinearity level.

In the genetic algorithm we use permutation representa-
tion of solutions. In the permutation representation, 8×8
S-box is defined with an array of 256 integer numbers with
values between 0 and 255 (256 distinct values). Each of those
values occurs exactly once in an array and represents one
entry for the S-box lookup table, where inputs are in lexico-
graphical order. The optimization problem is finding an ad-
equate ordering of those values to achieve the desired prop-
erties. When using permutation representation, the problem
of finding good S-boxes can be informally treated as a spe-
cial instance of traveling salesman problem (TSP) [23, 24].
In TSP the objective is to find the optimal path between
all the cities in the map (or more generally, objective is to
decide on the order of values). Here, we wanted to find the
optimal path between values in S-box lookup tables. When
regarded as a TSP, we can conclude the problem is hard
since there is 256! − 2 possible solutions (we neglect solu-
tions where the output of the lookup table is the same as
the input and where AES S-box is a solution).

3.2 Evolutionary Process and Parameters
Once the parameters of GA are set, we can start with

the generation of the initial population. Solutions in ini-
tial population are created by randomly setting each value
from 0 to 255 as outputs of a lookup table. When the ini-
tial population is generated, genetic algorithm starts with



the evolution process. In each iteration it randomly chooses
k possible solutions (the tournament of size k) and selects
the worst solution among those (this selection method also
ensures elitism i.e. the best solutions are always propagated
to the next generation). The remaining solutions are used
as parents which create one offspring via variation opera-
tors. The offspring (new solution) then replaces the worst
solution in the tournament.

For variation operators we use 3 mutation operators and 3
crossover operators (we chose the operators that are among
the most common ones in use today). We use insert mu-
tation [22], inversion mutation [22] and swap mutation [?].
For crossover operators we use partially mapped crossover
(PMX) [?], position based crossover (PBX) [?] and order
crossover (OX) [?]. For each offspring, an operator is se-
lected uniformly at random between all operators within a
class of operators (mutation and crossover). Further infor-
mations about variation operators can be found in [22].

The evolution process repeats until the stopping criterion
is met; here the stopping criterion is a certain number of
generations without improvement of the best solution.

Parameters for the evolutionary algorithm are following:
the size of (n,m)-function is 8×8, number of independent
runs for each evolutionary experiment is 30 and the popula-
tion size is 100. Tournament size in steady-state tournament
selection is equal to 3. Mutation probability is set to 0.3 per
individual. This mutation rate is chosen on a basis of a small
set of tuning experiments where it showed the best results
on average.

3.3 Genetic Algorithm Results
Several examples of S-boxes are given in Table 1. First

two S-boxes should be regarded as benchmarks, since first
one is the AES S-box and second one is a randomly created
S-box.

S-boxes 1 to 5 are examples of evolved S-boxes. Addition-
ally, we give values for the following cryptographic proper-
ties: DPA signal-to-noise ratio (SNR) [20], global avalanche
criterion (GAC) - absolute indicator (∆F ) and sum-of-square
indicator (σF ) [25,26] and differential δ-uniformity (δ - uni-
formity) [19,27]. Here, GAC and δ-uniformity represent the
properties related to the resistance of algorithm to the linear
and differential cryptanalysis, and DPA (SNR) relates with
the DPA resistance of S-boxes.

Table 1: Cryptographic Properties of S-boxes
S-box NF TF SNR δ-

unif.
∆F σF

AES S-box 112 7.86 9.599 4 32 133120

Random S-box 92 7.805 10.001 12 96 257152

S-box 1 100 7.717 8.686 10 104 245632

S-box 2 98 7.358 5.825 12 104 341248

S-box 3 98 7.41 6.034 14 112 370816

S-box 4 100 7.53 5.44 12 104 298624

S-box 5 98 7.50 6.547 14 112 356224

All the S-boxes enumerated in the table are balanced so
we did not write that property in the table. Also, all the
S-boxes have algebraic degree equal to 7. We omitted corre-
lation immunity property from the table since it must be 0
as evident by Siegenthaler’s inequality [8]. Further, none of

Figure 1: Nonlinearity versus transparency order
for S-boxes

the S-boxes satisfy SAC property so we also omitted it from
the table [8].

In Fig. 1 we displayed comparison between random search
results and GA results. Circles represent one million random
S-boxes results, the plus symbol represents AES S-box, the
diamond symbol represents evolved S-box 1, and finally, the
triangle symbol represents evolved S-box 2. Here we note
that random search found S-box with nonlinearity of 98 and
transparency order of 7.78 which is far worse than the GA
results.

As evident from Table 1 and Fig. 1, finding S-boxes with
low transparency order and high nonlinearity is hard. Low
nonlinearity value does not ensures low transparency order.
In fact, it is easy to find S-boxes with nonlinearity below
90 and with transparency order comparable to that of AES
S-box. Since we could not find any S-box with nonlinearity
level the same as in AES case and with significantly better
transparency order, we opted to find S-boxes with nonlinear-
ity lower than in AES, but also with transparency order sig-
nificantly lower than in AES case. Here, by significantly bet-
ter transparency order values we mean those S-boxes where
we require more traces to perform a DPA attack. Since the
evolved S-boxes must be implemented through lookup tables
while they have lower transparency value and higher GAC,
transparency order must be low enough to justify it.

Here we can also make distinction between two different
hard problems, one is finding as low as possible transparency
order value while maintaining adequate nonlinearity level,
and second problem is to find S-boxes with nonlinearity
value between 100 and 112 while having low transparency
order values. In the case of evolved S-boxes 1 and 2 from
Table 1, we consider S-box 2 to be much better since its non-
linearity is only slightly lower while its transparency order
value is significantly lower than in the case of S-box 1.

S-box 2 was evolved in 2325th generation of genetic algo-
rithm which took 96000 seconds and S-box 4 was evolved
in 124th generation and that took 4600 seconds. In the
evolution process we used a cluster of computers where the
average machine is Pentium with 2.6 GHz and 2 GB RAM.
For both S-boxes, no further improvement was achieved af-
ter reaching the values as specified in Table 1.

4. SIDE-CHANNEL RESISTANCE OF
EVOLVED S-BOXES

Using an S-box which has evolved in a way that is ex-



plained in previous sections of the work can be a quite chal-
lenging task when area constrained devices are concerned.
Since the S-box is not generated through algebraic methods
but evolutionary methods, the only way to implement these
S-boxes is by using lookup tables (LUTs). When smart cards
are considered, a software implementation of AES would
make use of lookup tables. Therefore one of the most im-
portant platforms where side-channel analysis is considered
as a major threat, can be strengthened by using one of the
proposed S-boxes at virtually no additional cost. Here, one
can argue that it is not entirely area friendly to implement
a look-up table for an 8×8 S-box but it should also be con-
sidered that side-channel resistance always comes at a cost.
A shortcoming of the S-boxes proposed in this work is that
they can only be implemented as LUTs in a design. When
hardware designs are concerned, this approach can lead to
excessive resource usage, and therefore the suitability of us-
ing such S-boxes in hardware implementations remains to
be considered.

Aside from evaluating the cryptographic properties of the
proposed S-boxes, we also evaluated side-channel resistance
of software implementation of the new S-boxes. We im-
plemented the new S-boxes on a smart card with an AT-
Mega163 microcontroller. The measurements were collected
with a PC oscilloscope at 250 million samples per second
sampling rate. A straightforward software implementation
of AES is modified to use the proposed S-boxes in side-
channel experiments. For running the attacks, the output
of the SubBytes operation is targeted and Hamming weight
model is used to estimate the power consumption. The
power estimation for each key candidate is checked for fit-
ness with the actual power measurements through Pearson
correlation. The experiment is repeated for 10 different keys
selected at random, and the success rate is computed follow-
ing the methodology proposed by Standaert et al. [28]. The
results of our analysis are presented in Figure 2. The anal-
ysis is done on an AES implementation which processes the
16 S-box lookups in a random order for each execution of
the code. This way, the noise level is increased and therefore
the effect of the transparency order is more visible. Prac-
tical experiments are done for two new S-boxes: one with
the lowest transparency order values we have managed to
obtain, and another with the highest nonlinearity and the
lowest transparency order for that nonlinearity. It is evident
from the figure that using S-boxes with lower transparency
order values results in an immediate improvement over the
AES S-box in terms of side-channel resistance. Looking at
Figure 2, 70% success rate for side-channel analysis on AES
S-box requires 12000 traces. However when S-box 2 in Ta-
ble 1 is considered, one requires at least 14500 traces to
achieve the same success rate. Therefore a decrease of 0.5
in transparency order leads to an increase of at least 20.84%
in the number of traces required to achieve the same suc-
cess rate when running side-channel analysis with the noise
level present in our experiments. Note that we expect this
number to increase with increased noise in measurements.

We further observe that the effect of transparency order
is less visible when the level of noise is low. More precisely,
the correlation values obtained for the incorrect key guesses
increase when S-boxes with lower transparency order values
are used. This suggests that more experiments with high
level of noise and other countermeasures are interesting for
future studies. We can compare the results obtained in this

Figure 2: Success rate [28] of the analysis vs the
number of traces required.

research with those of Mazumdar et al. [14,15]. When using
constrained random search the best results were nonlinearity
of 98 and transparency order of 7.782 [15]. The difference
of 0.4 for transparency order, from our to their solution,
would require substantially more traces for key recovery ac-
cording to the experiments in [15]. When designing rota-
tion symmetric S-boxes the best nonlinearity was 102 and
transparency order 7.76 [14]. Genetic algorithm approach
produced S-boxes with comparable nonlinearity (98 to 100),
but with far better transparency order of down to 7.35.

5. CONCLUSION
In this work we promote the use of GAs for evolving S-

boxes with improved side-channel resistance. Our approach
shows potentials in both creation of S-boxes as well as in
the evaluation. However, we are aware of the difficulties
that lookup table approach could pose. Nevertheless, we do
believe that our results have practical values. In general, one
can consider the results as a proof of existence of S-boxes
with desired properties where we expect that the results can
be optimized even further. In this research we used generic
GA but the results can be improved by employing custom
made GAs or some other evolutionary algorithm. As we
have already stated in the previous section, an increase in
the level of noise seems to amplify the effect of using S-boxes
with lower transparency order values. Therefore, in the same
experimental setup, as used in previously mentioned papers,
we expect the required number of traces to be significantly
higher when our S-boxes are considered. Alas, the fact that
no S-boxes were included in those papers restricted us from
running experiments with the same setup.
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